1
|
Huang J, Ji X. Never a dull enzyme, RNA polymerase II. Transcription 2023; 14:49-67. [PMID: 37132022 PMCID: PMC10353340 DOI: 10.1080/21541264.2023.2208023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
RNA polymerase II (Pol II) is composed of 12 subunits that collaborate to synthesize mRNA within the nucleus. Pol II is widely recognized as a passive holoenzyme, with the molecular functions of its subunits largely ignored. Recent studies employing auxin-inducible degron (AID) and multi-omics techniques have revealed that the functional diversity of Pol II is achieved through the differential contributions of its subunits to various transcriptional and post-transcriptional processes. By regulating these processes in a coordinated manner through its subunits, Pol II can optimize its activity for diverse biological functions. Here, we review recent progress in understanding Pol II subunits and their dysregulation in diseases, Pol II heterogeneity, Pol II clusters and the regulatory roles of RNA polymerases.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
RNA polymerase II mutations conferring defects in poly(A) site cleavage and termination in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2013; 3:167-80. [PMID: 23390594 PMCID: PMC3564978 DOI: 10.1534/g3.112.004531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/27/2012] [Indexed: 01/06/2023]
Abstract
Transcription termination by RNA polymerase (Pol) II is an essential but poorly understood process. In eukaryotic nuclei, the 3′ ends of mRNAs are generated by cleavage and polyadenylation, and the same sequence elements that specify that process are required for downstream release of the polymerase from the DNA. Although Pol II is known to bind proteins required for both events, few studies have focused on Pol II mutations as a means to uncover the mechanisms that couple polyadenylation and termination. We performed a genetic screen in the yeast Saccharomyces cerevisiae to isolate mutations in the N-terminal half of Rpb2, the second largest Pol II subunit, that conferred either a decreased or increased response to a well-characterized poly(A) site. Most of the mutant alleles encoded substitutions affecting either surface residues or conserved active site amino acids at positions important for termination by other RNA polymerases. Reverse transcription polymerase chain reaction experiments revealed that transcript cleavage at the poly(A) site was impaired in both classes of increased readthrough mutants. Transcription into downstream sequences beyond where termination normally occurs was also probed. Although most of the tested readthrough mutants showed a reduction in termination concomitant with the reduced poly(A) usage, these processes were uncoupled in at least one mutant strain. Several rpb2 alleles were found to be similar or identical to published mutants associated with defective TFIIF function. Tests of these and additional mutations known to impair Rpb2−TFIIF interactions revealed similar decreased readthrough phenotypes, suggesting that TFIIF may have a role in 3′ end formation and termination.
Collapse
|
3
|
Dettmann A, Jäschke Y, Triebel I, Bogs J, Schröder I, Schüller HJ. Mediator subunits and histone methyltransferase Set2 contribute to Ino2-dependent transcriptional activation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 2010; 283:211-21. [PMID: 20054697 DOI: 10.1007/s00438-009-0508-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 12/16/2009] [Indexed: 01/30/2023]
Abstract
To activate eukaryotic genes, several pathways which modify chromatin and recruit general factors of the transcriptional machinery are utilized. We investigated the factors required for activation of yeast phospholipid biosynthetic genes, depending on activator protein Ino2 which binds to the inositol/choline-responsive element (ICRE) upstream promoter motif together with its partner protein Ino4. We used a set of 15 strains each defective for one of the non essential subunits of yeast mediator complex and identified med2, med3, med15, med18 and med19 as impaired for inositol biosynthesis. In these mutants, ICRE-dependent gene activation was reduced to 13-22% of the wild-type level. We also demonstrate synthetic growth and activation defects among mediator mutants and mutants lacking defined histone modifications (snf1, gcn5) and transcriptional coactivators (sub1). Analysis of mutants defective for histone methylation (set1, set2 and dot1) and demethylation (jhd1, jhd2, gis1, rph1 and ecm5) revealed the importance of the H3 Lys36-specific Set2 methyltransferase for ICRE-dependent gene expression. Although defined mediator subunits are critical for gene activation, we could not detect their interaction with Ino2. In contrast, Ino2 directly binds to the Set2 histone methyltransferase. Mapping of interaction domains revealed the importance of the SET core domain which was necessary and sufficient for binding Ino2.
