1
|
Yang W, Wang H, Li Z, Zhang L, Liu J, Kirchhoff F, Huan C, Zhang W. RPLP1 restricts HIV-1 transcription by disrupting C/EBPβ binding to the LTR. Nat Commun 2024; 15:5290. [PMID: 38906865 PMCID: PMC11192919 DOI: 10.1038/s41467-024-49622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Long-term non-progressors (LTNPs) of HIV-1 infection may provide important insights into mechanisms involved in viral control and pathogenesis. Here, our results suggest that the ribosomal protein lateral stalk subunit P1 (RPLP1) is expressed at higher levels in LTNPs compared to regular progressors (RPs). Functionally, RPLP1 inhibits transcription of clade B HIV-1 strains by occupying the C/EBPβ binding sites in the viral long terminal repeat (LTR). This interaction requires the α-helixes 2 and 4 domains of RPLP1 and is evaded by HIV-1 group M subtype C and group N, O and P strains that do not require C/EBPβ for transcription. We further demonstrate that HIV-1-induced translocation of RPLP1 from the cytoplasm to the nucleus is essential for antiviral activity. Finally, knock-down of RPLP1 promotes reactivation of latent HIV-1 proviruses. Thus, RPLP1 may play a role in the maintenance of HIV-1 latency and resistance to RPLP1 restriction may contribute to the effective spread of clade C HIV-1 strains.
Collapse
Affiliation(s)
- Weijing Yang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhaolong Li
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Jianhui Liu
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Chen Huan
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China.
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China.
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China.
| | - Wenyan Zhang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China.
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China.
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Oropeza CE, Tarnow G, Sridhar A, Taha TY, Shalaby RE, McLachlan A. The Regulation of HBV Transcription and Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:39-69. [PMID: 31741333 DOI: 10.1007/978-981-13-9151-4_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatitis B virus (HBV) is a major human pathogen lacking a reliable curative therapy. Current therapeutics target the viral reverse transcriptase/DNA polymerase to inhibit viral replication but generally fail to resolve chronic HBV infections. Due to the limited coding potential of the HBV genome, alternative approaches for the treatment of chronic infections are desperately needed. An alternative approach to the development of antiviral therapeutics is to target cellular gene products that are critical to the viral life cycle. As transcription of the viral genome is an essential step in the viral life cycle, the selective inhibition of viral RNA synthesis is a possible approach for the development of additional therapeutic modalities that might be used in combination with currently available therapies. To address this possibility, a molecular understanding of the relationship between viral transcription and replication is required. The first step is to identify the transcription factors that are the most critical in controlling the levels of HBV RNA synthesis and to determine their in vivo role in viral biosynthesis. Mapping studies in cell culture utilizing reporter gene constructs permitted the identification of both ubiquitous and liver-enriched transcription factors capable of modulating transcription from the four HBV promoters. However, it was challenging to determine their relative importance for viral biosynthesis in the available human hepatoma replication systems. This technical limitation was addressed, in part, by the development of non-hepatoma HBV replication systems where viral biosynthesis was dependent on complementation with exogenously expressed transcription factors. These systems revealed the importance of specific nuclear receptors and hepatocyte nuclear factor 3 (HNF3)/forkhead box A (FoxA) transcription factors for HBV biosynthesis. Furthermore, using the HBV transgenic mouse model of chronic viral infection, the importance of various nuclear receptors and FoxA isoforms could be established in vivo. The availability of this combination of systems now permits a rational approach toward the development of selective host transcription factor inhibitors. This might permit the development of a new class of therapeutics to aid in the treatment and resolution of chronic HBV infections, which currently affects approximately 1 in 30 individuals worldwide and kills up to a million people annually.
