1
|
Fine gene expression regulation by minor sequence variations downstream of the polyadenylation signal. Mol Biol Rep 2021; 48:1539-1547. [PMID: 33517473 DOI: 10.1007/s11033-021-06160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022]
Abstract
The termination of transcription is a complex process that substantially contributes to gene regulation in eukaryotes. Previously, it was noted that a single cytosine deletion at the position + 32 bp relative to the single polyadenylation signal AAUAAA (hereafter the dC mutation) causes a 2-fold increase in the transcription level of the upstream eGFP reporter in mouse embryonic stem cells. Here, we analyzed the conservation of this phenomenon in immortalized mouse, human and drosophila cell lines and the influence of the dC mutation on the choice of the pre-mRNA cleavage sites. We have constructed dual-reporter plasmids to accurately measure the effect of the dC and other nearby located mutations on eGFP mRNA level by RT-qPCR. In this way, we found that the dC mutation leads to a 2-fold increase in the expression level of the upstream eGFP reporter gene in cultured mouse and human, but not in drosophila cells. In addition, 3' RACE analysis demonstrated that eGFP pre-mRNAs are cut at multiple positions between + 14 to + 31, and that the most proximal cleavage site becomes almost exclusively utilized in the presence of the dC mutation. We also identified new short sequence variations located within positions + 25.. + 40 and + 33.. + 48 that increase eGFP expression up to ~2-4-fold. Altogether, the positive effect of the dC mutation seems to be conserved in mouse embryonic stem cells, mouse embryonic 3T3 fibroblasts and human HEK293T cells. In the latter cells, the dC mutation appears to be involved in regulating pre-mRNA cleavage site selection. Finally, a multiplexed approach is proposed to identify motifs located downstream of cleavage site(s) that are essential for transcription termination.
Collapse
|
2
|
Grozdanov PN, Masoumzadeh E, Latham MP, MacDonald CC. The structural basis of CstF-77 modulation of cleavage and polyadenylation through stimulation of CstF-64 activity. Nucleic Acids Res 2018; 46:12022-12039. [PMID: 30257008 PMCID: PMC6294498 DOI: 10.1093/nar/gky862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/31/2018] [Accepted: 09/12/2018] [Indexed: 01/14/2023] Open
Abstract
Cleavage and polyadenylation (C/P) of mRNA is an important cellular process that promotes increased diversity of mRNA isoforms and could change their stability in different cell types. The cleavage stimulation factor (CstF) complex, part of the C/P machinery, binds to U- and GU-rich sequences located downstream from the cleavage site through its RNA-binding subunit, CstF-64. Less is known about the function of the other two subunits of CstF, CstF-77 and CstF-50. Here, we show that the carboxy-terminus of CstF-77 plays a previously unrecognized role in enhancing C/P by altering how the RNA recognition motif (RRM) of CstF-64 binds RNA. In support of this finding, we also show that CstF-64 relies on CstF-77 to be transported to the nucleus; excess CstF-64 localizes to the cytoplasm, possibly via interaction with cytoplasmic RNAs. Reverse genetics and nuclear magnetic resonance studies of recombinant CstF-64 (RRM-Hinge) and CstF-77 (monkeytail-carboxy-terminal domain) indicate that the last 30 amino acids of CstF-77 increases the stability of the RRM, thus altering the affinity of the complex for RNA. These results provide new insights into the mechanism by which CstF regulates the location of the RNA cleavage site during C/P.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA
| | - Elahe Masoumzadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Michael P Latham
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA
| |
Collapse
|
3
|
Russnak R, Pereira S, Platt T. RNA binding analysis of yeast REF2 and its two-hybrid interaction with a new gene product, FIR1. Gene Expr 2018; 6:241-58. [PMID: 9196079 PMCID: PMC6148272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The product of the REF2 gene is required for optimal levels of endonucleolytic cleavage at the 3' ends of yeast mRNA, prior to the addition of a poly(A) tail. To test the role of the previously demonstrated nonspecific affinity of REF2 for RNA in this process, we have identified RNA binding mutants in vitro and tested them for function within the cell. One REF2 variant, with an internal deletion of 82 amino acids (269-350), displays a 10-fold reduction in RNA binding, yet still retains full levels of processing activity in vivo. Conversely, a series of carboxyl-terminal deletions that maintain full RNA binding capability have progressively decreasing activity. These results rule out a major role for the central RNA binding domain of REF2 in mRNA 3' end processing and demonstrate the importance of the carboxyl-terminal region. To ask if the stimulatory role of REF2 depends on interactions with other proteins, we used a two-hybrid screen to identify a new protein termed FIR1 (Factor Interacting with REF) encoded on chromosome V. FIR1 interacts with two independent regions of REF2, one of which (amino acids 268-345) overlaps the RNA binding domain and is dispensible for REF2 function, whereas the other (amino acids 391-533) is located within the critical carboxyl-terminus. As with REF2, FIR1 has a small but detectable role in influencing the efficiency of poly(A) site use. Yeast strains containing a disrupted FIR1 gene are slightly less efficient in the use of cryptic poly(A) sites located within the lacZ portion of an ACT1-lacZ reporter construct. Likewise, a double delta ref2, delta fir1 mutant is more defective in processing of a reporter CYC1 poly(A) site than delta ref2 alone. This synergistic response provides additional support for the interaction of FIR1 with REF2 in vivo, and suggests that a number of gene products may be involved in regulating the cleavage reaction in yeast.