Collapse
Affiliation(s)
- Anne Dettmann
- Institut für Genetik und Funktionelle Genomforschung, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Koyama H, Ueda T, Ito T, Sekimizu K. Novel RNA polymerase II mutation suppresses transcriptional fidelity and oxidative stress sensitivity in rpb9Delta yeast. Genes Cells 2010; 15:151-9. [PMID: 20088966 DOI: 10.1111/j.1365-2443.2009.01372.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously reported that transcription elongation factor S-II and RNA polymerase II subunit Rpb9 maintain transcriptional fidelity and contribute to oxidative stress resistance in yeast. Here we examined whether other transcription elongation-related factors affect transcriptional fidelity in vivo. Among the 17 mutants of transcription elongation-related factors analyzed, most were not responsible for maintaining transcriptional fidelity. This finding indicates that transcriptional fidelity is controlled by a limited number of transcription elongation-related factors including S-II and Rpb9 and not by all transcription elongation-related factors. In contrast, by screening rpb9Delta cell revertants for sensitivity to the oxidant menadione, we identified a novel mutation in RNA polymerase II, rpb1-G730D, which suppressed both reduced transcriptional fidelity and oxidative stress sensitivity. These findings suggest that the maintenance of transcriptional fidelity that is mediated by transcription machinery directly confers oxidative stress resistance.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Department of Microbiology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
5
|
Disruption of aldo-keto reductase genes leads to elevated markers of oxidative stress and inositol auxotrophy in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:237-45. [PMID: 17919749 DOI: 10.1016/j.bbamcr.2007.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/13/2007] [Accepted: 08/15/2007] [Indexed: 11/21/2022]
Abstract
A large family of aldo-keto reductases with similar kinetic and structural properties but unknown physiological roles is expressed in the yeast Saccharomyces cerevisiae. Strains with one or two AKR genes disrupted have apparently normal phenotypes, but disruption of at least three AKR genes results in a heat shock phenotype and slow growth in inositol-deficient culture medium (Ino(-)). The present study was carried out to identify metabolic or signaling defects that may underlie phenotypes that emerge in AKR deficient strains. Here we demonstrate that pretreatment of a pentuple AKR null mutant with the anti-oxidative agent N-acetyl-cysteine rescues the heat shock phenotype. This indicates that AKR gene disruption may be associated with defects in oxidative stress response. We observed additional markers of oxidative stress in AKR-deficient strains, including reduced glutathione levels, constitutive nuclear localization of the oxidation-sensitive transcription factor Yap1 and upregulation of a set of Yap1 target genes whose function as a group is primarily involved in response to oxidative stress and redox balance. Genetic analysis of the Ino(-) phenotype of the null mutants showed that defects in transcriptional regulation of the INO1, which encodes for inositol-1-phosphate synthase, can be rescued through ectopic expression of a functional INO1. Taken together, these results suggest potential roles for AKRs in oxidative defense and transcriptional regulation.
Collapse
|
6
|
Affiliation(s)
- Lilia R Nunez
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
7
|
Schramke V, Sheedy DM, Denli AM, Bonila C, Ekwall K, Hannon GJ, Allshire RC. RNA-interference-directed chromatin modification coupled to RNA polymerase II transcription. Nature 2005; 435:1275-9. [PMID: 15965464 DOI: 10.1038/nature03652] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 04/22/2005] [Indexed: 01/07/2023]
Abstract
RNA interference (RNAi) acts on long double-stranded RNAs (dsRNAs) in a variety of eukaryotes to generate small interfering RNAs that target homologous messenger RNA, resulting in their destruction. This process is widely used to 'knock-down' the expression of genes of interest to explore phenotypes. In plants, fission yeast, ciliates, flies and mammalian cells, short interfering RNAs (siRNAs) also induce DNA or chromatin modifications at the homologous genomic locus, which can result in transcriptional silencing or sequence elimination. siRNAs may direct DNA or chromatin modification by siRNA-DNA interactions at the homologous locus. Alternatively, they may act by interactions between siRNA and nascent transcript. Here we show that in fission yeast (Schizosaccharomyces pombe), chromatin modifications are only directed by RNAi if the homologous DNA sequences are transcribed. Furthermore, transcription by exogenous T7 polymerase is not sufficient. Ago1, a component of the RNAi effector RISC/RITS complex, associates with target transcripts and RNA polymerase II. Truncation of the regulatory carboxy-terminal domain (CTD) of RNA pol II disrupts transcriptional silencing, indicating that, like other RNA processing events, RNAi-directed chromatin modification is coupled to transcription.