Collapse
Affiliation(s)
- Claudia E Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Grant Tarnow
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Abhayavarshini Sridhar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Taha Y Taha
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rasha E Shalaby
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Faculty of Medicine, Tanta University, Egypt, Egypt
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
TIP60 Complex Inhibits Hepatitis B Virus Transcription. J Virol 2018; 92:JVI.01788-17. [PMID: 29321313 DOI: 10.1128/jvi.01788-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is a global major health problem, with over one million deaths annually caused by chronic liver damage. Understanding host factors that modulate HBV replication may aid the development of anti-HBV therapies. Our recent genome-wide small interfering RNA screen using recombinant HBV demonstrated that TIP60 inhibited HBV infection. Here, we show that TIP60 complex contributes to anti-HBV defense. The TIP60 complex bound to the HBV promoter and suppressed HBV transcription driven by the precore/core promoter. The silencing of EP400, TRRAP, BAF53a, RUVBL1, and RUVBL2, which form the TIP60 complex, also resulted in increased HBV transcription. These results contribute to our enhanced understanding of the molecular mechanism of HBV transcription associated with the chromatin structure of HBV covalently closed circular DNA (cccDNA). Exploiting these intrinsic cellular defenses might help develop new anti-HBV agents.IMPORTANCE Investigating the molecular mechanism of HBV replication is important to understand the persistent nature of HBV infection and to aid the development of new HBV agents, which are currently limited to HBV polymerase inhibitors. Previously, we developed a new reporter HBV. By screening host factors using this recombinant virus, we identified several gene products that regulate HBV infection, including TIP60. Here, we showed that TIP60, a catalytic subunit of the NuA4 complex, inhibited HBV replication. Depletion of TIP60 increased the level of HBV mRNA. Moreover, TIP60 localized in the HBV cccDNA chromatin complex catalyzed the acetylation of histone H4 to recruit Brd4. These results suggest that TIP60, in concert with other cellular factors, plays an important role in the regulation of the HBV chromatin structure by acting as a critical component of the intrinsic antiviral defense, which sheds new light on the regulation of HBV replication.
Collapse
|
4
|
Luo W, Wang J, Xu D, Bai H, Zhang Y, Zhang Y, Li X. Engineered zinc-finger transcription factors inhibit the replication and transcription of HBV in vitro and in vivo. Int J Mol Med 2018; 41:2169-2176. [PMID: 29344646 DOI: 10.3892/ijmm.2018.3396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/05/2018] [Indexed: 01/12/2023] Open
Abstract
In the present study, an artificial zinc-finger transcription factor eukaryotic expression vector specifically recognizing and binding to the hepatitis B virus (HBV) enhancer (Enh) was constructed, which inhibited the replication and expression of HBV DNA. The HBV EnhI‑specific pcDNA3.1‑artificial transcription factor (ATF) vector was successfully constructed, and then transformed or injected into HepG2.2.15 cells and HBV transgenic mice, respectively. The results demonstrated that the HBV EnhI (1,070‑1,234 bp)‑specific ATF significantly inhibited the replication and transcription of HBV DNA in vivo and in vitro. The HBV EnhI‑specific ATF may be a meritorious component of progressive combination therapies for eliminating HBV DNA in infected patients. A radical cure for chronic HBV infection may become feasible by using this bioengineering technology.
Collapse
Affiliation(s)
- Wei Luo
- Department of General Surgery, The Second Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Junxia Wang
- Department of Neonatology, The Second Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dengfeng Xu
- Department of Ophthalmology, Chongqing General Hospital, Chongqing 400014, P.R. China
| | - Huili Bai
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yangli Zhang
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yuhong Zhang
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaosong Li
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
5
|
Bar-Yishay I, Shaul Y, Shlomai A. Hepatocyte metabolic signalling pathways and regulation of hepatitis B virus expression. Liver Int 2011; 31:282-90. [PMID: 21281428 DOI: 10.1111/j.1478-3231.2010.02423.