1
|
Cattle MA, Aguado LC, Sze S, Wang DY, Papagiannakopoulos T, Smith S, Rice CM, Schneider WM, Poirier JT. An enhanced Eco1 retron editor enables precision genome engineering in human cells from a single-copy integrated lentivirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606586. [PMID: 39149392 PMCID: PMC11326160 DOI: 10.1101/2024.08.05.606586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Retrons are a retroelement class found in diverse prokaryotes that can be adapted to augment CRISPR-Cas9 genome engineering technology to efficiently rewrite short stretches of genetic information in bacteria and yeast; however, efficiency in human cells has been limited by unknown factors. We identified non-coding RNA (ncRNA) instability and impaired Cas9 activity as major contributors to poor retron editor efficiency. We re-engineered the Eco1 ncRNA to incorporate an exoribonuclease-resistant RNA pseudoknot from the Zika virus 3' UTR and devised an RNA processing strategy using Csy4 ribonuclease to liberate the sgRNA and ncRNA. These modifications yielded a ncRNA with 5'- and 3'-end protection and an sgRNA with minimal 5' extension. This strategy increased steady-state ncRNA levels and rescued Cas9 activity leading to enhanced efficiency of the Eco1 retron editor in human cells. The enhanced Eco1 retron editor enabled the insertion of missense mutations in human cells from a single integrated lentivirus, thereby ensuring genotype-phenotype linkage over multiple cell divisions. This work reveals a previously unappreciated role for ncRNA stability in retron editor efficiency in human cells. Here we present an enhanced Eco1 retron editor that enables efficient introduction of missense mutations in human cells from a single heritable genome copy.
Collapse
Affiliation(s)
- Matthew A. Cattle
- Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine
| | - Lauren C. Aguado
- Laboratory of Virology and Infectious Disease, The Rockefeller University
| | | | - Dylan Yueyang Wang
- Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine
| | | | - Susan Smith
- Department of Cell Biology, NYU Langone Health
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University
| | | | | |
Collapse
|
2
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
3
|
Bowles IE, Jackman JE. A tRNA-specific function for tRNA methyltransferase Trm10 is associated with a new tRNA quality control mechanism in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2024; 30:171-187. [PMID: 38071471 PMCID: PMC10798241 DOI: 10.1261/rna.079861.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
In Saccharomyces cerevisiae, a single homolog of the tRNA methyltransferase Trm10 performs m1G9 modification on 13 different tRNAs. Here we provide evidence that the m1G9 modification catalyzed by S. cerevisiae Trm10 plays a biologically important role for one of these tRNA substrates, tRNATrp Overexpression of tRNATrp (and not any of 38 other elongator tRNAs) rescues growth hypersensitivity of the trm10Δ strain in the presence of the antitumor drug 5-fluorouracil (5FU). Mature tRNATrp is depleted in trm10Δ cells, and its levels are further decreased upon growth in 5FU, while another Trm10 substrate (tRNAGly) is not affected under these conditions. Thus, m1G9 in S. cerevisiae is another example of a tRNA modification that is present on multiple tRNAs but is only essential for the biological function of one of those species. In addition to the effects of m1G9 on mature tRNATrp, precursor tRNATrp species accumulate in the same strains, an effect that is due to at least two distinct mechanisms. The levels of mature tRNATrp are rescued in the trm10Δmet22Δ strain, consistent with the known role of Met22 in tRNA quality control, where deletion of met22 causes inhibition of 5'-3' exonucleases that catalyze tRNA decay. However, none of the known Met22-associated exonucleases appear to be responsible for the decay of hypomodified tRNATrp, based on the inability of mutants of each enzyme to rescue the growth of the trm10Δ strain in the presence of 5FU. Thus, the surveillance of tRNATrp appears to constitute a distinct tRNA quality control pathway in S. cerevisiae.
Collapse
Affiliation(s)
- Isobel E Bowles
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Ohio State Biochemistry Program, Columbus, Ohio 43210, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology, and Ohio State Biochemistry Program, Columbus, Ohio 43210, USA
| |
Collapse
|
4
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
5
|
Sekulovski S, Trowitzsch S. Transfer RNA processing - from a structural and disease perspective. Biol Chem 2022; 403:749-763. [PMID: 35728022 DOI: 10.1515/hsz-2021-0406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
Transfer RNAs (tRNAs) are highly structured non-coding RNAs which play key roles in translation and cellular homeostasis. tRNAs are initially transcribed as precursor molecules and mature by tightly controlled, multistep processes that involve the removal of flanking and intervening sequences, over 100 base modifications, addition of non-templated nucleotides and aminoacylation. These molecular events are intertwined with the nucleocytoplasmic shuttling of tRNAs to make them available at translating ribosomes. Defects in tRNA processing are linked to the development of neurodegenerative disorders. Here, we summarize structural aspects of tRNA processing steps with a special emphasis on intron-containing tRNA splicing involving tRNA splicing endonuclease and ligase. Their role in neurological pathologies will be discussed. Identification of novel RNA substrates of the tRNA splicing machinery has uncovered functions unrelated to tRNA processing. Future structural and biochemical studies will unravel their mechanistic underpinnings and deepen our understanding of neurological diseases.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
6
|
Blewett NH, Maraia RJ. La involvement in tRNA and other RNA processing events including differences among yeast and other eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:361-372. [PMID: 29397330 DOI: 10.1016/j.bbagrm.2018.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/29/2017] [Accepted: 01/17/2018] [Indexed: 10/25/2022]
Abstract
The conserved nuclear RNA-binding factor known as La protein arose in an ancient eukaryote, phylogenetically associated with another eukaryotic hallmark, synthesis of tRNA by RNA polymerase III (RNAP III). Because 3'-oligo(U) is the sequence-specific signal for transcription termination by RNAP III as well as the high affinity binding site for La, the latter is linked to the intranuclear posttranscriptional processing of eukaryotic precursor-tRNAs. The pre-tRNA processing pathway must accommodate a variety of substrates that are destined for both common steps as well as tRNA-specific events. The order of intranuclear pre-tRNA processing steps is mediated in part by three activities derived from interaction with La protein: 3'-end protection from untimely decay by 3' exonucleases, nuclear retention and chaperone activity that helps prevent pre-tRNA misfolding and mischanneling into offline pathways. A focus of this perspective will be on differences between yeast and mammals in the subcellular partitioning of pre-tRNA intermediates and differential interactions with La. We review how this is most relevant to pre-tRNA splicing which occurs in the cytoplasm of yeasts but in nuclei of higher eukaryotes. Also divergent is La architecture, comprised of three RNA-binding domains in organisms in all examined branches of the eukaryal tree except yeast, which have lost the C-terminal RNA recognition motif-2α (RRM2α) domain. We also review emerging data that suggest mammalian La interacts with nuclear pre-tRNA splicing intermediates and may impact this branch of the tRNA maturation pathway. Finally, because La is involved in intranuclear tRNA biogenesis we review relevant aspects of tRNA-associated neurodegenerative diseases. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Nathan H Blewett
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Commissioned Corps, U.S. Public Health Service, Rockville, MD, USA.
