1
|
Yu L, Volkert MR. UV damage regulates alternative polyadenylation of the RPB2 gene in yeast. Nucleic Acids Res 2013; 41:3104-14. [PMID: 23355614 PMCID: PMC3597686 DOI: 10.1093/nar/gkt020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative polyadenylation (APA) is conserved in all eukaryotic cells. Selective use of polyadenylation sites appears to be a highly regulated process and contributes to human pathogenesis. In this article we report that the yeast RPB2 gene is alternatively polyadenylated, producing two mRNAs with different lengths of 3′UTR. In normally growing wild-type cells, polyadenylation preferentially uses the promoter-proximal poly(A) site. After UV damage transcription of RPB2 is initially inhibited. As transcription recovers, the promoter-distal poly(A) site is preferentially used instead, producing more of a longer form of RPB2 mRNA. We show that the relative increase in the long RPB2 mRNA is not caused by increased mRNA stability, supporting the preferential usage of the distal poly(A) site during transcription recovery. We demonstrate that the 3′UTR of RPB2 is sufficient for this UV-induced regulation of APA. We present evidence that while transcription initiation rates do not seem to influence selection of the poly(A) sites of RPB2, the rate of transcription elongation is an important determinant.
Collapse
Affiliation(s)
- Lijian Yu
- Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA
| | | |
Collapse
|
2
|
Wilson MA, Meaux S, van Hoof A. Diverse aberrancies target yeast mRNAs to cytoplasmic mRNA surveillance pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:550-7. [PMID: 18554525 DOI: 10.1016/j.bbagrm.2008.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 02/29/2008] [Accepted: 05/06/2008] [Indexed: 12/25/2022]
Abstract
Eukaryotic gene expression is a complex, multistep process that needs to be executed with high fidelity and two general methods help achieve the overall accuracy of this process. Maximizing accuracy in each step in gene expression increases the fraction of correct mRNAs made. Fidelity is further improved by mRNA surveillance mechanisms that degrade incorrect or aberrant mRNAs that are made when a step is not perfectly executed. Here, we review how cytoplasmic mRNA surveillance mechanisms selectively recognize and degrade a surprisingly wide variety of aberrant mRNAs that are exported from the nucleus into the cytoplasm.
Collapse
Affiliation(s)
- Marenda A Wilson
- University of Texas Health Science Center-Houston, Department of Microbiology and Molecular Genetics, 6431 Fannin Street MSB 1.212, Houston, TX 77030, USA
| | | | | |
Collapse
|
3
|
Wilson MA, Meaux S, van Hoof A. A genomic screen in yeast reveals novel aspects of nonstop mRNA metabolism. Genetics 2007; 177:773-84. [PMID: 17660569 PMCID: PMC2034642 DOI: 10.1534/genetics.107.073205] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nonstop mRNA decay, a specific mRNA surveillance pathway, rapidly degrades transcripts that lack in-frame stop codons. The cytoplasmic exosome, a complex of 3'-5' exoribonucleases involved in RNA degradation and processing events, degrades nonstop transcripts. To further understand how nonstop mRNAs are recognized and degraded, we performed a genomewide screen for nonessential genes that are required for nonstop mRNA decay. We identified 16 genes that affect the expression of two different nonstop reporters. Most of these genes affected the stability of a nonstop mRNA reporter. Additionally, three mutations that affected nonstop gene expression without stabilizing nonstop mRNA levels implicated the proteasome. This finding not only suggested that the proteasome may degrade proteins encoded by nonstop mRNAs, but also supported previous observations that rapid decay of nonstop mRNAs cannot fully explain the lack of the encoded proteins. Further, we show that the proteasome and Ski7p affected expression of nonstop reporter genes independently of each other. In addition, our results implicate inositol 1,3,4,5,6-pentakisphosphate as an inhibitor of nonstop mRNA decay.