Collapse
Affiliation(s)
- Vera Schramke
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The Mediator complex acts as a bridge, conveying regulatory information from enhancers and other control elements to the basal RNA polymerase II transcription machinery. Mediator is required for the regulated transcription of nearly all RNA polymerase II-dependent genes in Saccharomyces cerevisiae, and post-translational modifications of specific Mediator subunits can affect global patterns of gene transcription.
Collapse
Affiliation(s)
- Stefan Björklund
- Department of Medical Biochemistry, Umeå University, S-901 87 Umeå, Sweden.
| | | |
Collapse
|
9
|
Gardenour KR, Levy J, Lopes JM. Identification of novel dominant INO2 c mutants with an Opi- phenotype. Mol Microbiol 2004; 52:1271-80. [PMID: 15165231 DOI: 10.1111/j.1365-2958.2004.04069.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The INO2 gene of Saccharomyces cerevisiae is required for derepression of the phospholipid biosynthetic genes in response to inositol depletion. Conversely, the OPI1 gene is required for repression in response to inositol supplementation. Results of an in vitro assay have led to a model in which Opi1p interacts with Ino2p. However, there is no in vivo evidence to support this model. Additionally, most of the previously isolated ino2 mutants offer little insight into this model. Here, we report the isolation of a new class of dominant mutations in the INO2 gene, which yield constitutive expression of a target gene (i.e. an Opi(-) mutant phenotype). Two mutations reside in a region of the Ino2p required for interaction with Opi1p in vitro. Three other mutations are at the amino-terminus in a transcriptional activation domain.
Collapse
Affiliation(s)
- Kyle R Gardenour
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
10
|
Conrad NK, Wilson SM, Steinmetz EJ, Patturajan M, Brow DA, Swanson MS, Corden JL. A yeast heterogeneous nuclear ribonucleoprotein complex associated with RNA polymerase II. Genetics 2000; 154:557-71. [PMID: 10655211 PMCID: PMC1460961 DOI: 10.1093/genetics/154.2.557] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent evidence suggests a role for the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II) in pre-mRNA processing. The yeast NRD1 gene encodes an essential RNA-binding protein that shares homology with mammalian CTD-binding proteins and is thought to regulate mRNA abundance by binding to a specific cis-acting element. The present work demonstrates genetic and physical interactions among Nrd1p, the pol II CTD, Nab3p, and the CTD kinase CTDK-I. Previous studies have shown that Nrd1p associates with the CTD of pol II in yeast two-hybrid assays via its CTD-interaction domain (CID). We show that nrd1 temperature-sensitive alleles are synthetically lethal with truncation of the CTD to 9 or 10 repeats. Nab3p, a yeast hnRNP, is a high-copy suppressor of some nrd1 temperature-sensitive alleles, interacts with Nrd1p in a yeast two-hybrid assay, and coimmunoprecipitates with Nrd1p. Temperature-sensitive alleles of NAB3 are suppressed by deletion of CTK1, a kinase that has been shown to phosphorylate the CTD and increase elongation efficiency in vitro. This set of genetic and physical interactions suggests a role for yeast RNA-binding proteins in transcriptional regulation.
Collapse
Affiliation(s)
- N K Conrad
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Sharma N, Sadhale PP. Overexpression of the gene for Rpb7 subunit of yeast RNA polymerase II rescues the phenotypes associated with absence of the largest, nonessential subunit Rpb4. J Genet 1999. [DOI: 10.1007/bf02934460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Feaver WJ, Huang W, Friedberg EC. The TFB4 subunit of yeast TFIIH is required for both nucleotide excision repair and RNA polymerase II transcription. J Biol Chem 1999; 274:29564-7. [PMID: 10506223 DOI: 10.1074/jbc.274.41.29564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-degron strategy has been used to generate a yeast strain harboring a temperature-sensitive allele of TFB4 (tfb4(td)), the gene that encodes the 37-kDa subunit of the transcription/repair factor TFIIH. The tfb4(td) strain was sensitive to UV radiation and is defective in nucleotide excision repair in vitro. The mutant strain was also found to be an inositol auxotroph due at least in part to an inability to properly induce expression of the INO1 gene. These results indicate that like other subunits of TFIIH, Tfb4 is required for both RNA polymerase II transcription and DNA repair.