| |
Collapse
|
7
|
Chatterjee K, Nostramo RT, Wan Y, Hopper AK. tRNA dynamics between the nucleus, cytoplasm and mitochondrial surface: Location, location, location. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:373-386. [PMID: 29191733 PMCID: PMC5882565 DOI: 10.1016/j.bbagrm.2017.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 01/20/2023]
Abstract
Although tRNAs participate in the essential function of protein translation in the cytoplasm, tRNA transcription and numerous processing steps occur in the nucleus. This subcellular separation between tRNA biogenesis and function requires that tRNAs be efficiently delivered to the cytoplasm in a step termed "primary tRNA nuclear export". Surprisingly, tRNA nuclear-cytoplasmic traffic is not unidirectional, but, rather, movement is bidirectional. Cytoplasmic tRNAs are imported back to the nucleus by the "tRNA retrograde nuclear import" step which is conserved from budding yeast to vertebrate cells and has been hijacked by viruses, such as HIV, for nuclear import of the viral reverse transcription complex in human cells. Under appropriate environmental conditions cytoplasmic tRNAs that have been imported into the nucleus return to the cytoplasm via the 3rd nuclear-cytoplasmic shuttling step termed "tRNA nuclear re-export", that again is conserved from budding yeast to vertebrate cells. We describe the 3 steps of tRNA nuclear-cytoplasmic movements and their regulation. There are multiple tRNA nuclear export and import pathways. The different tRNA nuclear exporters appear to possess substrate specificity leading to the tantalizing possibility that the cellular proteome may be regulated at the level of tRNA nuclear export. Moreover, in some organisms, such as budding yeast, the pre-tRNA splicing heterotetrameric endonuclease (SEN), which removes introns from pre-tRNAs, resides on the cytoplasmic surface of the mitochondria. Therefore, we also describe the localization of the SEN complex to mitochondria and splicing of pre-tRNA on mitochondria, which occurs prior to the participation of tRNAs in protein translation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Kunal Chatterjee
- The Ohio State University Comprehensive Cancer Research Center, United States; Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Regina T Nostramo
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Yao Wan
- The Ohio State University Comprehensive Cancer Research Center, United States; Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Anita K Hopper
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States.
| |
Collapse
|
8
|
Foretek D, Nuc P, Żywicki M, Karlowski WM, Kudla G, Boguta M. Maf1-mediated regulation of yeast RNA polymerase III is correlated with CCA addition at the 3' end of tRNA precursors. Gene 2016; 612:12-18. [PMID: 27575455 PMCID: PMC5390780 DOI: 10.1016/j.gene.2016.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 11/30/2022]
Abstract
In eukaryotic cells tRNA synthesis is negatively regulated by the protein Maf1, conserved from yeast to humans. Maf1 from yeast Saccharomyces cerevisiae mediates repression of trna transcription when cells are transferred from medium with glucose to medium with glycerol, a non-fermentable carbon source. The strain with deleted gene encoding Maf1 (maf1Δ) is viable but accumulates tRNA precursors. In this study tRNA precursors were analysed by RNA-Seq and Northern hybridization in wild type strain and maf1Δ mutant grown in glucose medium or upon shift to repressive conditions. A negative effect of maf1Δ mutant on the addition of the auxiliary CCA nucleotides to the 3′ end of pre-tRNAs was observed in cells shifted to unfavourable growth conditions. This effect was reduced by overexpression of the yeast CCA1 gene encoding ATP(CTP):tRNA nucleotidyltransferase. The CCA sequence at the 3′ end is important for export of tRNA precursors from the nucleus and essential for tRNA charging with amino acids. Data presented here indicate that CCA-addition to intron-containing end-processed tRNA precursors is a limiting step in tRNA maturation when there is no Maf1 mediated RNA polymerase III (Pol III) repression. The correlation between CCA synthesis and Pol III regulation by Maf1 could be important in coordination of tRNA transcription, processing and regulation of translation. Effect of Maf1 on maturation of tRNA precursors was analysed in yeast cells. CCA addition to the 3′ end of pre-tRNA was down-regulated in maf1Δ mutant under stress. Effect of inactivation and overproduction of Cca1 enzyme in maf1Δ cells was examined. Link between CCA synthesis and RNA polymerase III regulation is discussed.
Collapse
Affiliation(s)
- Dominika Foretek
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Przemysław Nuc
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Marek Żywicki
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Wojciech M Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Grzegorz Kudla
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland, UK
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
9
|
Ohira T, Suzuki T. Precursors of tRNAs are stabilized by methylguanosine cap structures. Nat Chem Biol 2016; 12:648-55. [PMID: 27348091 DOI: 10.1038/nchembio.2117] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 05/20/2016] [Indexed: 01/30/2023]
Abstract
Efficient maturation of transfer RNAs (tRNAs) is required for rapid cell growth. However, the precise timing of tRNA processing in coordination with the order of tRNA modifications has not been thoroughly elucidated. To analyze the modification status of tRNA precursors (pre-tRNAs) during maturation, we isolated pre-tRNAs at various stages from Saccharomyces cerevisiae and subjected them to MS analysis. We detected methylated guanosine cap structures at the 5' termini of pre-tRNAs bearing 5' leader sequences. These capped pre-tRNAs accumulated substantially after inhibition of RNase P activity. Upon depletion of the capping enzyme Ceg1p, the steady state level of capped pre-tRNA was markedly reduced. In addition, a population of capped pre-tRNAs accumulated in strains in which 5' exonucleases were inhibited, indicating that the 5' cap structures protect pre-tRNAs from 5'-exonucleolytic degradation during maturation.
Collapse
Affiliation(s)
- Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Influence of Conformation of M. tuberculosis RNase P Protein Subunit on Its Function. PLoS One 2016; 11:e0153798. [PMID: 27088505 PMCID: PMC4835064 DOI: 10.1371/journal.pone.0153798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/04/2016] [Indexed: 01/22/2023] Open
Abstract
RNase P is an essential enzyme that processes 5' end leader sequence of pre-tRNA to generate mature tRNA. The bacterial RNase Ps contain a RNA subunit and one protein subunit, where the RNA subunit contains the catalytic activity. The protein subunit which lacks any catalytic activity, relaxes the ionic requirements for holoenzyme reaction and is indispensable for pre-tRNA cleavage in vivo. In the current study, we reconstituted the M. tuberculosis RNase P holoenzyme in vitro. We prepared the RNase P protein through two different strategies that differ in the conditions under which the recombinant M. tuberculosis protein, expressed in E. coli was purified. The mycobacterial RNase P protein which was purified under native conditions subsequent to isolation from inclusion bodies and in vitro renaturation, was capable of cleaving pre-tRNA specifically without the requirement of RNase P RNA. However, the preparation that was purified under denaturing conditions and refolded subsequently lacked any inherent pre-tRNA processing activity and cleaved the substrate only as a component of the holoenzyme with the RNA subunit. We found that the two RNase P protein preparations attained alternative conformations and differed with respect to their stability as well.
Collapse
|
11
|
Huang HY, Hopper AK. Multiple Layers of Stress-Induced Regulation in tRNA Biology. Life (Basel) 2016; 6:life6020016. [PMID: 27023616 PMCID: PMC4931453 DOI: 10.3390/life6020016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 01/28/2023] Open
Abstract
tRNAs are the fundamental components of the translation machinery as they deliver amino acids to the ribosomes during protein synthesis. Beyond their essential function in translation, tRNAs also function in regulating gene expression, modulating apoptosis and several other biological processes. There are multiple layers of regulatory mechanisms in each step of tRNA biogenesis. For example, tRNA 3′ trailer processing is altered upon nutrient stress; tRNA modification is reprogrammed under various stresses; nuclear accumulation of tRNAs occurs upon nutrient deprivation; tRNA halves accumulate upon oxidative stress. Here we address how environmental stresses can affect nearly every step of tRNA biology and we describe the possible regulatory mechanisms that influence the function or expression of tRNAs under stress conditions.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Biology, Indiana University, 915 E third St., Myers 300, Bloomington, IN 47405, USA.
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
12
|
Foretek D, Wu J, Hopper AK, Boguta M. Control of Saccharomyces cerevisiae pre-tRNA processing by environmental conditions. RNA (NEW YORK, N.Y.) 2016; 22:339-49. [PMID: 26729922 PMCID: PMC4748812 DOI: 10.1261/rna.054973.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 05/21/2023]
Abstract
tRNA is essential for translation and decoding of the proteome. The yeast proteome responds to stress and tRNA biosynthesis contributes in this response by repression of tRNA transcription and alterations of tRNA modification. Here we report that the stress response also involves processing of pre-tRNA 3' termini. By a combination of Northern analyses and RNA sequencing, we show that upon shift to elevated temperatures and/or to glycerol-containing medium, aberrant pre-tRNAs accumulate in yeast cells. For pre-tRNAUAU(Ile) and pre-tRNAUUU Lys) these aberrant forms are unprocessed at the 5' ends, but they possess extended 3' termini. Sequencing analyses showed that partial 3' processing precedes 5' processing for pre-tRNAUAU(Ile). An aberrant pre-tRNA(Tyr) that accumulates also possesses extended 3' termini, but it is processed at the 5' terminus. Similar forms of these aberrant pre-tRNAs are detected in the rex1Δ strain that is defective in 3' exonucleolytic trimming of pre-tRNAs but are absent in the lhp1Δ mutant lacking 3' end protection. We further show direct correlation between the inhibition of 3' end processing rate and the stringency of growth conditions. Moreover, under stress conditions Rex1 nuclease seems to be limiting for 3' end processing, by decreased availability linked to increased protection by Lhp1. Thus, our data document complex 3' processing that is inhibited by stress in a tRNA-type and condition-specific manner. This stress-responsive tRNA 3' end maturation process presumably contributes to fine-tune the levels of functional tRNA in budding yeast in response to environmental conditions.