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatitis B virus (HBV) is a small DNA virus responsible for significant morbidity and mortality worldwide. The liver, which is the main target organ for HBV infection, provides the virus with the machinery necessary for persistent infection and propagation, a process that might ultimately lead to severe liver pathologies such as chronic hepatitis, cirrhosis and liver cancer. HBV gene expression is regulated mainly at the transcriptional level by recruitment of a whole set of cellular transcription factors (TFs) and co-activators to support transcription. Over the years, many of these TFs were identified and interestingly enough most are associated with the body's nutritional state. These include the hepatocyte nuclear factors, forkhead Box O1, Farnesoid X receptor, cyclic-AMP response element-binding (CREB), CCAAT/enhancer-binding protein (C/EBP) and glucocorticoid receptor TFs and the transcription coactivator PPARγ coactivator-1α. Consequently, HBV gene expression is linked to hepatic metabolic processes such as glucose and fat production and utilization as well as bile acids' production and secretion. Furthermore, recent evidence indicates that HBV actively interferes with some of these hepatic metabolic processes by manipulating key TFs, such as CREB and C/EBP, to meet its requirements. The discovery of the mechanisms by which HBV is controlled by the hepatic metabolic milieu may broaden our understanding of the unique regulation of HBV expression and may also explain the mechanisms by which HBV induces liver pathologies. The emerging principle of the intimate link between HBV and liver metabolism can be further exploited for host-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Iddo Bar-Yishay
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | | | | |
Collapse
|
6
|
Chen WN, Chen JY, Lin WS, Lin JY, Lin X. Hepatitis B doubly spliced protein, generated by a 2.2 kb doubly spliced hepatitis B virus RNA, is a pleiotropic activator protein mediating its effects via activator protein-1- and CCAAT/enhancer-binding protein-binding sites. J Gen Virol 2010; 91:2592-600. [PMID: 20538904 DOI: 10.1099/vir.0.022517-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The 2.2 kb doubly spliced defective hepatitis B virus (HBV) genome is frequently detected in the serum of patients with chronic hepatitis B. However, the biological significance of this type of defective genome is not well understood. In this study, expression of the hepatitis B doubly spliced protein (HBDSP) was confirmed from the 2.2 kb doubly spliced defective HBV genome, which was isolated and transfected into Huh-7 hepatoma cells. To explore the potential pathogenicity of HBDSP, hepatocellular proteins interacting with HBDSP were screened by a yeast two-hybrid assay. Unexpectedly, HBDSP could transactivate the GAL4-responsive element, and deletion mapping revealed that the fragment located between residues Leu-48 and Gln-75 of HBDSP was crucial for transactivation activity. In Huh-7 hepatoma cells, HBDSP localized predominantly to the cytoplasm and showed transactivating effects on the cytomegalovirus immediate-early promoter, simian virus 40 enhancer/promoter and HBV regulatory elements including the S1 promoter, S2 promoter, Enhancer I and core upstream regulatory sequences. Further studies revealed that the transactivating activities were mediated by activator protein-1- and CCAAT/enhancer-binding protein-binding sites. These findings suggest that HBDSP is a pleiotropic activator protein that can potentially serve as an HBV virulence factor.
Collapse
Affiliation(s)
- Wan-Nan Chen
- Key Laboratory of tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou 350004, Fujian, PR China
| | | | | | | | | |
Collapse
|
7
|
Kim BK, Lim SO, Park YG. Requirement of the cyclic adenosine monophosphate response element-binding protein for hepatitis B virus replication. Hepatology 2008; 48:361-73. [PMID: 18615500 DOI: 10.1002/hep.22359] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED The cyclic adenosine monophosphate-response element (CRE)-transcription factor complex participates in the regulation of viral gene expression and pathologic processes caused by various viruses. The hepatitis B virus (HBV) enhancer I directs liver-specific transcription of viral genes and contains a CRE sequence (HBV-CRE); however, whether the HBV-CRE and CRE-binding protein (CREB) are required for the HBV life cycle remains to be determined. This study was designed to investigate the role of CREB in HBV replication and gene expression. Sequence-comparison analysis of 984 HBVs reported worldwide showed that the HBV-CRE sequence is highly conserved, indicating the possibility that it plays an important role in the HBV life cycle. The binding of CREB to the HBV-CRE site was markedly inhibited by oligonucleotides containing HBV-CRE and consensus CRE sequences in vitro and in vivo. The HBV promoter activity was demonstrated to be dependent upon the transactivation activity of CREB. Treatment with CRE decoy oligonucleotides reduced HBV promoter activity, and this was reversed by CREB overexpression. The levels of viral transcripts, DNA, and antigens were remarkably decreased in response to the overexpression of CREB mutants or treatment with the CRE decoy oligonucleotides, whereas enhancing CREB activity increased the levels of viral transcripts. In addition, introduction of a three-base mutation into the HBV-CRE led to a marked reduction in HBV messenger RNA synthesis. CONCLUSION Taken together, our results demonstrate that both replication and gene expression of HBV require a functional CREB and HBV-CRE. We have also demonstrated that CRE decoy oligonucleotides and the overexpression of CREB mutants can effectively block the HBV life cycle, suggesting that interventions against CREB activity could provide a new avenue to treat HBV infection.