Collapse
Affiliation(s)
- W J Feaver
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9072, USA
| | | | | |
Collapse
|
13
|
Carman GM, Henry SA. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 1999; 38:361-99. [PMID: 10793889 DOI: 10.1016/s0163-7827(99)00010-7] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this review, we have discussed recent progress in the study of the regulation that controls phospholipid metabolism in S. cerevisiae. This regulation occurs on multiple levels and is tightly integrated with a large number of other cellular processes and related metabolic and signal transduction pathways. Progress in deciphering this complex regulation has been very rapid in the last few years, aided by the availability of the sequence of the entire Saccharomyces genome. The assignment of functions to the remaining unassigned open reading frames, as well as ascertainment of remaining gene-enzyme relationships in phospholipid biosynthesis in yeast, promises to provide detailed understanding of the genetic regulation of a crucial area of metabolism in a key eukaryotic model system. Since the processes of lipid metabolism, secretion, and signal transduction show fundamental similarities in all eukaryotes, the dissection of this regulation in yeast promises to have wide application to our understanding of metabolic control in all eukaryotes.
Collapse
Affiliation(s)
- G M Carman
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick 08901, USA.
| | | |
Collapse
|
14
|
Ouyang Q, Ruiz-Noriega M, Henry SA. The REG1 gene product is required for repression of INO1 and other inositol-sensitive upstream activating sequence-containing genes of yeast. Genetics 1999; 152:89-100. [PMID: 10224245 PMCID: PMC1460607 DOI: 10.1093/genetics/152.1.89] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A search was conducted for suppressors of the inositol auxotrophic phenotype of the ino4-8 mutant of yeast. The ino4-8 mutation is a single base pair change that results in substitution of lysine for glutamic acid at position 79 in the bHLH domain of the yeast regulatory protein, Ino4p. Ino4p dimerizes with a second bHLH protein, Ino2p, to form a complex that binds to the promoter of the INO1 gene, activating transcription. Of 31 recessive suppressors of ino4-8 isolated, 29 proved to be alleles of a single locus, identified as REG1, which encodes a regulatory subunit of a protein phosphatase involved in the glucose response pathway. The suppressor mutation, sia1-1, identified as an allele of REG1, caused constitutive INO1 expression and was capable of suppressing the inositol auxotrophy of a second ino4 missense mutant, ino4-26, as well as ino2-419, a missense mutation of INO2. The suppressors analyzed were unable to suppress ino2 and ino4 null mutations, but the reg1 deletion mutation could suppress ino4-8. A deletion mutation in the OPI1 negative regulator was incapable of suppressing ino4-8. The relative roles of the OPI1 and REG1 gene products in control of INO1 expression are discussed.