Collapse
Affiliation(s)
- Marenda A Wilson
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
4
|
Krause K, Dieckmann CL. Analysis of transcription asymmetries along the tRNAE-COB operon: evidence for transcription attenuation and rapid RNA degradation between coding sequences. Nucleic Acids Res 2004; 32:6276-83. [PMID: 15576354 PMCID: PMC535675 DOI: 10.1093/nar/gkh966] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial gene expression in yeast is believed to be regulated predominantly at the post-transcriptional level. However, the contribution of mitochondrial transcription and RNA-turnover rates to differential gene regulation is still largely unknown. Mitochondrial run-on transcription and hybrid selection assays showed that some of the multigenic transcription units of the mitochondrial genome are transcribed evenly, whereas others are transcribed asymmetrically, with higher transcription rates for promoter-proximal genes, than for promoter-distal genes. The tRNA(E)-cytochrome b (COB) operon was analyzed in detail to investigate the mechanisms underlying transcription rate asymmetries in yeast mitochondria. We showed that a drop in transcription rates occurs in a particular region between the coding sequences and is independent of the coding sequence of the downstream COB gene. Deletion of the region between tRNA(E) and COB coding sequences decreases the drop in transcription rates. Deletion of the nuclear gene encoding the Pet 127 protein, which is involved in mitochondrial RNA 5' processing and degradation, also partially relieves transcriptional asymmetry. Therefore, asymmetry is probably due to a combination of attenuated transcription at specific sites between the coding sequences and very rapid RNA degradation.
Collapse
Affiliation(s)
- Kirsten Krause
- Department of Biochemistry and Molecular Biophysics, University of Arizona, 1007 E. Lowell Street, LSS Building, Room 454, Tucson, AZ 85721-0106, USA
| | | |
Collapse
|
5
|
Krause K, Lopes de Souza R, Roberts DGW, Dieckmann CL. The mitochondrial message-specific mRNA protectors Cbp1 and Pet309 are associated in a high-molecular weight complex. Mol Biol Cell 2004; 15:2674-83. [PMID: 15047869 PMCID: PMC420092 DOI: 10.1091/mbc.e04-02-0126] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, the nuclear-encoded protein Cbp1 promotes stability and translation of mitochondrial cytochrome b transcripts through interaction with the 5' untranslated region. Fusion of a biotin binding peptide tag to the C terminus of Cbp1 has now allowed detection in mitochondrial extracts by using peroxidase-coupled avidin. Cbp1 is associated with the mitochondrial membranes when high ionic strength extraction conditions are used. However, the protein is easily solubilized by omitting salt from the extraction buffer, which suggests Cbp1 is loosely associated with the membrane through weak hydrophobic interactions. Gel filtration analysis and blue native PAGE showed that Cbp1 is part of a single 900,000-Da complex. The complex was purified using the biotin tag and a sequence-specific protease cleavage site. In addition to Cbp1, the complex contains several polypeptides of molecular weights between 113 and 40 kDa. Among these, we identified another message-specific factor, Pet309, which promotes the stability and translation of mitochondrial cytochrome oxidase subunit I mRNA. A hypothesis is presented in which the Cbp1-Pet309 complex contains several message-specific RNA binding proteins and links transcription to translation of the mRNAs at the membrane.
Collapse
Affiliation(s)
- Kirsten Krause
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
6
|
Hoopes BC, Bowers GD, DiVisconte MJ. The two Saccharomyces cerevisiae SUA7 (TFIIB) transcripts differ at the 3'-end and respond differently to stress. Nucleic Acids Res 2000; 28:4435-43. [PMID: 11071930 PMCID: PMC113880 DOI: 10.1093/nar/28.22.4435] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite much information as to the structure and function of the general transcription factors, little is known about the regulation of their expression. Transcription of the Saccharomyces cerevisiae SUA7 (TFIIB) gene results in the formation of two discrete transcripts. It was originally reported that the two transcripts were derived from two promoters separated by approximately 80 bp. We have found that the two transcripts are instead derived from a common promoter and differ at the 3'-end by approximately 115 bp. The longer of the two transcripts has an unusually long 3'-untranslated region. We have analyzed the levels of these transcripts under different cell growth conditions and find that the relative amounts of the two transcripts vary. Approximately equal amounts of each transcript are observed during exponential growth, but stresses and growth limiting conditions lead to a decrease in the relative amount of the larger transcript. These results suggest that the expression of the SUA7 gene may be controlled by regulation of 3'-end formation or mRNA stability. One of the general transcription factors, then, may be subject to regulation by a general response of the mRNA processing machinery.