Collapse
Affiliation(s)
- Bo Kyung Kim
- Department of Biochemistry, Korea University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
8
|
Shamay M, Agami R, Shaul Y. HBV integrants of hepatocellular carcinoma cell lines contain an active enhancer. Oncogene 2001; 20:6811-9. [PMID: 11687960 DOI: 10.1038/sj.onc.1204879] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2001] [Revised: 07/17/2001] [Accepted: 08/01/2001] [Indexed: 12/14/2022]
Abstract
Hepatitis B virus (HBV) infection is a major risk factor worldwide for the development of hepatocellular carcinoma (HCC). Integrated HBV DNA fragments, often highly rearranged, are frequently detected in HCC. In woodchuck, the viral enhancer plays a central role in hepatocarcinogenesis, but in humans the mechanism of HBV oncogenesis has not been established. In this study we investigated the status of the viral enhancer in two human HCC cell lines, Hep3B and PLC/PRF/5 each containing one or more integrated HBV DNA fragments. Active enhancer was defined by virtue of its protein occupancy as determined by genomic in vivo DMS footprinting. In PLC/PRF/5 cells, the HBV DNA was integrated in a cellular gene at chromosome 11q13, at a locus reported to be amplified in many tumors. We show here that in both cell lines, the integrated HBV DNA fragments contain an active enhancer-I. In particular, the occupation of the two previously defined basic enhancer elements, E and EP, was prominent. While in both cell lines the same protein binds to the EP elements, the E element, however, is occupied in a cell-line specific manner. In PLC/PRF/5 but not Hep3B, the prominent binding of an undefined protein was detected. Our data suggest that this protein is likely to be the fetoprotein transcription factor (FTF). The finding that enhancer sequences are conserved and functional in different cell lines suggests a selection pressure for their long-term maintenance. We therefore propose that the HBV enhancer-I might play a role in hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- M Shamay
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
9
|
Zajac-Kaye M, Ben-Baruch N, Kastanos E, Kaye FJ, Allegra C. Induction of Myc-intron-binding polypeptides MIBP1 and RFX1 during retinoic acid-mediated differentiation of haemopoietic cells. Biochem J 2000; 345 Pt 3:535-41. [PMID: 10642512 PMCID: PMC1220788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Retinoic acid-mediated differentiation of HL60 cells is associated with an alteration of chromatin structure that maps to protein-binding sequences within intron I of the c-myc gene and with down-regulation of c-myc expression. By using HeLa cell extracts, we previously identified two polypeptides, designated MIBP1 (for Myc-intron-binding peptide) and RFX1, that interact in vivo and bind to the intron I element; we showed that tandem repeats of an MIBP1/RFX1-binding site can exhibit silencer activity on a heterologous promoter. Here we demonstrate that p160 MIBP1 and p130 RFX1 are absent from undifferentiated HL60 cells. In addition, we show that treatment with retinoic acid induces both MIBP1 and RFX1 protein, as well as their DNA-binding activity, upon granulocytic differentiation of HL60 cells, with a gel mobility pattern identical to that of HeLa cells. In the absence of p160 MIBP1 and p130 RFX1, we observed that the altered gel mobility-shift pattern detected in undifferentiated HL60 cells reflects the binding of two novel polypeptides, p30 and p97, that can be cross-linked to the same recognition intron sequence. We also show that the time course of MIBP1 and RFX1 induction is inversely correlated with the down-regulation of c-myc levels during the treatment of HL60 cells with retinoic acid.