Collapse
Affiliation(s)
- Q Ouyang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
15
|
Cromie KD, Ahmad K, Malik T, Buyukuslu N, Glass RE. Trans-dominant mutations in the 3'-terminal region of the rpoB gene define highly conserved, essential residues in the beta subunit of RNA polymerase: the GEME motif. Genes Cells 1999; 4:145-59. [PMID: 10320480 DOI: 10.1046/j.1365-2443.1999.00248.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The multimeric DNA-dependent RNA polymerases are widespread throughout nature. The RNA polymerase of Escherichia coli, which is the most well characterized, consists of a holoenzyme with subunit stoichiometry of alpha2betabeta'sigma. The beta subunit is conserved and has been implicated in all stages of transcription. The extreme C-terminus of the beta subunit, which includes two well-conserved sequence segments, contributes to the active centre and has been proposed to act in transcriptional termination. We describe a genetic system for further characterizing the role of the extreme C-terminus of the beta subunit of E. coli RNA polymerase. This involves random, PCR (Polymerase Chain Reaction)-mediated mutagenesis of the 3' region of rpoB encoding the C-terminal 116 amino acids of beta, followed by the isolation and characterization of trans-dominant-negative mutations. RESULTS Substitutions of conserved residues in this region were obtained that exhibited different degrees of growth inhibition in a host expressing the chromosomal-encoded wild-type form of the beta subunit. A number of different substitutions were isolated within the highly conserved sequence motif GEME (residues 1271-->1274 of the E. coli beta subunit). In addition, substitutions were obtained in the extreme C-terminal (surface-exposed) region of beta and at two residues previously proposed to be in the active site (H1237, K1242). The properties of the purified mutant holoenzymes, assessed by transcription assays in vitro, suggested a promoter blockading action. CONCLUSIONS We have identified an important, highly conserved motif in the beta subunit, GEME (residues 1271-->1274). The nature and effect of the amino acid substitutions at the Gly residue in GEME emphasize the importance of a small, uncharged residue at this position. The in vitro properties of the most extreme trans dominant-negative mutants altered in the GEME motif (and the mutant characteristics in vivo) were similar to those of certain previously identified active-site mutants, suggesting that the altered RNA polymerases were capable of promoter binding and RNA chain initiation but were deficient in the subsequent transcriptional stage.
Collapse
Affiliation(s)
- K D Cromie
- Institute of Genetics, Queen's Medical Centre, Clifton Boulevard, Nottingham NG7 2UH, UK
| | | | | | | | | |
Collapse
|
16
|
Henry SA, Patton-Vogt JL. Genetic regulation of phospholipid metabolism: yeast as a model eukaryote. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:133-79. [PMID: 9752720 DOI: 10.1016/s0079-6603(08)60826-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Baker's yeast, Saccharomyces cerevisiae, is an excellent and an increasingly important model for the study of fundamental questions in eukaryotic cell biology and genetic regulation. The fission yeast, Schizosaccharomyces pombe, although not as intensively studied as S. cerevisiae, also has many advantages as a model system. In this review, we discuss progress over the past several decades in biochemical and molecular genetic studies of the regulation of phospholipid metabolism in these two organisms and higher eukaryotes. In S. cerevisiae, following the recent completion of the yeast genome project, a very high percentage of the gene-enzyme relationships in phospholipid metabolism have been assigned and the remaining assignments are expected to be completed rapidly. Complex transcriptional regulation, sensitive to the availability of phospholipid precusors, as well as growth phase, coordinates the expression of the structural genes encoding these enzymes in S. cerevisiae. In this article, this regulation is described, the mechanism by which the cell senses the ongoing metabolic activity in the pathways for phospholipid biosynthesis is discussed, and a model is presented. Recent information relating to the role of phosphatidylcholine turnover in S. cerevisiae and its relationship to the secretory pathway, as well as to the regulation of phospholipid metabolism, is also presented. Similarities in the role of phospholipase D-mediated phosphatidylcholine turnover in the secretory process in yeast and mammals lend further credence to yeast as a model system.
Collapse
Affiliation(s)
- S A Henry
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
17
|
Nouraini S, Xu D, Nelson S, Lee M, Friesen JD. Genetic evidence for selective degradation of RNA polymerase subunits by the 20S proteasome in Saccharomyces cerevisiae. Nucleic Acids Res 1997; 25:3570-9. [PMID: 9278475 PMCID: PMC146930 DOI: 10.1093/nar/25.18.3570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
scs32 was isolated as an extragenic suppressor of a temperature-sensitive (ts) mutation (rpo26-31) in the gene encoding Rpo26p, a subunit common to yeast nuclear RNA polymerases (RNAPs). rpo26-31 also confers inositol auxotrophy, inhibits the assembly of RNAPI and RNAPII and reduces the steady-state level of Rpo26p and the largest subunit of RNAPI (Rpo11p or A190p) and RNAPII (Rpo21p). rpo26-31p accumulated to wild-type levels in the scs32 strain; nevertheless, the amount of assembled RNAPII remained at a reduced level at high temperature. Hence, scs32 only partially suppressed the ts phenotype and was unable to suppress the Ino-phenotype of rpo26-31. SCS32 is identical to PUP3, which encodes a subunit of the yeast proteasome. scs32 was able to suppress the phenotype of other ts alleles of RPO26, all of which reduce the steady-state level of this subunit. However, scs32 was unable to suppress the ts phenotype of mutant alleles of RPO21, or result in accumulation of the unstable rpo21-4p. These observations suggest that the stability of non-functional or unassembled forms of Rpo26p and Rpo21p are regulated independently.