Collapse
Affiliation(s)
- B C Hoopes
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA.
| | | | | |
Collapse
|
7
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999; 63:405-45. [PMID: 10357856 PMCID: PMC98971 DOI: 10.1128/mmbr.63.2.405-445.1999] [Citation(s) in RCA: 808] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
8
|
Sparks KA, Mayer SA, Dieckmann CL. Premature 3'-end formation of CBP1 mRNA results in the downregulation of cytochrome b mRNA during the induction of respiration in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:4199-207. [PMID: 9234677 PMCID: PMC232273 DOI: 10.1128/mcb.17.8.4199] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The yeast mitochondrial genome encodes only seven major components of the respiratory chain and ATP synthase; more than 200 other mitochondrial proteins are encoded by nuclear genes. Thus, assembly of functional mitochondria requires coordinate expression of nuclear and mitochondrial genes. One example of coordinate regulation is the stabilization of mitochondrial COB (cytochrome b) mRNA by Cbp1, the product of the nuclear gene CBP1 (cytochrome b processing). CBP1 produces two types of transcripts with different 3' ends: full-length 2.2-kb transcripts and 1.2-kb transcripts truncated within the coding sequence of Cbp1. Upon induction of respiration, the steady-state level of the long transcripts decreases while that of the short transcripts increases reciprocally, an unexpected result since the product of the long transcripts is required for COB mRNA stability and thus for respiration. Here we have tested the hypothesis that the short transcripts, or proteins translated from the short transcripts, are also required for respiration. A protein translated from the short transcripts was not detected by Western analysis, although polysome gradient fractions were shown to contain both long and short CBP1 transcripts. A mutant strain in which production of the short transcripts was abolished showed wild-type growth properties, indicating that the short transcripts are not required for respiration. Due to mutation of the carbon source-responsive element, the long transcript level in the mutant strain did not decrease during induction of respiration. The mutant strain had increased levels of COB RNA, suggestive that production of short CBP1 transcripts is a mechanism for downregulation of the levels of long CBP1 transcripts, Cbp1, and COB mRNA during the induction of respiration.
Collapse
Affiliation(s)
- K A Sparks
- Department of Biochemistry, University of Arizona, Tucson 85721, USA
| | | | | |
Collapse
|
9
|
Williams CJ, O'Hare K. Elimination of introns at the Drosophila suppressor-of-forked locus by P-element-mediated gene conversion shows that an RNA lacking a stop codon is dispensable. Genetics 1996; 143:345-51. [PMID: 8722786 PMCID: PMC1207266 DOI: 10.1093/genetics/143.1.345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The suppressor of forked [su(f)] locus affects the phenotype of mutations caused by transposable element insertions at unlinked loci. It encodes a putative 84-kD protein with homology to two proteins involved in mRNA 3' end processing; the product of the yeast RNA14 gene and the 77-kD subunit of human cleavage stimulation factor. Three su(f) mRNAs are produced by alternative polyadenylation. The 2.6- and 2.9-kb mRNAs encode the same 84-kD protein while a 1.3-kb RNA, which terminates within the fourth intron, is unusual in having no stop codon. Using P-element-mediated gene replacement we have copied sequences from a transformation construct into the su(f) gene creating a su(f) allele at the normal genomic location that lacks the first five introns. This allele is viable and appears wild type for su(f) function, demonstrating that the 1.3-kb RNA and the sequences contained within the deleted introns are dispensable for su(f) function. Compared with studies on gene replacement at the white locus, chromosomal breaks at su(f) appear to be less efficiently repaired from ectopic sites, perhaps because of the location of su(f) at the euchromatin/heterochromatin boundary on the X chromosome.