Collapse
Affiliation(s)
- Dominika Foretek
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Jingyan Wu
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
13
|
Skowronek E, Grzechnik P, Späth B, Marchfelder A, Kufel J. tRNA 3' processing in yeast involves tRNase Z, Rex1, and Rrp6. RNA (NEW YORK, N.Y.) 2014; 20:115-30. [PMID: 24249226 PMCID: PMC3866640 DOI: 10.1261/rna.041467.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/24/2013] [Indexed: 05/20/2023]
Abstract
Mature tRNA 3' ends in the yeast Saccharomyces cerevisiae are generated by two pathways: endonucleolytic and exonucleolytic. Although two exonucleases, Rex1 and Rrp6, have been shown to be responsible for the exonucleolytic trimming, the identity of the endonuclease has been inferred from other systems but not confirmed in vivo. Here, we show that the yeast tRNA 3' endonuclease tRNase Z, Trz1, is catalyzing endonucleolytic tRNA 3' processing. The majority of analyzed tRNAs utilize both pathways, with a preference for the endonucleolytic one. However, 3'-end processing of precursors with long 3' trailers depends to a greater extent on Trz1. In addition to its function in the nucleus, Trz1 processes the 3' ends of mitochondrial tRNAs, contributing to the general RNA metabolism in this organelle.
Collapse
Affiliation(s)
- Ewa Skowronek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Pawel Grzechnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Bettina Späth
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | | | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Corresponding authorE-mail
| |
Collapse
|
14
|
Wichtowska D, Turowski TW, Boguta M. An interplay between transcription, processing, and degradation determines tRNA levels in yeast. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:709-22. [PMID: 24039171 DOI: 10.1002/wrna.1190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 11/06/2022]
Abstract
tRNA biogenesis in yeast involves the synthesis of the initial transcript by RNA polymerase III followed by processing and controlled degradation in both the nucleus and the cytoplasm. A vast landscape of regulatory elements controlling tRNA stability in yeast has emerged from recent studies. Diverse pathways of tRNA maturation generate multiple stable and unstable intermediates. A significant impact on tRNA stability is exerted by a variety of nucleotide modifications. Pre-tRNAs are targets of exosome-dependent surveillance in the nucleus. Some tRNAs that are hypomodified or bear specific destabilizing mutations are directed to the rapid tRNA decay pathway leading to 5'→3' exonucleolytic degradation by Rat1 and Xrn1. tRNA molecules are selectively marked for degradation by a double CCA at their 3' ends. In addition, under different stress conditions, tRNA half-molecules can be generated by independent endonucleolytic cleavage events. Recent studies reveal unexpected relationships between the subsequent steps of tRNA biosynthesis and the mechanisms controlling its quality and turnover.
Collapse
Affiliation(s)
- Dominika Wichtowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
15
|
Maraia RJ, Lamichhane TN. 3' processing of eukaryotic precursor tRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:362-75. [PMID: 21572561 DOI: 10.1002/wrna.64] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biogenesis of eukaryotic tRNAs requires transcription by RNA polymerase III and subsequent processing. 5' processing of precursor tRNA occurs by a single mechanism, cleavage by RNase P, and usually occurs before 3' processing although some conditions allow observation of the 3'-first pathway. 3' processing is relatively complex and is the focus of this review. Precursor RNA 3'-end formation begins with pol III termination generating a variable length 3'-oligo(U) tract that represents an underappreciated and previously unreviewed determinant of processing. Evidence that the pol III-intrinsic 3'exonuclease activity mediated by Rpc11p affects 3'oligo(U) length is reviewed. In addition to multiple 3' nucleases, precursor tRNA(pre-tRNA) processing involves La and Lsm, distinct oligo(U)-binding proteins with proposed chaperone activities. 3' processing is performed by the endonuclease RNase Z or the exonuclease Rex1p (possibly others) along alternate pathways conditional on La. We review a Schizosaccharomyces pombe tRNA reporter system that has been used to distinguish two chaperone activities of La protein to its two conserved RNA binding motifs. Pre-tRNAs with structural impairments are degraded by a nuclear surveillance system that mediates polyadenylation by the TRAMP complex followed by 3'-digestion by the nuclear exosome which appears to compete with 3' processing. We also try to reconcile limited data on pre-tRNA processing and Lsm proteins which largely affect precursors but not mature tRNAs.A pathway is proposed in which 3' oligo(U) length is a primary determinant of La binding with subsequent steps distinguished by 3'-endo versus exo nucleases,chaperone activities, and nuclear surveillance.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver NationalInstitute of Child Health and Human Development, NationalInstitutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
16
|
Lajoie P, Moir RD, Willis IM, Snapp EL. Kar2p availability defines distinct forms of endoplasmic reticulum stress in living cells. Mol Biol Cell 2012; 23:955-64. [PMID: 22219379 PMCID: PMC3290652 DOI: 10.1091/mbc.e11-12-0995] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The endoplasmic reticulum (ER) unfolded protein response (UPR) is correlated with changes in unfolded secretory levels. A novel fluorescence biosensor now reports changes in the unfolded protein burden. This reporter reveals a form of ER stress—inositol withdrawal—that stimulates the UPR without changes in unfolded protein levels. Accumulation of misfolded secretory proteins in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) stress pathway. To enhance secretory protein folding and promote adaptation to stress, the UPR upregulates ER chaperone levels, including BiP. Here we describe chromosomal tagging of KAR2, the yeast homologue of BiP, with superfolder green fluorescent protein (sfGFP) to create a multifunctional endogenous reporter of the ER folding environment. Changes in Kar2p-sfGFP fluorescence levels directly correlate with UPR activity and represent a robust reporter for high-throughput analysis. A novel second feature of this reporter is that photobleaching microscopy (fluorescence recovery after photobleaching) of Kar2p-sfGFP mobility reports on the levels of unfolded secretory proteins in individual cells, independent of UPR status. Kar2p-sfGFP mobility decreases upon treatment with tunicamycin or dithiothreitol, consistent with increased levels of unfolded proteins and the incorporation of Kar2p-sfGFP into slower-diffusing complexes. During adaptation, we observe a significant lag between down-regulation of the UPR and resolution of the unfolded protein burden. Finally, we find that Kar2p-sfGFP mobility significantly increases upon inositol withdrawal, which also activates the UPR, apparently independent of unfolded protein levels. Thus Kar2p mobility represents a powerful new tool capable of distinguishing between the different mechanisms leading to UPR activation in living cells.
