1
|
Thorn SR, Rozance PJ, Brown LD, Hay WW. The intrauterine growth restriction phenotype: fetal adaptations and potential implications for later life insulin resistance and diabetes. Semin Reprod Med 2011; 29:225-36. [PMID: 21710398 DOI: 10.1055/s-0031-1275516] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The intrauterine growth restricted (IUGR) fetus develops unique metabolic adaptations in response to exposure to reduced nutrient supply. These adaptations provide survival value for the fetus by enhancing the capacity of the fetus to take up and use nutrients, thereby reducing the need for nutrient supply. Each organ and tissue in the fetus adapts differently, with the brain showing the greatest capacity for maintaining nutrient supply and growth. Such adaptations, if persistent, also have the potential in later life to promote nutrient uptake and storage, which directly lead to complications of obesity, insulin resistance, reduced insulin production, and type 2 diabetes.
Collapse
|
2
|
Lee YH, Sauer B, Johnson PF, Gonzalez FJ. Disruption of the c/ebp alpha gene in adult mouse liver. Mol Cell Biol 1997; 17:6014-22. [PMID: 9315660 PMCID: PMC232450 DOI: 10.1128/mcb.17.10.6014] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The liver-enriched transcription factor C/EBP alpha has been implicated in the regulation of numerous liver-specific genes. It was previously reported that mice carrying a homozygous null mutation at the c/ebp alpha locus died as neonates due to the absence of hepatic glycogen and the resulting hypoglycemia. However, the lethal phenotype precluded further analysis of the role of C/EBP alpha in hepatic gene regulation in adult mice. To circumvent this problem, we constructed a conditional knockout allele of c/ebp alpha by using the Cre/loxP recombination system. Homozygous c/ebp-loxP mice, (c/ebp alpha(fl/fl);fl, flanked by loxP sites) were found to be indistinguishable from their wild-type counterparts. However, when Cre recombinase was delivered to hepatocytes of adult c/ebp alpha(fl/fl) mice by infusion of a recombinant adenovirus carrying the cre gene, more than 80% of the c/ebp alpha(fl/fl) genes were deleted specifically in liver and C/EBP alpha expression was reduced by 90%. This condition resulted in a reduced level of bilirubin UDP-glucuronosyltransferase expression in the liver. After several days, the knockout mice developed severe jaundice due to an increase in unconjugated serum bilirubin. The expression of genes encoding phosphoenolpyruvate carboxykinase, glycogen synthase, and factor IX was also strongly reduced in adult conditional-knockout animals, while the expression of transferrin, apolipoprotein B, and insulin-like growth factor I genes was not affected. These results establish C/EBP alpha as an essential transcriptional regulator of genes encoding enzymes involved in bilirubin detoxification and gluconeogenesis in adult mouse liver.
Collapse
Affiliation(s)
- Y H Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
3
|
Ubeda M, Wang XZ, Zinszner H, Wu I, Habener JF, Ron D. Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element. Mol Cell Biol 1996; 16:1479-89. [PMID: 8657121 PMCID: PMC231132 DOI: 10.1128/mcb.16.4.1479] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CHOP (GADD153) is a mammalian nuclear protein that dimerizes with members of the C/EBP family of transcriptional factors. Absent under normal conditions, CHOP is induced by the stress encountered during nutrient deprivation, the acute-phase response, and treatment of cells with certain toxins. The basic region of CHOP deviates considerably in sequence from that of other C/EBP proteins, and CHOP-C/EBP heterodimers are incapable of binding to a common class of C/EBP sites. With respect to such sites, CHOP serves as an inhibitor of the activity of C/EBP proteins. However, recent studies indicate that certain functions of CHOP, such as the induction of growth arrest by overexpression of the wild-type protein and oncogenic transformation by the TLS-CHOP fusion protein, require an intact basic region, suggesting that DNA binding by CHOP may be implicated in these activities. In this study an in vitro PCR-based selection assay was used to identify sequences bound by CHOP-C/EBP dimers. These sequences were found to contain a unique core element PuPuPuTGCAAT(A/C)CCC. Competition in DNA-binding assays, DNase 1 footprint analysis, and methylation interference demonstrate that the binding is sequence specific. Deletions in the basic region of CHOP lead to a loss of DNA binding, suggesting that CHOP participates in this process. Stress induction in NIH 3T3 cells leads to the appearance of CHOP-containing DNA-binding activity. CHOP is found to contain a transcriptional activation domain which is inducible by cellular stress, lending further support to the notion that the protein can function as a positively acting transcription factor. We conclude that CHOP may serve a dual role both as an inhibitor of the ability of C/EBP proteins to activate some target genes and as a direct activator of others.