Collapse
Affiliation(s)
- M Zajac-Kaye
- Department of Developmental Therapeutics, Medicine Branch, Division of Clinical Sciences, National Cancer Institute, Bethesda, MD 20889, USA.
| | | | | | | | | |
Collapse
|
10
|
David-Cordonnier MH, Hamdane M, D'Halluin JC. c-Myb protein binds to the EP element of the HBV enhancer and regulates transcription in synergy with NF-M. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1446:82-92. [PMID: 10395921 DOI: 10.1016/s0167-4781(99)00070-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The hepatitis B virus (HBV) enhancer contains multiple active elements, one of which is the EP element, a 15 bp site important for its regulation by acting on other functional elements like the E site. The EP element, in the HBV enhancer context, contains two putative binding sites for c-myb family gene products. Electrophoretic mobility shift assays showed that the minimal c-Myb DNA-binding domain binds to the EP sequence. DNase I footprinting experiments revealed that only one consensus binding site was effectively protected. We found that c-Myb down-regulates transcription driving by the HBV enhancer in CAT assays performed in a haematopoietic (K562) and in a hepatic (HepG2) cell line. Interestingly, co-expression of both c-Myb and NF-M, a C/EBPbeta homologue which recognises the E element of the HBV enhancer, showed a synergistic transactivation of the HBV enhancer while, separately, each of them had an inhibitory effect on transcription in HepG2 and K562 cell lines, two cell types potentially infected by the hepatitis B virus.
Collapse
Affiliation(s)
- M H David-Cordonnier
- U 124 INSERM Onco-Hématologie Moléculaire, Institut de Recherches sur le Cancer de Lille, Place de Verdun, 59.045, Lille, France
| | | | | |
Collapse
|
11
|
Kosovsky MJ, Siddiqui A. Biochemical and functional properties of a palindromic sequence motif within the hepatitis B virus enhancer 1. Virology 1999; 259:60-6. [PMID: 10364489 DOI: 10.1006/viro.1999.9776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hepatitis B virus (HBV) enhancer 1 is a transcriptional element that contributes to the liver-specific regulation of HBV gene expression. We previously identified a novel protein binding site within the enhancer that contains an 8-bp palindromic sequence motif. This motif partially overlaps the binding sites for nuclear factor 1 and hepatocyte nuclear factor 3beta (HNF3beta). Moreover, we demonstrated that this novel site is recognized by a protein or proteins, tentatively designated as palindrome-binding factor (PBF), that cooperatively interact with HNF3beta. In the present work, we have further examined the biochemical and functional attributes of PBF. Protein-DNA interaction studies indicate that three thymidine residues located at the 3'-end of the palindromic sequence motif are important for maximal PBF-binding activity. When protein-DNA complexes were photocrosslinked by exposure to ultraviolet (UV) light, a prominent polypeptide with an apparent molecular mass of 50 kDa was found to associate with the PBF-binding site. Furthermore, transient transfection studies support the hypothesis that PBF contributes to enhancer 1 activity by a combinatorial mechanism that involves at least one other cis-acting sequence motif, the HNF3beta-binding site.
Collapse
Affiliation(s)
- M J Kosovsky
- Department of Microbiology and Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
12
|
Choi BH, Park GT, Rho HM. Interaction of hepatitis B viral X protein and CCAAT/ enhancer-binding protein alpha synergistically activates the hepatitis B viral enhancer II/pregenomic promoter. J Biol Chem 1999; 274:2858-65. [PMID: 9915821 DOI: 10.1074/jbc.274.5.2858] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The hepatitis B viral X protein (HBx) is known to exert its transactivation activity by the interaction with several cellular transcription factors. Here we report the interaction of HBx and CCAAT/enhancer-binding protein alpha (C/EBPalpha) and their effects on the enhancer/promoters of hepatitis B virus (HBV). A chloramphenicol acetyltransferase assay showed that the cotransfection of HBx and C/EBPalpha strongly activated the enhancer II/pregenomic promoter of HBV in a synergistic manner. This effect was also observed in the heterologous expression system with promoters of SV40 and herpes simplex virus thymidine kinase genes. Serial deletion analysis of the enhancer II/pregenomic promoter identified the responsible region (nucleotides 1639-1679), in which two C/EBP-binding sites are located. An in vitro interaction assay and electrophoretic mobility shift assay showed that HBx augmented the DNA binding activity of C/EBPalpha by direct interaction with it, and its basic leucine zipper domain was responsible for the interaction with HBx. Domain analysis of HBx showed that the central region (amino acids 78-103) was necessary for direct interaction with C/EBPalpha. However, the complete form of HBx was necessary for the synergistic activation of the HBV pregenomic promoter. These results suggest that the interaction of HBx and C/EBPalpha enhances the transcription of the HBV pregenomic promoter for the effective life cycle of HBV in hepatocytes.