Collapse
Affiliation(s)
- Patrick Lajoie
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
17
|
Barbezier N, Canino G, Rodor J, Jobet E, Saez-Vasquez J, Marchfelder A, Echeverría M. Processing of a dicistronic tRNA-snoRNA precursor: combined analysis in vitro and in vivo reveals alternate pathways and coupling to assembly of snoRNP. PLANT PHYSIOLOGY 2009; 150:1598-610. [PMID: 19420328 PMCID: PMC2705039 DOI: 10.1104/pp.109.137968] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The C/D box small nucleolar RNAs (snoRNAs) represent an essential class of small nucleolar RNAs that guide 2'-O-Rib methylation of ribosomal RNAs and other RNAs in eukaryotes. In Arabidopsis (Arabidopsis thaliana), >100 C/D snoRNAs have been identified, most of them encoded by polycistronic gene clusters, but little is known on the factors controlling their biogenesis. Here, we focus on the identification of factors controlling the processing of tRNA-snoRNA dicistronic precursors (pre-tsnoRNA) synthesized by RNA polymerase III and producing tRNA(Gly) and C/D snoR43. We produced radiolabeled RNA probes corresponding to different pre-tsnoRNA mutants to test their impact on processing in vitro by a recombinant tRNAse Z, the Arabidopsis endonuclease that processes the 3'end of tRNAs, and by nuclear extracts from cauliflower (Brassica oleracea) inflorescences that accurately process the pre-tsnoRNA. This was coupled to an in vivo analysis of the processing of tagged pre-tsnoRNA mutants expressed in Arabidopsis. Our results strongly implicate tRNase Z in endonucleolytic cleavage of the pre-tsnoRNA. In addition, they reveal an alternate pathway that could depend on a tRNA decay surveillance mechanism. Finally, we provide arguments showing that processing of pre-tsnoRNA, both in planta and by nuclear extracts, is coupled to the assembly of snoRNA with core proteins forming the functional snoRNP (for small nucleolar ribonucleoprotein complex).
Collapse
Affiliation(s)
- Nicolas Barbezier
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Université de Perpignan Via Domitia-Centre National de la Recherche Scientifique-Institut de Recherche pour le Développement, 66860 Perpignan cedex, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Ozanick SG, Wang X, Costanzo M, Brost RL, Boone C, Anderson JT. Rex1p deficiency leads to accumulation of precursor initiator tRNAMet and polyadenylation of substrate RNAs in Saccharomyces cerevisiae. Nucleic Acids Res 2008; 37:298-308. [PMID: 19042972 PMCID: PMC2615624 DOI: 10.1093/nar/gkn925] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A synthetic genetic array was used to identify lethal and slow-growth phenotypes produced when a mutation in TRM6, which encodes a tRNA modification enzyme subunit, was combined with the deletion of any non-essential gene in Saccharomyces cerevisiae. We found that deletion of the REX1 gene resulted in a slow-growth phenotype in the trm6-504 strain. Previously, REX1 was shown to be involved in processing the 3′ ends of 5S rRNA and the dimeric tRNAArg-tRNAAsp. In this study, we have discovered a requirement for Rex1p in processing the 3′ end of tRNAiMet precursors and show that precursor tRNAiMet accumulates in a trm6-504 rex1Δ strain. Loss of Rex1p results in polyadenylation of its substrates, including tRNAiMet, suggesting that defects in 3′ end processing can activate the nuclear surveillance pathway. Finally, purified Rex1p displays Mg2+-dependent ribonuclease activity in vitro, and the enzyme is inactivated by mutation of two highly conserved amino acids.
Collapse
Affiliation(s)
- Sarah G Ozanick
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | | | | | | | | | | |
Collapse
|
19
|
Self containment, a property of modular RNA structures, distinguishes microRNAs. PLoS Comput Biol 2008; 4:e1000150. [PMID: 18725951 PMCID: PMC2517099 DOI: 10.1371/journal.pcbi.1000150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 07/08/2008] [Indexed: 11/19/2022] Open
Abstract
RNA molecules will tend to adopt a folded conformation through the pairing of bases on a single strand; the resulting so-called secondary structure is critical to the function of many types of RNA. The secondary structure of a particular substring of functional RNA may depend on its surrounding sequence. Yet, some RNAs such as microRNAs retain their specific structures during biogenesis, which involves extraction of the substructure from a larger structural context, while other functional RNAs may be composed of a fusion of independent substructures. Such observations raise the question of whether particular functional RNA substructures may be selected for invariance of secondary structure to their surrounding nucleotide context. We define the property of self containment to be the tendency for an RNA sequence to robustly adopt the same optimal secondary structure regardless of whether it exists in isolation or is a substring of a longer sequence of arbitrary nucleotide content. We measured degree of self containment using a scoring method we call the self-containment index and found that miRNA stem loops exhibit high self containment, consistent with the requirement for structural invariance imposed by the miRNA biogenesis pathway, while most other structured RNAs do not. Further analysis revealed a trend toward higher self containment among clustered and conserved miRNAs, suggesting that high self containment may be a characteristic of novel miRNAs acquiring new genomic contexts. We found that miRNAs display significantly enhanced self containment compared to other functional RNAs, but we also found a trend toward natural selection for self containment in most functional RNA classes. We suggest that self containment arises out of selection for robustness against perturbations, invariance during biogenesis, and modular composition of structural function. Analysis of self containment will be important for both annotation and design of functional RNAs. A Python implementation and Web interface to calculate the self-containment index are available at http://kim.bio.upenn.edu/software/. An RNA molecule is made up of a linear sequence of nucleotides, which form pairwise interactions that define its folded three-dimensional structure; the particular structure largely depends on the specific sequence. These base-pairing interactions are stabilizing, and the RNA will tend to fold in a particular way to maximize stability. Consider some nucleotide sequence that optimally folds into some structure in isolation; if this sequence is now embedded inside a larger sequence, then either the original structure will be a robust subcomponent of the larger folded structure, or it will be disrupted due to new interactions between the original sequence and the surrounding sequence. We explore this property of context robustness of structure and in particular define the property of “self containment” to describe intrinsic context robustness—i.e., the tendency for certain sequences to be structurally robust in many different sequence contexts. Self containment turns out to be a strong characteristic of a class of RNAs called microRNAs, whose biogenesis process depends on the maintenance of structural robustness. This finding will be useful in future efforts to characterize novel miRNAs, as well as in understanding the regulation and evolution of noncoding functional RNAs as modular units.
Collapse
|
20
|
Ghavidel A, Kislinger T, Pogoutse O, Sopko R, Jurisica I, Emili A. Impaired tRNA nuclear export links DNA damage and cell-cycle checkpoint. Cell 2008; 131:915-26. [PMID: 18045534 DOI: 10.1016/j.cell.2007.09.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 07/31/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
In response to genotoxic stress, cells evoke a plethora of physiological responses collectively aimed at enhancing viability and maintaining the integrity of the genome. Here, we report that unspliced tRNA rapidly accumulates in the nuclei of yeast Saccharomyces cerevisiae after DNA damage. This response requires an intact MEC1- and RAD53-dependent signaling pathway that impedes the nuclear export of intron-containing tRNA via differential relocalization of the karyopherin Los1 to the cytoplasm. The accumulation of unspliced tRNA in the nucleus signals the activation of Gcn4 transcription factor, which, in turn, contributes to cell-cycle arrest in G1 in part by delaying accumulation of the cyclin Cln2. The regulated nucleocytoplasmic tRNA trafficking thus constitutes an integral physiological adaptation to DNA damage. These data further illustrate how signal-mediated crosstalk between distinct functional modules, namely, tRNA nucleocytoplasmic trafficking, protein synthesis, and checkpoint execution, allows for functional coupling of tRNA biogenesis and cell-cycle progression.
Collapse
Affiliation(s)
- Ata Ghavidel
- Ontario Cancer Institute, Division of Signaling Biology, Toronto, Ontario M5G-1L7, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
Fleurdépine S, Deragon JM, Devic M, Guilleminot J, Bousquet-Antonelli C. A bona fide La protein is required for embryogenesis in Arabidopsis thaliana. Nucleic Acids Res 2007; 35:3306-21. [PMID: 17459889 PMCID: PMC1904278 DOI: 10.1093/nar/gkm200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 03/21/2007] [Accepted: 03/21/2007] [Indexed: 01/28/2023] Open
Abstract
Searches in the Arabidopsis thaliana genome using the La motif as query revealed the presence of eight La or La-like proteins. Using structural and phylogenetic criteria, we identified two putative genuine La proteins (At32 and At79) and showed that both are expressed throughout plant development but at different levels and under different regulatory conditions. At32, but not At79, restores Saccharomyces cerevisiae La nuclear functions in non-coding RNAs biogenesis and is able to bind to plant 3'-UUU-OH RNAs. We conclude that these La nuclear functions are conserved in Arabidopsis and supported by At32, which we renamed as AtLa1. Consistently, AtLa1 is predominantly localized to the plant nucleoplasm and was also detected in the nucleolar cavity. The inactivation of AtLa1 in Arabidopsis leads to an embryonic-lethal phenotype with deficient embryos arrested at early globular stage of development. In addition, mutant embryonic cells display a nucleolar hypertrophy suggesting that AtLa1 is required for normal ribosome biogenesis. The identification of two distantly related proteins with all structural characteristics of genuine La proteins suggests that these factors evolved to a certain level of specialization in plants. This unprecedented situation provides a unique opportunity to dissect the very different aspects of this crucial cellular activity.