Collapse
Affiliation(s)
- S Nouraini
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | |
Collapse
|
18
|
Wang Y, Severinov K, Loizos N, Fenyö D, Heyduk E, Heyduk T, Chait BT, Darst SA. Determinants for Escherichia coli RNA polymerase assembly within the beta subunit. J Mol Biol 1997; 270:648-62. [PMID: 9245594 DOI: 10.1006/jmbi.1997.1139] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We used binding assays and other approaches to identify fragments of the Escherichia coli RNAP beta subunit involved in the obligatory interaction with the alpha subunit to form the stable assembly intermediate alpha2beta as well as in the interaction to recruit the beta' subunit into the alpha2beta sub-assembly. We show that two regions of evolutionarily conserved sequence near the C terminus of beta (conserved regions H and I) are central to the assembly of RNAP and likely make subunit-subunit contacts with both alpha and beta'.
Collapse
Affiliation(s)
- Y Wang
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Archambault J, Jansma DB, Friesen JD. Underproduction of the largest subunit of RNA polymerase II causes temperature sensitivity, slow growth, and inositol auxotrophy in Saccharomyces cerevisiae. Genetics 1996; 142:737-47. [PMID: 8849884 PMCID: PMC1207015 DOI: 10.1093/genetics/142.3.737] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, mutations in genes encoding subunits of RNA polymerase II (RNAPII) often give rise to a set of pleiotropic phenotypes that includes temperature sensitivity, slow growth and inositol auxotrophy. In this study, we show that these phenotypes can be brought about by a reduction in the intracellular concentration of RNAPII. Underproduction of RNAPII was achieved by expressing the gene (RPO21), encoding the largest subunit of the enzyme, from the LEU2 promoter or a weaker derivative of it, two promoters that can be repressed by the addition of leucine to the growth medium. We found that cells that underproduced RPO21 were unable to derepress fully the expression of a reporter gene under the control of the INO1 UAS. Our results indicate that temperature sensitivity, slow growth and inositol auxotrophy is a set of phenotypes that can be caused by lowering the steady-state amount of RNAPII; these results also lead to the prediction that some of the previously identified RNAPII mutations that confer this same set of phenotypes affect the assembly/stability of the enzyme. We propose a model to explain the hypersensitivity of INO1 transcription to mutations that affect components of the RNAPII transcriptional machinery.
Collapse
Affiliation(s)
- J Archambault
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
20
|
Meisels E, Gileadi O, Corden JL. Partial truncation of the yeast RNA polymerase II carboxyl-terminal domain preferentially reduces expression of glycolytic genes. J Biol Chem 1995; 270:31255-61. [PMID: 8537392 DOI: 10.1074/jbc.270.52.31255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The largest subunit of RNA polymerase II contains an essential carboxyl-terminal domain (CTD) that consists of highly conserved heptapeptide repeats with the consensus sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser. Yeast cells with a partially truncated CTD grow slowly, are temperature- and cold-sensitive, and are unable to fully activate transcription of some genes. Screening a yeast wild-type cDNA library by means of comparative hybridization we find that CTD truncation preferentially reduces transcription of genes encoding glycolytic enzymes. Using a newly developed dual reporter assay we demonstrate that sensitivity to CTD truncation is conferred by the glycolytic gene promoters. Expression driven by glycolytic gene promoters is reduced, on average, about 3-fold in strains with the shortest CTD growing on either fermentable or nonfermentable carbon sources. Sensitivity to CTD truncation is particularly acute for the constitutively expressed ENO1 gene, which is reduced 10-fold in a strain with only eight CTD repeats. The sensitivity of constitutive ENO1 expression argues that CTD truncation can cause defects in uninduced as well as induced transcription.