Collapse
Affiliation(s)
- C J Williams
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | |
Collapse
|
10
|
Girard JP, Feliu J, Caizergues-Ferrer M, Lapeyre B. Study of multiple fibrillarin mRNAs reveals that 3' end formation in Schizosaccharomyces pombe is sensitive to cold shock. Nucleic Acids Res 1993; 21:1881-7. [PMID: 8493104 PMCID: PMC309428 DOI: 10.1093/nar/21.8.1881] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fibrillarin is a nucleolar protein which is associated with small nucleolar RNAs, and is required for pre-rRNA processing. We have cloned and characterized the gene encoding fibrillarin in the fission yeast Schizosaccharomyces pombe and we have followed its expression under various conditions. Fission yeast fibrillarin is a 305 amino-acid protein which appears to be highly conserved throughout evolution. In Xenopus, human or Saccharomyces cerevisiae, a single fibrillarin mRNA is detected while, in S. pombe a single copy gene encodes different mRNAs which differ at the 3' ends. Under normal growth conditions, two mRNAs of 1.1 and 1.35 kb are detected with the 1.1 kb being the most abundant. Both the total amount and relative abundance of these two mRNAs are strongly affected by exposure to low temperature, namely the 1.1 kb mRNA almost disappears while the 1.35 kb is less markedly diminished. A new species of 3.2 kb accumulates in the cell, which contains an unusually long 3' untranslated region of 2 kb. We have found that exposure of the cells to a cold shock has a profound effect on 3' end formation in S.pombe since the transcription of several other mRNAs is also capable of skipping the normal 3' end site to terminate at a further downstream site.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Chromosomal Proteins, Non-Histone/genetics
- Cloning, Molecular
- Cold Temperature
- DNA, Fungal
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Humans
- Molecular Sequence Data
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribonucleoproteins/genetics
- Schizosaccharomyces/genetics
- Sequence Homology, Amino Acid
- Transcription, Genetic
Collapse
|
11
|
Abstract
In contrast to higher eukaryotes, little is known about the nature of the sequences which direct 3'-end formation of pre-mRNAs in the yeast Saccharomyces cerevisiae. The hexanucleotide AAUAAA, which is highly conserved and crucial in mammals, does not seem to have any functional importance for 3'-end formation in yeast cells. Instead, other elements have been proposed to serve as signal sequences. We performed a detailed investigation of the yeast ACT1, ADH1, CYC1, and YPT1 cDNAs, which showed that the polyadenylation sites used in vivo can be scattered over a region spanning up to 200 nucleotides. It therefore seems very unlikely that a single signal sequence is responsible for the selection of all these polyadenylation sites. Our study also showed that in the large majority of mRNAs, polyadenylation starts directly before or after an adenosine residue and that 3'-end formation of ADH1 transcripts occurs preferentially at the sequence PyAAA. Site-directed mutagenesis of these sites in the ADH1 gene suggested that this PyAAA sequence is essential for polyadenylation site selection both in vitro and in vivo. Furthermore, the 3'-terminal regions of the yeast genes investigated here are characterized by their capacity to act as signals for 3'-end formation in vivo in either orientation.
Collapse
|
12
|
Heidmann S, Obermaier B, Vogel K, Domdey H. Identification of pre-mRNA polyadenylation sites in Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:4215-29. [PMID: 1508215 PMCID: PMC360329 DOI: 10.1128/mcb.12.9.4215-4229.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In contrast to higher eukaryotes, little is known about the nature of the sequences which direct 3'-end formation of pre-mRNAs in the yeast Saccharomyces cerevisiae. The hexanucleotide AAUAAA, which is highly conserved and crucial in mammals, does not seem to have any functional importance for 3'-end formation in yeast cells. Instead, other elements have been proposed to serve as signal sequences. We performed a detailed investigation of the yeast ACT1, ADH1, CYC1, and YPT1 cDNAs, which showed that the polyadenylation sites used in vivo can be scattered over a region spanning up to 200 nucleotides. It therefore seems very unlikely that a single signal sequence is responsible for the selection of all these polyadenylation sites. Our study also showed that in the large majority of mRNAs, polyadenylation starts directly before or after an adenosine residue and that 3'-end formation of ADH1 transcripts occurs preferentially at the sequence PyAAA. Site-directed mutagenesis of these sites in the ADH1 gene suggested that this PyAAA sequence is essential for polyadenylation site selection both in vitro and in vivo. Furthermore, the 3'-terminal regions of the yeast genes investigated here are characterized by their capacity to act as signals for 3'-end formation in vivo in either orientation.