Collapse
Affiliation(s)
- Sophie Fleurdépine
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Jean-Marc Deragon
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Martine Devic
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Jocelyne Guilleminot
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- CNRS UMR6547 GEEM, Université Blaise Pascal, 63177 Aubière, France and CNRS UMR5096 LGDP, Université de Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
22
|
Huang Y, Bayfield MA, Intine RV, Maraia RJ. Separate RNA-binding surfaces on the multifunctional La protein mediate distinguishable activities in tRNA maturation. Nat Struct Mol Biol 2006; 13:611-8. [PMID: 16799560 DOI: 10.1038/nsmb1110] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 05/15/2006] [Indexed: 11/08/2022]
Abstract
By sequence-specific binding to 3' UUU-OH, the La protein shields precursor (pre)-RNAs from 3' end digestion and is required to protect defective pre-transfer RNAs from decay. Although La is comprised of a La motif and an RNA-recognition motif (RRM), a recent structure indicates that the RRM beta-sheet surface is not involved in UUU-OH recognition, raising questions as to its function. Progressively defective suppressor tRNAs in Schizosaccharomyces pombe reveal differential sensitivities to La and Rrp6p, a 3' exonuclease component of pre-tRNA decay. 3' end protection is compromised by mutations to the La motif but not the RRM surface. The most defective pre-tRNAs require a second activity of La, in addition to 3' protection, that requires an intact RRM surface. The two activities of La in tRNA maturation map to its two conserved RNA-binding surfaces and suggest a modular model that has implications for its other ligands.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, US National Institutes of Health, 31 Center Dr., Rm. 2A25, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
23
|
Abstract
This review highlights the unexpectedly complicated nuclear egress and nuclear import of small RNAs. Although nucleus/cytoplasm trafficking was thought to be restricted to snRNAs of many, but not all, eukaryotes, recent data indicate that such traffic may be more common than previously appreciated. First, in conflict with numerous previous reports, new information indicates that Saccharomyces cerevisiae snRNAs may cycle between the nucleus and the cytoplasm. Second, recent studies also provide evidence that other small RNAs that function exclusively in the nucleus-the budding yeast telomerase RNA and possibly small nucleolar RNAs-may exit to the cytoplasm, only to return to the nucleus. Third, nucleus/cytoplasm cycling of RNAs also occurs for RNAs that function solely in the cytoplasm, as it has been discovered that cytoplasmic tRNAs of budding yeast travel "retrograde" to the nucleus and, perhaps, back again to the cytoplasm to function in protein synthesis. Fourth, there is at least one example in ciliates of small double-stranded RNAs traveling multiple cycles between the cytoplasm and distinct nuclei to direct genome structure. This report discusses data that support or argue against nucleus/cytoplasm bidirectional movement for each category of small RNA and the possible roles that such movement may serve.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
24
|
Kadaba S, Wang X, Anderson JT. Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA (NEW YORK, N.Y.) 2006; 12:508-21. [PMID: 16431988 PMCID: PMC1383588 DOI: 10.1261/rna.2305406] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
1-Methyladenosine modification at position 58 of tRNA is catalyzed by a two-subunit methyltransferase composed of Trm6p and Trm61p in Saccharomyces cerevisiae. Initiator tRNA (tRNAi(Met)) lacking m1A58 (hypomethylated) is rendered unstable through the cooperative function of the poly(A) polymerases, Trf4p/Trf5p, and the nuclear exosome. We provide evidence that a catalytically active Trf4p poly(A) polymerase is required for polyadenylation of hypomethylated tRNAi(Met) in vivo. DNA sequence analysis of tRNAi(Met) cDNAs and Northern hybridizations of poly(A)+ RNA provide evidence that nascent pre-tRNAi(Met) transcripts are targeted for polyadenylation and degradation. We determined that a mutant U6 snRNA and an aberrant form of 5S rRNA are stabilized in the absence of Trf4p, supporting that Trf4p facilitated RNA surveillance is a global process that stretches beyond hypomethylated tRNAi(Met). We conclude that an array of RNA polymerase III transcripts are targeted for Trf4p/ Trf5p-dependent polyadenylation and turnover to eliminate mutant and variant forms of normally stable RNAs.
Collapse
MESH Headings
- Base Sequence
- Catalytic Domain/genetics
- DNA, Fungal/genetics
- DNA-Directed DNA Polymerase/genetics
- DNA-Directed DNA Polymerase/metabolism
- DNA-Directed RNA Polymerases/genetics
- DNA-Directed RNA Polymerases/metabolism
- Methylation
- Mutagenesis, Site-Directed
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Sujatha Kadaba
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Wehr Life Sciences, Milwaukee, WI 53201, USA
| | | | | |
Collapse
|
25
|
Transfer RNA modifications and modifying enzymes in Saccharomyces cerevisiae. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b105814] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
26
|
Lai D, Weng S, Wang C, Qi L, Yu C, Fu L, Chen W. Small antisense RNA to cyclin D1 generated by pre-tRNA splicing inhibits growth of human hepatoma cells. FEBS Lett 2004; 576:481-6. [PMID: 15498584 DOI: 10.1016/j.febslet.2004.09.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022]
Abstract
Introns are present in some human pre-tRNAs. They are spliced out during the maturation processes of pre-tRNAs in a way that is irrelevant to their specific nucleotide sequences. This unique characteristic of tRNA splicing can be used for generation of small antisense RNAs by replacing the intron sequences with corresponding antisense sequences. In this work, the intron sequence of human pre-tRNAtyr gene was replaced with a 20 bp antisense sequence targeted to the 5' coding region of cyclin D1, a molecule that was over-expressed in many malignant proliferating cells. Under the control of U6 SnRNA promoter to further enhance transcription efficiency of the modified pre-tRNAtyr gene and subsequent antisense generation, the antisense RNA exhibited obvious suppression of cyclin D1 expression in H22 hepatoma cells. The growth of H22-transplanted tumors in mice was significantly inhibited when treated with naked plasmid DNA harboring the cyclin D1 antisense RNA generating cassette. Such tumor growth inhibition might be due to apoptosis caused by reduced cyclin D1 expression as revealed by immunohistochemical analysis of tumor samples.
Collapse
Affiliation(s)
- Dazhi Lai
- Beijing Institute of Microbiology and Epidemiology, 20 Dongdajie, Fengtai, Beijing 100071, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Johansson MJO, Byström AS. The Saccharomyces cerevisiae TAN1 gene is required for N4-acetylcytidine formation in tRNA. RNA (NEW YORK, N.Y.) 2004; 10:712-9. [PMID: 15037780 PMCID: PMC1370561 DOI: 10.1261/rna.5198204] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The biogenesis of transfer RNA is a process that requires many different factors. In this study, we describe a genetic screen aimed to identify gene products participating in this process. By screening for mutations lethal in combination with a sup61-T47:2C allele, coding for a mutant form of, the nonessential TAN1 gene was identified. We show that the TAN1 gene product is required for formation of the modified nucleoside N(4)-acetylcytidine (ac(4)C) in tRNA. In Saccharomyces cerevisiae, ac(4)C is present at position 12 in tRNAs specific for leucine and serine as well as in 18S ribosomal RNA. Analysis of RNA isolated from a tan1-null mutant revealed that ac(4)C was absent in tRNA, but not rRNA. Although no tRNA acetyltransferase activity by a GST-Tan1 fusion protein was detected, a gel-shift assay revealed that Tan1p binds tRNA, suggesting a direct role in synthesis of ac(4)C(12). The absence of the TAN1 gene in the sup61-T47:2C mutant caused a decreased level of mature, indicating that ac(4)C(12) and/or Tan1p is important for tRNA stability.