Collapse
Affiliation(s)
- M Ubeda
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
4
|
Transcriptional regulation of the phosphoenolpyruvate carboxykinase gene by cooperation between hepatic nuclear factors. Mol Cell Biol 1994. [PMID: 7935427 DOI: 10.1128/mcb.14.11.7124] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the transcriptional regulation of the liver gluconeogenic phenotype, the underdifferentiated mouse Hepa-1c1c7 (Hepa) hepatoma cell line was used. These cells mimicked the fetal liver by appreciably expressing the alpha-fetoprotein and albumin genes but not the phosphoenolpyruvate carboxykinase (PEPCK) gene. Unlike the fetal liver, however, Hepa cells failed to express the early-expressed factors hepatocyte nuclear factor 1 alpha (HNF-1 alpha) and HNF-4 and the late-expressed factor C/EBP alpha, thereby providing a suitable system for examining possible cooperation between these factors in the transcriptional regulation of the PEPCK gene. Transient transfection assays of a chimeric PEPCK-chloramphenicol acetyltransferase construct showed a residual PEPCK promoter activity in the Hepa cell line, which was slightly stimulated by cotransfection with a single transcription factor from either the C/EBP family or HNF-1 alpha but not at all affected by cotransfection of HNF-4. In contrast, cotransfection of the PEPCK construct with members from the C/EBP family plus HNF-1 alpha resulted in a synergistic stimulation of the PEPCK promoter activity. This synergistic effect depended on the presence in the PEPCK promoter region of the HNF-1 recognition sequence and on the presence of two C/EBP recognition sequences. The results demonstrate a requirement for coexistence and cooperation between early and late liver-enriched transcription factors in the transcriptional regulation of the PEPCK gene. In addition, the results suggest redundancy between members of the C/EBP family of transcription factors in the regulation of PEPCK gene expression.
Collapse
|
5
|
Yanuka-Kashles O, Cohen H, Trus M, Aran A, Benvenisty N, Reshef L. Transcriptional regulation of the phosphoenolpyruvate carboxykinase gene by cooperation between hepatic nuclear factors. Mol Cell Biol 1994; 14:7124-33. [PMID: 7935427 PMCID: PMC359246 DOI: 10.1128/mcb.14.11.7124-7133.1994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To study the transcriptional regulation of the liver gluconeogenic phenotype, the underdifferentiated mouse Hepa-1c1c7 (Hepa) hepatoma cell line was used. These cells mimicked the fetal liver by appreciably expressing the alpha-fetoprotein and albumin genes but not the phosphoenolpyruvate carboxykinase (PEPCK) gene. Unlike the fetal liver, however, Hepa cells failed to express the early-expressed factors hepatocyte nuclear factor 1 alpha (HNF-1 alpha) and HNF-4 and the late-expressed factor C/EBP alpha, thereby providing a suitable system for examining possible cooperation between these factors in the transcriptional regulation of the PEPCK gene. Transient transfection assays of a chimeric PEPCK-chloramphenicol acetyltransferase construct showed a residual PEPCK promoter activity in the Hepa cell line, which was slightly stimulated by cotransfection with a single transcription factor from either the C/EBP family or HNF-1 alpha but not at all affected by cotransfection of HNF-4. In contrast, cotransfection of the PEPCK construct with members from the C/EBP family plus HNF-1 alpha resulted in a synergistic stimulation of the PEPCK promoter activity. This synergistic effect depended on the presence in the PEPCK promoter region of the HNF-1 recognition sequence and on the presence of two C/EBP recognition sequences. The results demonstrate a requirement for coexistence and cooperation between early and late liver-enriched transcription factors in the transcriptional regulation of the PEPCK gene. In addition, the results suggest redundancy between members of the C/EBP family of transcription factors in the regulation of PEPCK gene expression.
