1
|
Yu L, Volkert MR. UV damage regulates alternative polyadenylation of the RPB2 gene in yeast. Nucleic Acids Res 2013; 41:3104-14. [PMID: 23355614 PMCID: PMC3597686 DOI: 10.1093/nar/gkt020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative polyadenylation (APA) is conserved in all eukaryotic cells. Selective use of polyadenylation sites appears to be a highly regulated process and contributes to human pathogenesis. In this article we report that the yeast RPB2 gene is alternatively polyadenylated, producing two mRNAs with different lengths of 3′UTR. In normally growing wild-type cells, polyadenylation preferentially uses the promoter-proximal poly(A) site. After UV damage transcription of RPB2 is initially inhibited. As transcription recovers, the promoter-distal poly(A) site is preferentially used instead, producing more of a longer form of RPB2 mRNA. We show that the relative increase in the long RPB2 mRNA is not caused by increased mRNA stability, supporting the preferential usage of the distal poly(A) site during transcription recovery. We demonstrate that the 3′UTR of RPB2 is sufficient for this UV-induced regulation of APA. We present evidence that while transcription initiation rates do not seem to influence selection of the poly(A) sites of RPB2, the rate of transcription elongation is an important determinant.
Collapse
Affiliation(s)
- Lijian Yu
- Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA
| | | |
Collapse
|
2
|
Graille M, Séraphin B. Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nat Rev Mol Cell Biol 2012; 13:727-35. [DOI: 10.1038/nrm3457] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Wilson MA, Meaux S, van Hoof A. A genomic screen in yeast reveals novel aspects of nonstop mRNA metabolism. Genetics 2007; 177:773-84. [PMID: 17660569 PMCID: PMC2034642 DOI: 10.1534/genetics.107.073205] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nonstop mRNA decay, a specific mRNA surveillance pathway, rapidly degrades transcripts that lack in-frame stop codons. The cytoplasmic exosome, a complex of 3'-5' exoribonucleases involved in RNA degradation and processing events, degrades nonstop transcripts. To further understand how nonstop mRNAs are recognized and degraded, we performed a genomewide screen for nonessential genes that are required for nonstop mRNA decay. We identified 16 genes that affect the expression of two different nonstop reporters. Most of these genes affected the stability of a nonstop mRNA reporter. Additionally, three mutations that affected nonstop gene expression without stabilizing nonstop mRNA levels implicated the proteasome. This finding not only suggested that the proteasome may degrade proteins encoded by nonstop mRNAs, but also supported previous observations that rapid decay of nonstop mRNAs cannot fully explain the lack of the encoded proteins. Further, we show that the proteasome and Ski7p affected expression of nonstop reporter genes independently of each other. In addition, our results implicate inositol 1,3,4,5,6-pentakisphosphate as an inhibitor of nonstop mRNA decay.
Collapse
Affiliation(s)
- Marenda A Wilson
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
4
|
Krause K, Lopes de Souza R, Roberts DGW, Dieckmann CL. The mitochondrial message-specific mRNA protectors Cbp1 and Pet309 are associated in a high-molecular weight complex. Mol Biol Cell 2004; 15:2674-83. [PMID: 15047869 PMCID: PMC420092 DOI: 10.1091/mbc.e04-02-0126] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, the nuclear-encoded protein Cbp1 promotes stability and translation of mitochondrial cytochrome b transcripts through interaction with the 5' untranslated region. Fusion of a biotin binding peptide tag to the C terminus of Cbp1 has now allowed detection in mitochondrial extracts by using peroxidase-coupled avidin. Cbp1 is associated with the mitochondrial membranes when high ionic strength extraction conditions are used. However, the protein is easily solubilized by omitting salt from the extraction buffer, which suggests Cbp1 is loosely associated with the membrane through weak hydrophobic interactions. Gel filtration analysis and blue native PAGE showed that Cbp1 is part of a single 900,000-Da complex. The complex was purified using the biotin tag and a sequence-specific protease cleavage site. In addition to Cbp1, the complex contains several polypeptides of molecular weights between 113 and 40 kDa. Among these, we identified another message-specific factor, Pet309, which promotes the stability and translation of mitochondrial cytochrome oxidase subunit I mRNA. A hypothesis is presented in which the Cbp1-Pet309 complex contains several message-specific RNA binding proteins and links transcription to translation of the mRNAs at the membrane.