Collapse
Affiliation(s)
- E Meisels
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
21
|
Skantar AM, Greenleaf AL. Identifying a transcription factor interaction site on RNA polymerase II. Gene Expr 1995; 5:49-69. [PMID: 7488860 PMCID: PMC6138034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/1994] [Accepted: 03/09/1995] [Indexed: 01/25/2023]
Abstract
We have generated a series of fusion proteins carrying portions of subunit IIc, the second largest subunit of Drosophila RNA polymerase I, and have used them in a domain interference assay to identify a fragment of the IIc subunit that carries the binding site for a basal transcription factor. Fusion proteins carrying a subunit IIc fragment spanning residues Ala519-Gly992 strongly inhibit promoter-driven transcription in both unfractionated nuclear extracts and in reconstituted systems. The same fusion proteins similarly inhibit dTFIIF stimulation of Pol II elongation on dC-tailed templates, suggesting that the IIc(A519-G992) fragment, which carries conserved regions D-H, interferes with transcription by binding to dTFIIF. Finally, dTFIIF can be specifically cross-linked to a GST-IIc(A519-G992) fusion protein or to subunit IIc in intact Pol II.
Collapse
Affiliation(s)
- A M Skantar
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
22
|
Drebot MA, Johnston GC, Friesen JD, Singer RA. An impaired RNA polymerase II activity in Saccharomyces cerevisiae causes cell-cycle inhibition at START. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:327-34. [PMID: 8246887 DOI: 10.1007/bf00284685] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Saccharomyces cerevisiae cells harboring the temperature-sensitive mutation rpo21-4, in the gene encoding the largest subunit of RNA polymerase II, were shown to be partially impaired for cell-cycle progress at a permissive temperature, and to become permanently blocked at the cell-cycle regulatory step, START, at a restrictive temperature. The rpo21-4 mutation was lethal in combination with cdc28 mutations in the p34 protein kinase gene required for START. Transcripts of the CLN1 and CLN2 genes, encoding G1-cyclin proteins that, along with p34, are necessary for START, were decreased in abundance by the rpo21-4 mutation at a restrictive temperature. Increased G1-cyclin production, by expression of the CLN1 or CLN2 genes from a heterologous GAL promoter, overcame the rpo21-4-mediated START inhibition, but such mutant cells nevertheless remained unable to proliferate at a restrictive temperature. These findings reveal that START can be particularly sensitive to an impaired RNA polymerase II function, presumably through effects on G1-cyclin expression.
Collapse
Affiliation(s)
- M A Drebot
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Stettler S, Mariotte S, Riva M, Sentenac A, Thuriaux P. An essential and specific subunit of RNA polymerase III (C) is encoded by gene RPC34 in Saccharomyces cerevisiae. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36622-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Mortimer RK, Contopoulou CR, King JS. Genetic and physical maps of Saccharomyces cerevisiae, Edition 11. Yeast 1992; 8:817-902. [PMID: 1413997 DOI: 10.1002/yea.320081002] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- R K Mortimer
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
25
|
Acker J, Wintzerith M, Vigneron M, Kédinger C. Primary structure of the second largest subunit of human RNA polymerase II (or B). J Mol Biol 1992; 226:1295-9. [PMID: 1518060 DOI: 10.1016/0022-2836(92)91071-v] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cDNA of the second largest subunit of RNA polymerase II (or B) from HeLa cells has been cloned and sequenced. A predicted amino acid sequence of 1174 residues (calculated molecular mass of 133,896 Da) was derived from the longest open reading frame and compared to the sequences of homologous subunits of polymerases of eukaryotic, archaeal and bacterial origin. After optimal alignment, about 16% of the residues were found to be conserved throughout evolution, from human to Escherichia coli. About 2/3 of the overall length of the conserved domains delineated by these residues are clustered within the C-terminal half of the human polypeptide, whereas the remaining is spread over its N-terminal half. The putative functional significance of these conserved domains is discussed.