Collapse
Affiliation(s)
- O Yanuka-Kashles
- Department of Developmental Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
6
|
Functional and physical associations between NF-kappa B and C/EBP family members: a Rel domain-bZIP interaction. Mol Cell Biol 1993. [PMID: 8321203 DOI: 10.1128/mcb.13.7.3964] [Citation(s) in RCA: 338] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-kappa B and C/EBP represent distinct families of transcription factors that target unique DNA enhancer elements. The heterodimeric NF-kappa B complex is composed of two subunits, a 50- and a 65-kDa protein. All members of the NF-kappa B family, including the product of the proto-oncogene c-rel, are characterized by their highly homologous approximately 300-amino-acid N-terminal region. This Rel homology domain mediates DNA binding, dimerization, and nuclear targeting of these proteins. C/EBP contains the bZIP region, which is characterized by two motifs in the C-terminal half of the protein: a basic region involved in DNA binding and a leucine zipper motif involved in dimerization. The C/EBP family consist of several related proteins, C/EBP alpha, C/EBP beta, C/EBP gamma, and C/EBP delta, that form homodimers and that form heterodimers with each other. We now demonstrated the unexpected cross-coupling of members of the NF-kappa B family three members of the C/EBP family. NF-kappa B p65, p50, and Rel functionally synergize with C/EBP alpha, C/EBP beta, and C/EBP delta. This cross-coupling results in the inhibition of promoters with kappa B enhancer motifs and in the synergistic stimulation of promoters with C/EBP binding sites. These studies demonstrate that NF-kappa B augments gene expression mediated by a multimerized c-fos serum response element in the presence of C/EBP. We show a direct physical association of the bZIP region of C/EBP with the Rel homology domain of NF-kappa B. The cross-coupling of NF-kappa B with C/EBP highlights a mechanism of gene regulation involving an interaction between distinct transcription factor families.
Collapse
|
7
|
Stein B, Cogswell PC, Baldwin AS. Functional and physical associations between NF-kappa B and C/EBP family members: a Rel domain-bZIP interaction. Mol Cell Biol 1993; 13:3964-74. [PMID: 8321203 PMCID: PMC359940 DOI: 10.1128/mcb.13.7.3964-3974.1993] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
NF-kappa B and C/EBP represent distinct families of transcription factors that target unique DNA enhancer elements. The heterodimeric NF-kappa B complex is composed of two subunits, a 50- and a 65-kDa protein. All members of the NF-kappa B family, including the product of the proto-oncogene c-rel, are characterized by their highly homologous approximately 300-amino-acid N-terminal region. This Rel homology domain mediates DNA binding, dimerization, and nuclear targeting of these proteins. C/EBP contains the bZIP region, which is characterized by two motifs in the C-terminal half of the protein: a basic region involved in DNA binding and a leucine zipper motif involved in dimerization. The C/EBP family consist of several related proteins, C/EBP alpha, C/EBP beta, C/EBP gamma, and C/EBP delta, that form homodimers and that form heterodimers with each other. We now demonstrated the unexpected cross-coupling of members of the NF-kappa B family three members of the C/EBP family. NF-kappa B p65, p50, and Rel functionally synergize with C/EBP alpha, C/EBP beta, and C/EBP delta. This cross-coupling results in the inhibition of promoters with kappa B enhancer motifs and in the synergistic stimulation of promoters with C/EBP binding sites. These studies demonstrate that NF-kappa B augments gene expression mediated by a multimerized c-fos serum response element in the presence of C/EBP. We show a direct physical association of the bZIP region of C/EBP with the Rel homology domain of NF-kappa B. The cross-coupling of NF-kappa B with C/EBP highlights a mechanism of gene regulation involving an interaction between distinct transcription factor families.