Collapse
Affiliation(s)
- Kirsten Krause
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
5
|
Pendrak ML, Chao MP, Yan SS, Roberts DD. Heme oxygenase in Candida albicans is regulated by hemoglobin and is necessary for metabolism of exogenous heme and hemoglobin to alpha-biliverdin. J Biol Chem 2003; 279:3426-33. [PMID: 14615478 DOI: 10.1074/jbc.m311550200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Candida albicans is an opportunistic pathogen that has adapted uniquely to life in mammalian hosts. One of the host factors recognized by this yeast is hemoglobin, which binds to a specific cell surface receptor. In addition to its regulating the expression of adhesion receptors on the yeast, we have found that hemoglobin induces the expression of a C. albicans heme oxygenase (CaHmx1p). Hemoglobin transcriptionally induces the CaHMX1 gene independent of the presence of inorganic iron in the medium. A Renilla luciferase reporter driven by the CaHMX1 promoter demonstrated rapid activation of transcription by hemoglobin and (cobalt protoporphyrin IX) globin but not by apoglobin or other proteins. In contrast, iron deficiency or exogenous hemin did not activate the reporter until after 3 h, suggesting that induction of the promoter by hemoglobin is mediated by receptor signaling rather than heme or iron flux into the cell. As observed following disruption of the Saccharomyces cerevisiae ortholog, HMX1, a CaHMX1 null mutant was unable to grow under iron restriction. This suggests a role for CaHmx1p in inorganic iron acquisition. CaHMX1 encodes a functional heme oxygenase. Exogenous heme or hemoglobin is exclusively metabolized to alpha-biliverdin. CaHMX1 is required for utilization of these exogenous substrates, indicating that C. albicans heme oxygenase confers a nutritional advantage for growth in mammalian hosts.
Collapse
Affiliation(s)
- Michael L Pendrak
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1500, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Gene expression is an inherently complex process and errors often occur during the transcription and processing of mRNAs. Several surveillance mechanisms have evolved to check the fidelity at each step of mRNA manufacture. Two recent reports describe the identification of a novel pathway in eukaryotes that recognizes and degrades mRNAs that lack a stop codon. The non-stop decay mechanism releases ribosomes stalled at the 3' end of a mRNA and stimulates the exosome to rapidly degrade the transcript.
Collapse
Affiliation(s)
- Shobha Vasudevan
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
7
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999. [PMID: 10357856 DOI: 10.1007/s13146-011-0050-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
8
|
Abstract
Several yeast genes produce multiple transcripts with different 3'-ends. Of these, four genes are known to produce truncated transcripts that end within the coding sequence of longer transcripts: CBP1 , AEP2 / ATP13 , RNA14 and SIR1 . It has been shown that the level of the truncated CBP1 transcript increases during the switch to respiratory growth while that of the full-length transcript decreases. To determine whether this phenomenon is unique to CBP1 , northern analysis was used to determine whether the levels of other truncated transcripts are regulated similarly by carbon source. The levels of the shortest transcripts of AEP2 / ATP13 and RNA14 increased during respiration while the shortest SIR1 transcript remained constant. However, two longer SIR1 transcripts were regulated reciprocally by carbon source. Mapping the 3'-ends of each transcript by sequencing partial cDNA clones revealed multiple 3'-ends for each transcript. Examination of the sequences surrounding the 3'-ends of the induced transcripts failed to identify a consensus sequence but did reveal weak putative 3'-end formation signals in all of the transcripts. Similarly, no consensus sequence was found when the sequences surrounding the 3'-ends of the longest transcripts were compared, but again weak putative 3'-end formation signals were identified. These data are suggestive of carbon source regulation of alternative poly(A) site choice in yeast.