Collapse
Affiliation(s)
- B H Choi
- Department of Molecular Biology and the Research Center for Cell Differentiation, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
13
|
Di Q, Summers J, Burch JB, Mason WS. Major differences between WHV and HBV in the regulation of transcription. Virology 1997; 229:25-35. [PMID: 9123867 DOI: 10.1006/viro.1996.8422] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Studies were carried out to further characterize enhancer and promoter elements on the woodchuck hepatitis virus (WHV) genome. We were able to confirm the existence of WHV promoters analogous to the major promoters of the related human hepatitis B virus (HBV) and of an enhancer analogous to the recently described WHV E2 element (Ueda, K., Wei, Y., and Ganem, D., Virology 217, 413, 1996). However, we were unable to identity an enhancer analogous to the E1 element of (HBV), despite the fact that these two viruses share a high degree of sequence homology and genetic organization. Some factor binding sites in the E1 region appeared to be conserved between the two viruses and may be required for the activity of the overlapping X gene promoter of WHV. Others did not appear to be essential for WHV X gene promoter activity, and their functional activity, if any, was not revealed. Our failure to detect a functional enhancer element in the region of WHV homologous to the HBV E1 enhancer may indicate that (i) fundamental differences exist in transcriptional regulation of the small circular genomes of WHV and HBV; (ii) WHV contains an E1 element which is functional in the context of the intact viral genome, but which is unable to function in the context of the various expression constructs used in our experiments; or (iii) correct regulation of WHV transcription via an E1 element is dependent upon transcription factors which are not expressed in the liver-specific cell lines used in our experiments.
Collapse
Affiliation(s)
- Q Di
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
14
|
Kosovsky MJ, Huan B, Siddiqui A. Purification and properties of rat liver nuclear proteins that interact with the hepatitis B virus enhancer 1. J Biol Chem 1996; 271:21859-69. [PMID: 8702987 DOI: 10.1074/jbc.271.36.21859] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The hepatitis B virus enhancer 1 element plays a fundamental role in the liver-specific regulation of hepatitis B virus gene expression. A central region of enhancer 1, the enhancer core domain, contains at least four cis-acting sequence motifs that are essential for enhancer 1 activity. In this study, we have investigated an essential motif within the core domain previously defined as footprint V (FPV). Transient transfection analyses demonstrate that FPV is capable of independently functioning in a liver-specific manner to activate transcription. Therefore, to further examine the liver-specific properties of FPV-mediated enhancer 1 activity, we have carried out the biochemical purification and characterization of FPV binding activity from rat liver nuclei. This study has conclusively identified hepatocyte nuclear factor 3beta (HNF-3beta), a liver-enriched member of the HNF-3/forkhead gene family, as the predominant purified protein that interacts with the FPV motif. Moreover, a cellular protein(s) that copurified with HNF-3beta specifically interacts with a novel sequence motif that partially overlaps FPV. Since this novel motif contains a palindromic sequence, we have tentatively referred to the protein(s) that binds to this site as palindrome-binding factor (PBF). Additional evidence indicates that HNF-3beta and PBF cooperatively interact with enhancer 1. Therefore, this study supports the hypothesis that FPV-mediated enhancer activity involves a cooperative interplay between HNF-3beta and at least one other enhancer 1-binding protein, PBF.
Collapse
Affiliation(s)
- M J Kosovsky
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
15
|
Jin DK, Feuerman MH. Sequence requirements for Afr-2 regulation of alpha-fetoprotein gene expression during liver regeneration. SOMATIC CELL AND MOLECULAR GENETICS 1996; 22:211-26. [PMID: 8914606 DOI: 10.1007/bf02369911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alpha-fetoprotein (AFP) gene expression occurs in the yolk sac, fetal liver and gut, and in the adult liver during regeneration and tumorigenesis. Polymorphism at a single genetic locus, Afr-2 (formerly known as Rif) between inbred mouse strains C3H/He and C57B1/6, results in different levels of AFP expression during liver regeneration. We examined AFP, histone H3, and albumin gene expression during liver regeneration and found that the strain-specific variance in AFP gene expression could not be attributed to a difference in the numbers of dividing cells. Experiments with transgenic mice revealed sequences required for Afr-2 regulation included 172 bp between -1010 and -838 bp and 118 bp immediately upstream of the AFP transcriptional start site-the same regions required for induction during liver regeneration. This suggests that the Afr-2 phenotype may stem from an allelic difference in a gene regulating gene expression during liver regeneration.