Collapse
Affiliation(s)
- B Stein
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599
| | | | | |
Collapse
|
8
|
Tissue-specific, developmental, hormonal, and dietary regulation of rat phosphoenolpyruvate carboxykinase-human growth hormone fusion genes in transgenic mice. Mol Cell Biol 1992. [PMID: 1545785 DOI: 10.1128/mcb.12.3.1007] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytosolic phosphoenolpyruvate carboxykinase (PEPCK) gene is expressed in multiple tissues and is regulated in a complex tissue-specific manner. To map the cis-acting DNA elements that direct this tissue-specific expression, we made transgenic mice containing truncated PEPCK-human growth hormone (hGH) fusion genes. The transgenes contained PEPCK promoter fragments with 5' endpoints at -2088, -888, -600, -402, and -207 bp, while the 3' endpoint was at +69 bp. Immunohistochemical analysis showed that the -2088 transgene was expressed in the correct cell types (hepatocytes, proximal tubular epithelium of the kidney, villar epithelium of the small intestine, epithelium of the colon, smooth muscle of the vagina and lungs, ductal epithelium of the sublingual gland, and white and brown adipocytes). Solution hybridization of hGH mRNA expressed from the transgenes indicated that white and brown fat-specific elements are located distally (-2088 to -888 bp) and that liver-, gut-, and kidney-specific elements are located proximally (-600 to +69 bp). However, elements outside of the region tested are necessary for the correct developmental pattern and level of PEPCK expression in kidney. Both the -2088 and -402 transgenes responded in a tissue-specific manner to dietary stimuli, and the -2088 transgene responded to glucocorticoid stimuli. Thus, different tissues utilize distinct cell-specific cis-acting elements to direct and regulate the PEPCK gene.
Collapse
|
9
|
Differential regulation of the rat phosphoenolpyruvate carboxykinase gene expression in several tissues of transgenic mice. Mol Cell Biol 1992. [PMID: 1545820 DOI: 10.1128/mcb.12.3.1396] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The selective expression of a unique copy gene in several mammalian tissues has been approached by studying the regulatory sequences needed to control expression of the rat phosphoenolpyruvate carboxykinase (PEPCK) gene in transgenic mice. A transgene containing the entire PEPCK gene, including 2.2 kb of the 5'-flanking region and 0.5 kb of the 3'-flanking region, exhibits tissue-specific expression in the liver, kidney, and adipose tissue, as well as the hormonal and developmental regulation inherent to endogenous gene expression. Deletions of the 5'-flanking region of the gene have shown the need for sequences downstream of position -540 of the PEPCK gene for expression in the liver and sequences downstream of position -362 for expression in the kidney. Additional sequences upstream of position -540 (up to -2200) are required for expression in adipose tissue. In addition, the region containing the glucocorticoid-responsive elements of the gene used by the kidney was identified. This same sequence was found to be needed specifically for developmental regulation of gene expression in the kidney and, together with upstream sequences, in the intestine. The apparently distinct sequence requirements in the various tissues indicate that the tissues use different mechanisms for expression of the same gene.
Collapse
|
10
|
Short MK, Clouthier DE, Schaefer IM, Hammer RE, Magnuson MA, Beale EG. Tissue-specific, developmental, hormonal, and dietary regulation of rat phosphoenolpyruvate carboxykinase-human growth hormone fusion genes in transgenic mice. Mol Cell Biol 1992; 12:1007-20. [PMID: 1545785 PMCID: PMC369533 DOI: 10.1128/mcb.12.3.1007-1020.1992] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cytosolic phosphoenolpyruvate carboxykinase (PEPCK) gene is expressed in multiple tissues and is regulated in a complex tissue-specific manner. To map the cis-acting DNA elements that direct this tissue-specific expression, we made transgenic mice containing truncated PEPCK-human growth hormone (hGH) fusion genes. The transgenes contained PEPCK promoter fragments with 5' endpoints at -2088, -888, -600, -402, and -207 bp, while the 3' endpoint was at +69 bp. Immunohistochemical analysis showed that the -2088 transgene was expressed in the correct cell types (hepatocytes, proximal tubular epithelium of the kidney, villar epithelium of the small intestine, epithelium of the colon, smooth muscle of the vagina and lungs, ductal epithelium of the sublingual gland, and white and brown adipocytes). Solution hybridization of hGH mRNA expressed from the transgenes indicated that white and brown fat-specific elements are located distally (-2088 to -888 bp) and that liver-, gut-, and kidney-specific elements are located proximally (-600 to +69 bp). However, elements outside of the region tested are necessary for the correct developmental pattern and level of PEPCK expression in kidney. Both the -2088 and -402 transgenes responded in a tissue-specific manner to dietary stimuli, and the -2088 transgene responded to glucocorticoid stimuli. Thus, different tissues utilize distinct cell-specific cis-acting elements to direct and regulate the PEPCK gene.