Collapse
MESH Headings
- Base Sequence
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Blotting, Northern
- Carbon/metabolism
- DNA-Binding Proteins/genetics
- Fungal Proteins/genetics
- Gene Expression Regulation, Fungal
- Glycerol/pharmacology
- Models, Biological
- Molecular Sequence Data
- Molecular Weight
- Proton-Translocating ATPases/genetics
- RNA Processing, Post-Transcriptional
- RNA, Fungal/analysis
- RNA, Fungal/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Silent Information Regulator Proteins, Saccharomyces cerevisiae
- Trans-Activators/genetics
- mRNA Cleavage and Polyadenylation Factors
Collapse
Affiliation(s)
- K A Sparks
- Department of Biochemistry and Department Molecular and Cellular Biology, Life Sciences South Room 454, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
9
|
Wahle E, Kühn U. The mechanism of 3' cleavage and polyadenylation of eukaryotic pre-mRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:41-71. [PMID: 9175430 DOI: 10.1016/s0079-6603(08)60277-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- E Wahle
- Institut für Biochemic, Justus-Liebig-Universität Giessen, Germany
| | | |
Collapse
|
10
|
Dieckmann CL, Staples RR. Regulation of mitochondrial gene expression in Saccharomyces cerevisiae. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 152:145-81. [PMID: 8206703 DOI: 10.1016/s0074-7696(08)62556-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C L Dieckmann
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | |
Collapse
|
11
|
Payne MJ, Finnegan PM, Smooker PM, Lukins HB. Characterization of a second nuclear gene, AEP1, required for expression of the mitochondrial OLI1 gene in Saccharomyces cerevisiae. Curr Genet 1993; 24:126-35. [PMID: 8358819 DOI: 10.1007/bf00324676] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Due to mutation in a single nuclear locus, AEP1, the temperature-conditional pet mutant ts1860 of Saccharomyces cerevisiae fails to synthesize mitochondrial ATP synthase subunit 9 at the restrictive temperature of 36 degrees C. The presence at this temperature of near-normal levels of the cognate oli1 mRNA in mutant ts1860 indicates that, as previously shown, the product of the AEP1 gene is required for translation of the mitochondrial oli1 transcript. In this study the AEP1 gene has been cloned from a wild-type yeast genomic library by genetic complementation of a temperature-conditional aep1 strain at the restrictive temperature. A 2,330-bp genomic fragment which restores subunit 9 synthesis in aep1 mutant strains was characterized. This fragment encoded five open reading frames: the longest of these, at 1,554 nucleotides, was identified as the AEP1 gene, since disruption of this reading frame generated a non-conditional pet strain unable to synthesize subunit 9. The predicted product of AEP1 is a basic, hydrophilic protein of 59,571 Da which possesses a putative mitochondrial address sequence. Hybridization studies with AEP1-specific probes indicate that the gene is located on chromosome XIII and produces several poly(A)+ transcripts ranging in size from 0.9 to 2.7 kb. None of the identified reading frames share significant homologies with entries of several data bases.
Collapse
Affiliation(s)
- M J Payne
- Department of Biochemistry, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
12
|
Adams AE, Botstein D, Drubin DG. Requirement of yeast fimbrin for actin organization and morphogenesis in vivo. Nature 1991; 354:404-8. [PMID: 1956405 DOI: 10.1038/354404a0] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The SAC6 gene was found by suppression of a yeast actin mutation. Its protein product, Sac6p (previously referred to as ABP67), was independently isolated by actin-filament affinity chromatography and colocalizes with actin in vivo. Thus Sac6p binds to actin in vitro, and functionally associates with actin structures involved in the development and maintenance of cell polarity in vivo. We report here that Sac6p is an actin-filament bundling protein 43% identical in amino-acid sequence to the vertebrate bundling protein fimbrin. This yeast fimbrin homologue contains two putative actin-binding regions homologous to domains of dystrophin, beta-spectrin, filamin, actin-gelation protein and alpha-actinin. Mutants lacking Sac6p do not form normal actin structures and are defective in morphogenesis. These findings demonstrate an in vivo role for the well-documented biochemical interaction between fimbrin and actin.
Collapse
Affiliation(s)
- A E Adams
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721
| | | | | |
Collapse
|