Collapse
Affiliation(s)
- S Heidmann
- Laboratorium für Molekulare Biologie-Genzentrum, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | | | | |
Collapse
|
13
|
Abstract
Cleavage and polyadenylation of yeast precursor RNA require at least four functionally distinct factors (cleavage factor I [CF I], CF II, polyadenylation factor I [PF I], and poly(A) polymerase [PAP]) obtained from yeast whole cell extract. Cleavage of precursor occurs upon combination of the CF I and CF II fractions. The cleavage reaction proceeds in the absence of PAP or PF I. The cleavage factors exhibit low but detectable activity without exogenous ATP but are stimulated when this cofactor is included in the reaction. Cleavage by CF I and CF II is dependent on the presence of a (UA)6 sequence upstream of the GAL7 poly(A) site. The factors will also efficiently cleave precursor with the CYC1 poly(A) site. This RNA does not contain a UA repeat, and processing at this site is thought to be directed by a UAG...UAUGUA-type motif. Specific polyadenylation of a precleaved GAL7 RNA requires CF I, PF I, and a crude fraction containing PAP activity. The PAP fraction can be replaced by recombinant PAP, indicating that this enzyme is the only factor in this fraction needed for the reconstituted reaction. The poly(A) addition step is also dependent on the UA repeat. Since CF I is the only factor necessary for both cleavage and poly(A) addition, it is likely that this fraction contains a component which recognizes processing signals located upstream of the poly(A) site. The initial separation of processing factors in yeast cells suggests both interesting differences from and similarities to the mammalian system.
Collapse
|
14
|
Abstract
Cleavage and polyadenylation of yeast precursor RNA require at least four functionally distinct factors (cleavage factor I [CF I], CF II, polyadenylation factor I [PF I], and poly(A) polymerase [PAP]) obtained from yeast whole cell extract. Cleavage of precursor occurs upon combination of the CF I and CF II fractions. The cleavage reaction proceeds in the absence of PAP or PF I. The cleavage factors exhibit low but detectable activity without exogenous ATP but are stimulated when this cofactor is included in the reaction. Cleavage by CF I and CF II is dependent on the presence of a (UA)6 sequence upstream of the GAL7 poly(A) site. The factors will also efficiently cleave precursor with the CYC1 poly(A) site. This RNA does not contain a UA repeat, and processing at this site is thought to be directed by a UAG...UAUGUA-type motif. Specific polyadenylation of a precleaved GAL7 RNA requires CF I, PF I, and a crude fraction containing PAP activity. The PAP fraction can be replaced by recombinant PAP, indicating that this enzyme is the only factor in this fraction needed for the reconstituted reaction. The poly(A) addition step is also dependent on the UA repeat. Since CF I is the only factor necessary for both cleavage and poly(A) addition, it is likely that this fraction contains a component which recognizes processing signals located upstream of the poly(A) site. The initial separation of processing factors in yeast cells suggests both interesting differences from and similarities to the mammalian system.
Collapse
Affiliation(s)
- J Chen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111-1800
| | | |
Collapse
|
15
|
Sequences regulating temporal poly(A) site switching in the adenovirus major late transcription unit. Mol Cell Biol 1991. [PMID: 1944273 DOI: 10.1128/mcb.11.12.5977] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temporal regulation of poly(A) site choice occurs in an adenovirus recombinant encoding a miniature version of the major late transcription unit with two poly(A) sites, L1 and L3. Using deletion mutagenesis, we have looked directly for cis-acting elements regulating poly(A) site choice in this recombinant. From this work, we draw two main conclusions. First, elements other than the AAUAAA and downstream sequences of the L1 poly(A) site are required for temporal regulation of poly(A) site choice during infection. Second, these regions function in two distinct modes during infection. The two regions enhance selection of the L1 poly(A) site in an additive manner during an early infection, but deletion of either element abolishes the switch in poly(A) site choice during a late infection. This work documents the first example of a regulatory element downstream of a core poly(A) region.
Collapse
|
16
|
DeZazzo JD, Falck-Pedersen E, Imperiale MJ. Sequences regulating temporal poly(A) site switching in the adenovirus major late transcription unit. Mol Cell Biol 1991; 11:5977-84. [PMID: 1944273 PMCID: PMC361759 DOI: 10.1128/mcb.11.12.5977-5984.1991] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Temporal regulation of poly(A) site choice occurs in an adenovirus recombinant encoding a miniature version of the major late transcription unit with two poly(A) sites, L1 and L3. Using deletion mutagenesis, we have looked directly for cis-acting elements regulating poly(A) site choice in this recombinant. From this work, we draw two main conclusions. First, elements other than the AAUAAA and downstream sequences of the L1 poly(A) site are required for temporal regulation of poly(A) site choice during infection. Second, these regions function in two distinct modes during infection. The two regions enhance selection of the L1 poly(A) site in an additive manner during an early infection, but deletion of either element abolishes the switch in poly(A) site choice during a late infection. This work documents the first example of a regulatory element downstream of a core poly(A) region.
Collapse
Affiliation(s)
- J D DeZazzo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| | | | | |
Collapse
|