Collapse
Affiliation(s)
- M K Short
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | | | | | |
Collapse
|
11
|
Eisenberger CL, Nechushtan H, Cohen H, Shani M, Reshef L. Differential regulation of the rat phosphoenolpyruvate carboxykinase gene expression in several tissues of transgenic mice. Mol Cell Biol 1992; 12:1396-403. [PMID: 1545820 PMCID: PMC369573 DOI: 10.1128/mcb.12.3.1396-1403.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The selective expression of a unique copy gene in several mammalian tissues has been approached by studying the regulatory sequences needed to control expression of the rat phosphoenolpyruvate carboxykinase (PEPCK) gene in transgenic mice. A transgene containing the entire PEPCK gene, including 2.2 kb of the 5'-flanking region and 0.5 kb of the 3'-flanking region, exhibits tissue-specific expression in the liver, kidney, and adipose tissue, as well as the hormonal and developmental regulation inherent to endogenous gene expression. Deletions of the 5'-flanking region of the gene have shown the need for sequences downstream of position -540 of the PEPCK gene for expression in the liver and sequences downstream of position -362 for expression in the kidney. Additional sequences upstream of position -540 (up to -2200) are required for expression in adipose tissue. In addition, the region containing the glucocorticoid-responsive elements of the gene used by the kidney was identified. This same sequence was found to be needed specifically for developmental regulation of gene expression in the kidney and, together with upstream sequences, in the intestine. The apparently distinct sequence requirements in the various tissues indicate that the tissues use different mechanisms for expression of the same gene.
Collapse
Affiliation(s)
- C L Eisenberger
- Department of Developmental Biochemistry, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
12
|
Faber S, Ip T, Granner D, Chalkley R. The interplay of ubiquitous DNA-binding factors, availability of binding sites in the chromatin, and DNA methylation in the differential regulation of phosphoenolpyruvate carboxykinase gene expression. Nucleic Acids Res 1991; 19:4681-8. [PMID: 1716357 PMCID: PMC328709 DOI: 10.1093/nar/19.17.4681] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have identified DNA elements in the phosphoenolpyruvate carboxykinase (PEPCK) gene promoter which are bound 'in vivo' by proteins under conditions of basal level gene expression and have evaluated several hypothesis to account for the tissue specific expression of the gene. In vitro DNase I footprinting demonstrated that factors which bind to basal expression elements of the PEPCK promoter, the BSE/CRE and NFI/CCAAT sites, are also present in HTC and XC cells which do not express the PEPCK gene. 'In vivo' DNase I footprinting demonstrated that the BSE/CRE, NFI/CCAAT, and three additional sites are bound by protein in H4IIE cells which express the PEPCK gene but not in the HTC or XC cells. No evidence for a repressor protein or for phased nucleosome binding to the PEPCK promoter in HTC or XC cells could be detected. Genomic sequencing was used to determine if differential methylation of the PEPCK promoter could account for the lack of factor binding in HTC and XC nuclei. None of the 14 cytosine residues in CpG dinucleotides was methylated in H4IIE or rat liver DNA, all were methylated in rat sperm DNA, and 6 were methylated in HTC DNA; including the cytosine at position--90 within the BSE/CRE. Only one cytosine residue, at position--90, was methylated in XC DNA. Treatment of XC cells with 5-azacytidine resulted in loss of methylation at the--90 position yet this was insufficient to allow synthesis of a detectable amount of PEPCK mRNA.