Collapse
|
28
|
Neumann S, Petfalski E, Brügger B, Großhans H, Wieland F, Tollervey D, Hurt E. Formation and nuclear export of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p. EMBO Rep 2003; 4:1156-62. [PMID: 14608372 PMCID: PMC1326418 DOI: 10.1038/sj.embor.7400026] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 09/15/2003] [Accepted: 09/22/2003] [Indexed: 11/08/2022] Open
Abstract
The yeast ubiquitin-protein ligase Rsp5p regulates processes as diverse as polII transcription and endocytosis. Here, we identify Rsp5p in a screen for tRNA export (tex) mutants. The tex23-1/rsp5-3 mutant, which is complemented by RSP5, not only shows a strong nuclear accumulation of tRNAs at the restrictive temperature, but also is severely impaired in the nuclear export of mRNAs and 60S pre-ribosomal subunits. In contrast, nuclear localization sequence (NLS)-mediated nuclear protein import is unaffected in this mutant. Strikingly, the nuclear RNA export defects seen in the rsp5-3 strain are accompanied by a dramatic inhibition of both rRNA and tRNA processing, a combination of phenotypes that has not been reported for any previously characterized mutation in yeast. These data implicate ubiquitination as a mechanism coordinating the major nuclear RNA biogenesis pathways.
Collapse
Affiliation(s)
- Silvia Neumann
- Biochemie-Zentrum Heidelberg (BZH),
Im Neuenheimer Feld 328, D-69120
Heidelberg, Germany
| | - Elisabeth Petfalski
- Wellcome Trust Centre for Cell Biology,
University of Edinburgh, Edinburgh EH9 3JR,
UK
| | - Britta Brügger
- Biochemie-Zentrum Heidelberg (BZH),
Im Neuenheimer Feld 328, D-69120
Heidelberg, Germany
| | - Helge Großhans
- Biochemie-Zentrum Heidelberg (BZH),
Im Neuenheimer Feld 328, D-69120
Heidelberg, Germany
| | - Felix Wieland
- Biochemie-Zentrum Heidelberg (BZH),
Im Neuenheimer Feld 328, D-69120
Heidelberg, Germany
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology,
University of Edinburgh, Edinburgh EH9 3JR,
UK
| | - Ed Hurt
- Biochemie-Zentrum Heidelberg (BZH),
Im Neuenheimer Feld 328, D-69120
Heidelberg, Germany
| |
Collapse
|
29
|
Yoshihisa T, Yunoki-Esaki K, Ohshima C, Tanaka N, Endo T. Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria. Mol Biol Cell 2003; 14:3266-79. [PMID: 12925762 PMCID: PMC181566 DOI: 10.1091/mbc.e02-11-0757] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Revised: 04/04/2003] [Accepted: 04/04/2003] [Indexed: 11/11/2022] Open
Abstract
Pre-tRNA splicing has been believed to occur in the nucleus. In yeast, the tRNA splicing endonuclease that cleaves the exon-intron junctions of pre-tRNAs consists of Sen54p, Sen2p, Sen34p, and Sen15p and was thought to be an integral membrane protein of the inner nuclear envelope. Here we show that the majority of Sen2p, Sen54p, and the endonuclease activity are not localized in the nucleus, but on the mitochondrial surface. The endonuclease is peripherally associated with the cytosolic surface of the outer mitochondrial membrane. A Sen54p derivative artificially fixed on the mitochondria as an integral membrane protein can functionally replace the authentic Sen54p, whereas mutant proteins defective in mitochondrial localization are not fully active. sen2 mutant cells accumulate unspliced pre-tRNAs in the cytosol under the restrictive conditions, and this export of the pre-tRNAs partly depends on Los1p, yeast exportin-t. It is difficult to explain these results from the view of tRNA splicing in the nucleus. We rather propose a new possibility that tRNA splicing occurs on the mitochondrial surface in yeast.
Collapse
Affiliation(s)
- Tohru Yoshihisa
- Research Center for Materials Science, Nagoya University, Nagoya, 464-8602, Japan
| | | | | | | | | |
Collapse
|
30
|
Kufel J, Tollervey D. 3'-processing of yeast tRNATrp precedes 5'-processing. RNA (NEW YORK, N.Y.) 2003; 9:202-8. [PMID: 12554863 PMCID: PMC1370386 DOI: 10.1261/rna.2145103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2002] [Accepted: 10/21/2002] [Indexed: 05/21/2023]
Abstract
Previous analyses of eukaryotic pre-tRNAs processing have reported that 5'-cleavage by RNase P precedes 3'-maturation. Here we report that in contrast to all other yeast tRNAs analyzed to date, tRNA(Trp) undergoes 3'-maturation prior to 5'-cleavage. Despite its unusual processing pathway, pre-tRNA(Trp) resembles other pre-tRNAs, showing dependence on the essential Lsm proteins for normal processing and efficient association with the yeast La homolog, Lhp1p. tRNA(Trp) is also unusual in not requiring Lhp1p for 3' processing and stability. However, other Lhp1p-independent tRNAs, tRNA(2)(Lys) and tRNA(1)(Ile), follow the normal pathway of 5'-processing prior to 3-processing.
Collapse
Affiliation(s)
- Joanna Kufel
- Wellcome Trust Centre for Cell Biology, King's Buildings, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
31
|
Affiliation(s)
- George Simos
- Biochemie-Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
32
|
Intine RV, Dundr M, Misteli T, Maraia RJ. Aberrant nuclear trafficking of La protein leads to disordered processing of associated precursor tRNAs. Mol Cell 2002; 9:1113-23. [PMID: 12049746 DOI: 10.1016/s1097-2765(02)00533-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Eukaryotic precursor tRNAs undergo extensive processing prior to nuclear export. The first of multiple factors to interact with pre-tRNAs and other nascent transcripts is the La protein. Using suppressor and wild-type tRNAs, we demonstrate that the normal distribution of cellular end-processed and spliced tRNA species is disordered by La proteins that lack a conserved nuclear retention element. Fission yeast or human La mutants that lack this element enter nuclei and stabilize nascent pre-tRNA but are aberrantly exported and fail to support normal tRNA processing. Instead, anomalous 5' and 3' end-containing, spliced tRNAs accumulate, complexed with the mutant La protein. Thus, appropriate nuclear trafficking by La affects the normal order of pre-tRNA processing.
Collapse
Affiliation(s)
- Robert V Intine
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
33
|
Johansson MJO, Byström AS. Dual function of the tRNA(m(5)U54)methyltransferase in tRNA maturation. RNA (NEW YORK, N.Y.) 2002; 8:324-35. [PMID: 12003492 PMCID: PMC1370254 DOI: 10.1017/s1355838202027851] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A 5-methyluridine (m(5)U) residue at position 54 is a conserved feature of bacterial and eukaryotic tRNAs. The methylation of U54 is catalyzed by the tRNA(m5U54)methyltransferase, which in Saccharomyces cerevisiae is encoded by the nonessential TRM2 gene. In this study, we identified four different strains with mutant forms of tRNA(Ser)CGA. The absence of the TRM2 gene in these strains decreased the stability of tRNA(Ser)CGA and induced lethality. Two alleles of TRM2 encoding catalytically inactive tRNA(m5U54)methyltransferases were able to stabilize tRNA(Ser)CGA in one of the mutants, revealing a role for the Trm2 protein per se in tRNA maturation. Other tRNA modification enzymes interacting with tRNA(Ser)CGA in the maturation process, such as Pus4p, Trm1 p, and Trm3p were essential or important for growth of the tRNA(Ser)CGA mutants. Moreover, Lhp1p, a protein binding RNA polymerase III transcripts, was required to stabilize the mutant tRNAs. Based on our results, we suggest that tRNA modification enzymes might have a role in tRNA maturation not necessarily linked to their known catalytic activity.