Collapse
Affiliation(s)
- J Acker
- Laboratoire de Génétique Moléculaire des Eucaryotes (CNRS) Unité 184 de Biologie Moléculaire et de Génie Génétique (INSERM), Strasbourg, France
| | | | | | | |
Collapse
|
26
|
|
27
|
Peterson CL, Kruger W, Herskowitz I. A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 1991; 64:1135-43. [PMID: 2004420 DOI: 10.1016/0092-8674(91)90268-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The C-terminal domain (CTD) of the largest subunit of yeast RNA polymerase II contains 26-27 tandem copies of a conserved heptapeptide of unknown function. Yeast strains whose CTD contains ten heptamers are viable but defective for transcription of the INO1 gene and cold sensitive for growth. Deletion of the SIN1 gene, which codes for a DNA-binding protein that negatively regulates HO transcription, restores INO1 transcription and reduces the cold sensitivity of such strains. A SIN1 deletion suppresses the lethality of a CTD with nine heptamer repeats but not with seven repeats. These observations indicate a functional relationship between SIN1 and the CTD: the CTD might remove SIN1 from DNA, or removal of SIN1 may be a prerequisite for function of the CTD. The SWI1, SWI2, and SWI3 genes, whose products activate HO transcription by antagonizing SIN1, are also required for INO1 transcription and may assist the CTD. In addition, an intact CTD binds nonspecifically to DNA in vitro.
Collapse
Affiliation(s)
- C L Peterson
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448
| | | | | |
Collapse
|
28
|
James P, Whelen S, Hall BD. The RET1 gene of yeast encodes the second-largest subunit of RNA polymerase III. Structural analysis of the wild-type and ret1-1 mutant alleles. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67639-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Abstract
Several promoter elements have previously been shown to influence the expression of the cab-E gene in Nicotiana plumbaginifolia. Here we demonstrate, by electrophoretic mobility shift and methylation interference assays, that a complex pattern of protein-DNA interactions characterizes this promoter. Among the multiple proteins identified, we focused on five different factors which either occupied important regulatory elements and/or were present in relatively large amounts in nuclear extracts. All of these proteins were distinguished on the basis of their recognition sequence and other biochemical parameters. One, GBF, interacted with a single sequence within the cab-E promoter homologous to the G-box found in many photoregulated and other plant promoters. A second factor, GA-1, bound to the GATA element which is located between the CAAT and TATA boxes of the cab-E and all other LHCII Type I CAB promoters. GA-1 also interacted in vitro with the I-boxes of the Arabidopsis rbcS-1A promoter and the as-2 site of the CaMV 35S promoter. Two other factors, GC-1 and AT-1, bound to multiple recognition sites localized within the GC-rich and AT-rich elements, respectively. GT-1, a protein which interacts with promoters of other light-regulated genes, bound to seven distinct sites distributed throughout the cab-E promoter.
Collapse
Affiliation(s)
- U Schindler
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
30
|
Scafe C, Chao D, Lopes J, Hirsch JP, Henry S, Young RA. RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature 1990; 347:491-4. [PMID: 2215664 DOI: 10.1038/347491a0] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The large subunit of RNA polymerase II contains a highly conserved and essential heptapeptide repeat (Pro-Thr-Ser-Pro-Ser-Tyr-Ser) at its carboxy terminus. Saccharomyces cerevisiae cells are inviable if their RNA polymerase II large subunit genes encode fewer than 10 complete heptapeptide repeats; if they encode 10 to 12 complete repeats cells are temperature-sensitive and cold-sensitive, but 13 or more complete repeats will allow wild-type growth at all temperatures. Cells containing C-terminal domains (CTDs) of 10 to 12 complete repeats are also inositol auxotrophs. The phenotypes associated with these CTD mutations are not a consequence of an instability of the large subunit; rather, they seem to reflect a functional deficiency of the mutant enzyme. We show here that partial deletion mutations in RNA polymerase II CTD affect the ability of the enzyme to respond to signals from upstream activating sequences in a subset of promoters in yeast. The number of heptapeptide repeats required for maximal response to signals from these sequences differs from one upstream activating sequence to another. One of the upstream elements that is sensitive to truncations of the CTD is the 17-base-pair site bound by the GAL4 transactivating factor.
Collapse
Affiliation(s)
- C Scafe
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Massachusetts 02142
| | | | | | | | | | | |
Collapse
|
31
|
Woychik NA, Young RA. RNA polymerase II subunit RPB10 is essential for yeast cell viability. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)38236-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Affiliation(s)
- C Mosrin
- Département de Biologie, Centre d'Etudes Nucléaires de Saclay, Gif sur Yvette, France
| | | |
Collapse
|