Collapse
Affiliation(s)
- S Faber
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | | | | | | |
Collapse
|
13
|
Lucas PC, O'Brien RM, Mitchell JA, Davis CM, Imai E, Forman BM, Samuels HH, Granner DK. A retinoic acid response element is part of a pleiotropic domain in the phosphoenolpyruvate carboxykinase gene. Proc Natl Acad Sci U S A 1991; 88:2184-8. [PMID: 1848696 PMCID: PMC51194 DOI: 10.1073/pnas.88.6.2184] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Several hormones, including insulin, glucagon, and glucocorticoids, regulate the expression of the rate-limiting gluconeogenic enzyme, phosphoenolpyruvate carboxykinase [GTP: oxaloacetate carboxy-lyase (transphosphorylating); EC 4.1.1.32; PEPCK] in liver. In this report we demonstrate that retinoic acid (RA) also regulates PEPCK expression by inducing a 3-fold increase in the rate of transcription of the PEPCK gene. A RA response element located between -468 and -431 in the PEPCK promoter mediates a 7-fold increase in expression of a chimeric construct containing the basal PEPCK promoter ligated to the chloramphenicol acetyltransferase reporter gene. This element confers RA responsiveness through the heterologous thymidine kinase promoter and functions relatively independent of position and orientation. An 18-base-pair core sequence (-451 to -434) (i) mediates an effect of RA on PEPCK gene expression and contains motifs found in two other RA response elements; (ii) corresponds to AF1, an accessory factor element that is an integral component of the complex glucocorticoid response unit in the PEPCK gene promoter; (iii) is in a region involved in the developmental expression of the PEPCK gene; and (iv) shows homology to elements involved in the tissue-specific regulation of genes, including the hepatic apolipoprotein genes and the alpha 1-antitrypsin gene.
Collapse
Affiliation(s)
- P C Lucas
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN 37232-0615
| | | | | | | | | | | | | | | |
Collapse
|
14
|
The role of the CCAAT/enhancer-binding protein in the transcriptional regulation of the gene for phosphoenolpyruvate carboxykinase (GTP). Mol Cell Biol 1991. [PMID: 2147222 DOI: 10.1128/mcb.10.12.6264] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have identified a region in the promoter of the gene for phosphoenolpyruvate carboxykinase (GTP) (PEPCK) (positions -460 to +73) containing the regulatory elements which respond to cyclic AMP, glucocorticoids, and insulin and confer the tissue- and developmental stage-specific properties to the gene. We report that CCAAT/enhancer-binding protein (C/EBP) binds to the cyclic AMP-responsive element CRE-1 as well as to two regions which have been previously shown to bind proteins enriched in liver nuclei. The DNase I footprint pattern provided by the recombinant C/EBP was identical to that produced by a 43-kDa protein purified from rat liver nuclear extracts, using a CRE oligonucleotide affinity column, which was originally thought to be the CRE-binding protein CREB. Transient contransfection experiments using a C/EBP expression vector demonstrated that C/EBP could trans activate the PEPCK promoter. The trans activation occurred through both the upstream, liver-specific protein-binding domains and the CRE. The CRE-binding protein bound only to CRE-1 and not to the upstream C/EBP-binding sites. The results of this study, along with physiological properties of C/EBP, indicate an important role for this transcription factor in providing the PEPCK gene with several of its regulatory characteristics.
Collapse
|
15
|
Park EA, Roesler WJ, Liu J, Klemm DJ, Gurney AL, Thatcher JD, Shuman J, Friedman A, Hanson RW. The role of the CCAAT/enhancer-binding protein in the transcriptional regulation of the gene for phosphoenolpyruvate carboxykinase (GTP). Mol Cell Biol 1990; 10:6264-72. [PMID: 2147222 PMCID: PMC362901 DOI: 10.1128/mcb.10.12.6264-6272.1990] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous studies have identified a region in the promoter of the gene for phosphoenolpyruvate carboxykinase (GTP) (PEPCK) (positions -460 to +73) containing the regulatory elements which respond to cyclic AMP, glucocorticoids, and insulin and confer the tissue- and developmental stage-specific properties to the gene. We report that CCAAT/enhancer-binding protein (C/EBP) binds to the cyclic AMP-responsive element CRE-1 as well as to two regions which have been previously shown to bind proteins enriched in liver nuclei. The DNase I footprint pattern provided by the recombinant C/EBP was identical to that produced by a 43-kDa protein purified from rat liver nuclear extracts, using a CRE oligonucleotide affinity column, which was originally thought to be the CRE-binding protein CREB. Transient contransfection experiments using a C/EBP expression vector demonstrated that C/EBP could trans activate the PEPCK promoter. The trans activation occurred through both the upstream, liver-specific protein-binding domains and the CRE. The CRE-binding protein bound only to CRE-1 and not to the upstream C/EBP-binding sites. The results of this study, along with physiological properties of C/EBP, indicate an important role for this transcription factor in providing the PEPCK gene with several of its regulatory characteristics.
Collapse
Affiliation(s)
- E A Park
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | | | | | | | | | | | | | |
Collapse
|