Collapse
|
34
|
Abstract
Ribonuclease P (RNase P) is an essential endonuclease that acts early in the tRNA biogenesis pathway. This enzyme catalyzes cleavage of the leader sequence of precursor tRNAs (pre-tRNAs), generating the mature 5' end of tRNAs. RNase P activities have been identified in Bacteria, Archaea, and Eucarya, as well as organelles. Most forms of RNase P are ribonucleoproteins, i.e., they consist of an essential RNA subunit and protein subunits, although the composition of the enzyme in mitochondria and chloroplasts is still under debate. The recent purification of the eukaryotic nuclear RNase P has demonstrated a significantly larger protein content compared to the bacterial enzyme. Moreover, emerging evidence suggests that the eukaryotic RNase P has evolved into at least two related nuclear enzymes with distinct functions, RNase P and RNase MRP. Here we review current information on RNase P, with emphasis on the composition, structure, and functions of the eukaryotic nuclear holoenzyme, and its relationship with RNase MRP.
Collapse
Affiliation(s)
- Shaohua Xiao
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Felicia Scott
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - David R. Engelke
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| |
Collapse
|
35
|
Houser-Scott F, Ziehler WA, Engelke DR. Saccharomyces cerevisiae nuclear ribonuclease P: structure and function. Methods Enzymol 2001; 342:101-17. [PMID: 11586886 DOI: 10.1016/s0076-6879(01)42539-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- F Houser-Scott
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
36
|
Nashimoto M, Wesemann DR, Geary S, Tamura M, Kaspar RL. Long 5' leaders inhibit removal of a 3' trailer from a precursor tRNA by mammalian tRNA 3' processing endoribonuclease. Nucleic Acids Res 1999; 27:2770-6. [PMID: 10373595 PMCID: PMC148487 DOI: 10.1093/nar/27.13.2770] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian tRNA 3' processing endoribonuclease (3' tRNase) can remove a 3' trailer from various pre-tRNAs without 5' leader nucleotides. To examine how 5[prime] leader sequences affect 3' processing efficiency, we performed in vitro 3' processing reactions with purified pig 3' tRNase and pre-tRNAArgs containing a 13-nt 3' trailer and a 5[prime] leader of various lengths. The 3' processing was slightly stimulated by 5[prime] leaders containing up to 7 nt, whereas leaders of 9 nt or longer severely inhibited the reaction. Structure probing indicated that the 5' leader sequences had little effect on pre-tRNA folding. Similar results were obtained using pre-tRNA(Val)s containing a 5' leader of various lengths. We also investigated whether 3'tRNase can remove 3' trailers that are stably base-paired with 5' leaders to form an extended acceptor stem. Even such small 5' leaders as 3 and 6 nt, when base-paired with a 3' trailer, severely hindered removal of the 3' trailer by 3' tRNase.
Collapse
Affiliation(s)
- M Nashimoto
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | |
Collapse
|
37
|
Sarkar S, Hopper AK. tRNA nuclear export in saccharomyces cerevisiae: in situ hybridization analysis. Mol Biol Cell 1998; 9:3041-55. [PMID: 9802895 PMCID: PMC25586 DOI: 10.1091/mbc.9.11.3041] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To understand the factors specifically affecting tRNA nuclear export, we adapted in situ hybridization procedures to locate endogenous levels of individual tRNA families in wild-type and mutant yeast cells. Our studies of tRNAs encoded by genes lacking introns show that nucleoporin Nup116p affects both poly(A) RNA and tRNA export, whereas Nup159p affects only poly(A) RNA export. Los1p is similar to exportin-t, which facilitates vertebrate tRNA export. A los1 deletion mutation affects tRNA but not poly(A) RNA export. The data support the notion that Los1p and exportin-t are functional homologues. Because LOS1 is nonessential, tRNA export in vertebrate and yeast cells likely involves factors in addition to exportin-t. Mutation of RNA1, which encodes RanGAP, causes nuclear accumulation of tRNAs and poly(A) RNA. Many yeast mutants, including those with the rna1-1 mutation, affect both pre-tRNA splicing and RNA export. Our studies of the location of intron-containing pre-tRNAs in the rna1-1 mutant rule out the possibility that this results from tRNA export occurring before splicing. Our results also argue against inappropriate subnuclear compartmentalization causing defects in pre-tRNA splicing. Rather, the data support "feedback" of nucleus/cytosol exchange to the pre-tRNA splicing machinery.
Collapse
Affiliation(s)
- S Sarkar
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
38
|
Sethy-Coraci I, Moir RD, López-de-León A, Willis IM. A differential response of wild type and mutant promoters to TFIIIB70 overexpression in vivo and in vitro. Nucleic Acids Res 1998; 26:2344-52. [PMID: 9580684 PMCID: PMC147558 DOI: 10.1093/nar/26.10.2344] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
TFIIIB, the initiation factor for transcription by RNA polymerase III (pol III) is, in yeast, composed of three subunits: TBP, TFIIIB70/Brf1 and TFIIIB90. To determine the extent to which each of these subunits is limiting for pol III transcription, the effect of overexpressing each subunit was assessed on the expression of wild-type and promoter mutant pol III genes both in vivo and in vitro . In vivo , we find that the synthesis of wild-type pol III genes is not limited to a significant extent by the level of any TFIIIB subunit. There is, however, a two-fold increase in the synthesis of the promoter mutant gene, sup9-e A19-supS1 , in strains overexpressing TFIIIB70. The findings suggest that overexpression of TFIIIB70has a differential effect on the expression of pol III genes with strong versus weak promoters. In vitro transcription assays support this conclusion and reveal an inverse correlation between the transcriptional response to TFIIIB70overexpression and promoter strength. The individual TFIIIB subunits are nuclear by immunofluorescence and are calculated to have nuclear concentrations in the low micromolar range. In comparison, the factors are diluted 100-fold or more in whole cell extracts. This dilution accounts for the generally limiting nature of TFIIIB70in pol III gene transcription in vitro.
Collapse
Affiliation(s)
- I Sethy-Coraci
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
39
|
Sidrauski C, Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 1997; 90:1031-9. [PMID: 9323131 DOI: 10.1016/s0092-8674(00)80369-4] [Citation(s) in RCA: 665] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The endoplasmic reticulum (ER) communicates with the nucleus through the unfolded protein response (UPR), which senses accumulation of unfolded proteins in the ER lumen and leads to increased transcription of genes encoding ER-resident chaperones. As a key regulatory step in this signaling pathway, the mRNA encoding the UPR-specific transcription factor Hac1p becomes spliced by a unique mechanism that requires tRNA ligase but not the spliceosome. Splicing is initiated upon activation of Ire1p, a transmembrane kinase that lies in the ER and/or inner nuclear membrane. We show that Ire1p is a bifunctional enzyme: in addition to being a kinase, it is a site-specific endoribonuclease that cleaves HAC1 mRNA specifically at both splice junctions. The addition of purified tRNA ligase completes splicing; we therefore have reconstituted HAC1 mRNA splicing in vitro from purified components.
Collapse
Affiliation(s)
- C Sidrauski
- Department of Biochemistry and Biophysics, University of California, School of Medicine, San Francisco 94143-0448, USA
| | | |
Collapse
|
40
|
Yoo CJ, Wolin SL. The yeast La protein is required for the 3' endonucleolytic cleavage that matures tRNA precursors. Cell 1997; 89:393-402. [PMID: 9150139 DOI: 10.1016/s0092-8674(00)80220-2] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the La autoantigen binds to the 3' ends of all nascent polymerase III transcripts, its function in vivo has long been unclear. Although S. cerevisiae cells lacking the La protein homolog Lhp1p are viable, cells containing a mutation that disrupts the anticodon stem of tRNA(Ser)CGA require Lhp1p for growth. We demonstrate that for the wild-type pre-tRNA(Ser)CGA and other pre-tRNAs, Lhp1p is required for the normal endonucleolytic removal of the 3' trailer sequence. In cells lacking Lhp1p, the 3' trailer is removed by exonuclease(s). Although maturation of the mutant pre-tRNA(Ser)CGA requires Lhp1p, introduction of a second mutation that restores base pairing eliminates the requirement. We propose that binding by Lhp1p stabilizes pre-tRNAs in conformations that allow the 3' endonucleolytic cleavage to occur.