Collapse
Affiliation(s)
- D K Jin
- Department of Biochemistry, State University of New York, Brooklyn 11203, USA
| | | |
Collapse
|
16
|
Zhang P, Raney AK, McLachlan A. Characterization of functional Sp1 transcription factor binding sites in the hepatitis B virus nucleocapsid promoter. J Virol 1993; 67:1472-81. [PMID: 8437225 PMCID: PMC237517 DOI: 10.1128/jvi.67.3.1472-1481.1993] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The hepatitis B virus nucleocapsid minimal promoter contains sequence elements which are similar to the Sp1 transcription factor binding site consensus sequence. The interaction of these regulatory elements with Sp1 was examined by DNase I footprinting with purified Sp1 protein and DNase I footprinting and gel retardation analysis with nuclear extracts from human cell lines and was examined functionally with transient transfection assays in human hepatoma and Drosophila melanogaster Schneider line-2 cells. DNase I footprinting identified two regions of the nucleocapsid promoter, representing three recognition elements, that bound purified Sp1. Gel retardation analysis with Huh7 nuclear extracts demonstrated that each of the three recognition elements bound the same or similar transcription factor(s) as that recognized by the Sp1 consensus sequence recognition element. The function of the nucleocapsid promoter elements was examined by transient transfection assays in D. melanogaster Schneider line-2 cells by using these binding sites cloned into a minimal promoter element. Each of these regulatory regions transactivated transcription from the minimal promoter element in response to exogenously expressed Sp1. In addition, the second Sp1 site was shown to be an essential element of the nucleocapsid promoter in human hepatoma cells. This demonstrates that the hepatitis B virus nucleocapsid promoter contains three functional Sp1 binding sites which may contribute to the level of transcription from this promoter during viral infection.
Collapse
Affiliation(s)
- P Zhang
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037
| | | | | |
Collapse
|
17
|
|
18
|
Ciliberto G, Colantuoni V, De Francesco R, De Simone V, Monaci P, Nicosia A, Ramji DP, Toniatti C, Cortese R. Transcriptional Control of Gene Expression in Hepatic Cells. Gene Expr 1993. [DOI: 10.1007/978-1-4684-6811-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Nakamura I, Koike K. Identification of a binding protein to the X gene promoter region of hepatitis B virus. Virology 1992; 191:533-40. [PMID: 1448911 DOI: 10.1016/0042-6822(92)90228-h] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The X protein of hepatitis B virus (HBV) is a transactivator to homologous and heterologous viral and cellular transcriptional regulatory elements. One sequence-specific binding protein, whose binding site located from nt 1102 to nt 1117 of HBV DNA, was identified by mobility shift assay and DNase I foot-printing analysis. A CAT assay experiment demonstrated this 16-bp binding site to have a promoter activity in the X gene transcription. The 58-bp DNA fragment (nt 1085 to nt 1142), which contains the above binding site, could be enhanced by the HBV enhancer. Mobility shift assay using the mutated 58-bp DNA fragments as probes, showed that the mutation, which damaged the palindrome structure between nt 1105 and nt 1112, resulted in loss of the binding activity. This mutation also remarkably reduced the promoter activity. The binding site differed from the target sequences of known transcriptional factors. This factor was thus concluded to be a binding protein to the X gene promoter (X-PBP) of HBV. A homology search demonstrated the binding site to be highly homologous to the promoter elements of human laminin receptor (2H5epitope) and lipoprotein receptor-related protein (LRP) genes.
Collapse
Affiliation(s)
- I Nakamura
- Department of Gene Research, Cancer Institute, JFCR, Tokyo, Japan
| | | |
Collapse
|
20
|
Baumann H, Jahreis G, Morella K, Won K, Pruitt S, Jones V, Prowse K. Transcriptional regulation through cytokine and glucocorticoid response elements of rat acute phase plasma protein genes by C/EBP and JunB. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54935-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|