Collapse
Affiliation(s)
- C J Yoo
- Department of Cell Biology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
41
|
Papadimitriou A, Gross HJ. Pre-tRNA 3'-processing in Saccharomyces cerevisiae. Purification and characterization of exo- and endoribonucleases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:747-59. [PMID: 9022706 DOI: 10.1111/j.1432-1033.1996.0747r.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated ribonucleases from Saccharomyces cerevisiae which are active in pre-tRNA 3'-processing in vitro. Two pre-tRNA 3'-exonucleases with molecular masses of 33 and 60 kDa, two pre-tRNA 3'-endonucleases with molecular masses of 45 kDa/60 kDa and 55 kDa and 70-kDa 3'-pre-tRNase were purified from yeast whole cell extracts by several successive chromatographic purification steps. The purified exonucleases are non-processive 3'-exonucleases that catalyze the exonucleolytic processing of 3'-trailer sequences of pre-tRNAs to produce mature tRNAs. The 45-kDa/60-kDa 3'-endonuclease is tRNA-specific and catalyzes the processing of pre-tRNAs in a single endonucleolytic step. Two isoenzymes of this activity (p45 and p60) were identified by chromatography. The second endonuclease, p55, is dependent on monovalent ions and cleaves about three nucleotides downstream the mature 3'-end. All of the purified 3'-pre-tRNases accept homologous as well as heterologous pre-tRNA substrates. Pre-tRNAs carrying a 5'-leader are processed with almost the same efficiency as those lacking this 5'-leader. Mature tRNAs carrying the CCA 3'-sequence and tRNA pseudogene products carrying mutations in the mature domain are processed by the 3'-exonucleases, not by the 3'-endonucleases. The specific endonuclease p45/p60 discriminates between UUUOH as a 3'-flank, which is cleaved, and the CCA 3'-end of mature tRNAs, which is not cleaved. This study suggests that several 3'-pre-tRNases are active on tRNA precursors in vitro and might therefore in pre-tRNA 3'-processing in yeast, partly in a cooperative manner.
Collapse
Affiliation(s)
- A Papadimitriou
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Würzburg, Germany
| | | |
Collapse
|
42
|
Gansheroff LJ, Dollard C, Tan P, Winston F. The Saccharomyces cerevisiae SPT7 gene encodes a very acidic protein important for transcription in vivo. Genetics 1995; 139:523-36. [PMID: 7713415 PMCID: PMC1206364 DOI: 10.1093/genetics/139.2.523] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutations in the SPT7 gene of Saccharomyces cerevisiae originally were identified as suppressors of Ty and delta insertion mutations in the 5' regions of the HIS4 and LYS2 genes. Other genes that have been identified in mutant hunts of this type have been shown to play a role in transcription. In this work we show that SPT7 is also important for proper transcription in vivo. We have cloned and sequenced the SPT7 gene and have shown that it encodes a large, acidic protein that is localized to the nucleus. The SPT7 protein contains a bromodomain sequence; a deletion that removes the bromodomain from the SPT7 protein causes no detectable mutant phenotype. Strains that contain an spt7 null mutation are viable but grow very slowly and have transcriptional defects at many loci including insertion mutations, Ty elements, the INO1 gene and the MFA1 gene. These transcriptional defects and other mutant phenotypes are similar to those caused by certain mutations in SPT15, which encodes the TATA binding protein (TBP). The similarity of the phenotypes of spt7 and spt15 mutants, including effects of spt7 mutations on the transcription start site of certain genes, suggests that SPT7 plays an important role in transcription initiation in vivo.
Collapse
Affiliation(s)
- L J Gansheroff
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
43
|
Heyman T, Agoutin B, Fix C, Dirheimer G, Keith G. Yeast serine isoacceptor tRNAs: variations of their content as a function of growth conditions and primary structure of the minor tRNA(Ser)GCU. FEBS Lett 1994; 347:143-6. [PMID: 8033992 DOI: 10.1016/0014-5793(94)00524-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The primary structure of Saccharomyces cerevisiae tRNA(Ser)GCU is presented (EMBL database accession No. X74268 S. cerevisiae tRNA-Ser). In addition, quantitation of the relative amounts of serine isoaccepting tRNAs in yeast grown on different media showed that the minor tRNA(Ser)GCU decreased while the major tRNA(Ser)AGA increased as the growth rate and the cellular protein content increased. The minor species, tRNA(Ser)CGA and tRNA(Ser)UGA, were not separated by our gel system, however, taken together they appeared to vary in the same way as tRNA(Ser)GCU. These data suggest a growth rate dependence of yeast tRNAs similar to that previously described for E. coli tRNAs.
Collapse
Affiliation(s)
- T Heyman
- Unité de recherche associée 1342 du CNRS, Institut Curie-Biologie, Orsay, France
| | | | | | | | | |
Collapse
|
44
|
Atkin AL, Riazi MA, Greer CL, Roy KL, Bell JB. The functional analysis of nonsense suppressors derived from in vitro engineered Saccharomyces cerevisiae tRNA(Trp) genes. Gene 1993; 134:57-65. [PMID: 8244031 DOI: 10.1016/0378-1119(93)90174-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nonsense suppressors derived from Saccharomyces cerevisiae tRNA(Trp) genes have not been identified by classical genetic screens, although one can construct efficient amber (am) suppressors from them by making the appropriate anticodon mutation in vitro. Herein, a series of in vitro constructed putative suppressor genes was produced to test if pre-tRNA(Trp) processing difficulties could help to explain the lack of classical tRNA(Trp)-based suppressors. It is clear that inefficient processing of introns from precursor tRNA(Trp), or inaccurate overall processing, may explain why some of these constructs fail to promote nonsense suppression in vivo. However, deficient processing must be only one of the reasons why classical tRNA(Trp)-based suppressors have not been characterized, as suppression may still be extremely weak or absent in instances where the in vitro construct can lead to an accumulation of mature tRNA(Trp). Furthermore, suppression is also very weak in strains transformed with an intronless derivative of a putative tRNA(Trp) ochre (oc) suppressor gene, wherein intron removal cannot pose a problem.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Genes, Fungal
- Genes, Suppressor
- Introns
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phenotype
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Trp/chemistry
- RNA, Transfer, Trp/genetics
- Saccharomyces cerevisiae/genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- A L Atkin
- Department of Genetics, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
45
|
Schneider A, McNally K, Agabian N. Splicing and 3'-processing of the tyrosine tRNA of Trypanosoma brucei. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80621-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Abstract
A genetic approach was used to isolate and characterize Saccharomyces cerevisiae genes affecting tRNA processing. Three mutants were isolated which were able to process and utilize splicing-deficient transcripts from inactivated Schizosaccharomyces pombe suppressor tRNA genes. Extragenic recovery of suppressibility was verified by the suppression of nonsense mutations in LEU2, HIS4, and ADE1. One mutant, SPL1-1, was chosen for detailed analysis on the basis of its increased synthesis of mature suppressor tRNA over wild-type cell levels as determined by Northern (RNA) analysis. This mutant exhibited strong suppression exclusively with the defective tRNA gene used in the mutant selection. Genetic analysis revealed that a single, dominant, haplo-lethal mutation was responsible for the suppression phenotype. The mutation mapped on chromosome III to an essential 1.5-kb open reading frame (L. S. Symington and T. D. Petes, Mol. Cell. Biol. 8:595-604, 1988), recently named NFS1 (S. G. Oliver et al., Nature [London] 357:38-46, 1992), located adjacent (centromere proximal) to LEU2.
Collapse
Affiliation(s)
- C Kolman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | |
Collapse
|
47
|
Identification of nuclear encoded precursor tRNAs within the mitochondrion of Trypanosoma brucei. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35931-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Phizicky E, Consaul S, Nehrke K, Abelson J. Yeast tRNA ligase mutants are nonviable and accumulate tRNA splicing intermediates. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42872-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
van't Hooft F, Havel R. Metabolism of chromatographically separated rat serum lipoproteins specifically labeled with 125I-apolipoprotein E. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69553-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|