Collapse
Affiliation(s)
- Roland Russnak
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642
| | - Shalini Pereira
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642
| | - Terry Platt
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642
- Address correspondence to Terry Platt. Tel: (716) 275-8244; Fax: (716) 271-2683; E-mail:
| |
Collapse
|
4
|
Neve J, Patel R, Wang Z, Louey A, Furger AM. Cleavage and polyadenylation: Ending the message expands gene regulation. RNA Biol 2017; 14:865-890. [PMID: 28453393 PMCID: PMC5546720 DOI: 10.1080/15476286.2017.1306171] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Cleavage and polyadenylation (pA) is a fundamental step that is required for the maturation of primary protein encoding transcripts into functional mRNAs that can be exported from the nucleus and translated in the cytoplasm. 3'end processing is dependent on the assembly of a multiprotein processing complex on the pA signals that reside in the pre-mRNAs. Most eukaryotic genes have multiple pA signals, resulting in alternative cleavage and polyadenylation (APA), a widespread phenomenon that is important to establish cell state and cell type specific transcriptomes. Here, we review how pA sites are recognized and comprehensively summarize how APA is regulated and creates mRNA isoform profiles that are characteristic for cell types, tissues, cellular states and disease.
Collapse
Affiliation(s)
- Jonathan Neve
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Radhika Patel
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhiqiao Wang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alastair Louey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
5
|
Garrido-Lecca A, Saldi T, Blumenthal T. Localization of RNAPII and 3' end formation factor CstF subunits on C. elegans genes and operons. Transcription 2016; 7:96-110. [PMID: 27124504 DOI: 10.1080/21541264.2016.1168509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transcription termination is mechanistically coupled to pre-mRNA 3' end formation to prevent transcription much beyond the gene 3' end. C. elegans, however, engages in polycistronic transcription of operons in which 3' end formation between genes is not accompanied by termination. We have performed RNA polymerase II (RNAPII) and CstF ChIP-seq experiments to investigate at a genome-wide level how RNAPII can transcribe through multiple poly-A signals without causing termination. Our data shows that transcription proceeds in some ways as if operons were composed of multiple adjacent single genes. Total RNAPII shows a small peak at the promoter of the gene cluster and a much larger peak at 3' ends. These 3' peaks coincide with maximal phosphorylation of Ser2 within the C-terminal domain (CTD) of RNAPII and maximal localization of the 3' end formation factor CstF. This pattern occurs at all 3' ends including those at internal sites in operons where termination does not occur. Thus the normal mechanism of 3' end formation does not always result in transcription termination. Furthermore, reduction of CstF50 by RNAi did not substantially alter the pattern of CstF64, total RNAPII, or Ser2 phosphorylation at either internal or terminal 3' ends. However, CstF50 RNAi did result in a subtle reduction of CstF64 binding upstream of the site of 3' cleavage, suggesting that the CstF50/CTD interaction may facilitate bringing the 3' end machinery to the transcription complex.
Collapse
Affiliation(s)
- Alfonso Garrido-Lecca
- a Department of Molecular, Cellular, and Developmental Biology , University of Colorado , Boulder , CO , USA
| | - Tassa Saldi
- a Department of Molecular, Cellular, and Developmental Biology , University of Colorado , Boulder , CO , USA
| | - Thomas Blumenthal
- a Department of Molecular, Cellular, and Developmental Biology , University of Colorado , Boulder , CO , USA
| |
Collapse
|
6
|
Laishram RS. Poly(A) polymerase (PAP) diversity in gene expression--star-PAP vs canonical PAP. FEBS Lett 2014; 588:2185-97. [PMID: 24873880 PMCID: PMC6309179 DOI: 10.1016/j.febslet.2014.05.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 01/09/2023]
Abstract
Almost all eukaryotic mRNAs acquire a poly(A) tail at the 3'-end by a concerted RNA processing event: cleavage and polyadenylation. The canonical PAP, PAPα, was considered the only nuclear PAP involved in general polyadenylation of mRNAs. A phosphoinositide-modulated nuclear PAP, Star-PAP, was then reported to regulate a select set of mRNAs in the cell. In addition, several non-canonical PAPs have been identified with diverse cellular functions. Further, canonical PAP itself exists in multiple isoforms thus illustrating the diversity of PAPs. In this review, we compare two nuclear PAPs, Star-PAP and PAPα with a general overview of PAP diversity in the cell. Emerging evidence suggests distinct niches of target pre-mRNAs for the two PAPs and that modulation of these PAPs regulates distinct cellular functions.
Collapse
Affiliation(s)
- Rakesh S Laishram
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.
| |
Collapse
|
7
|
Li W, Laishram RS, Anderson RA. The novel poly(A) polymerase Star-PAP is a signal-regulated switch at the 3'-end of mRNAs. Adv Biol Regul 2012; 53:64-76. [PMID: 23306079 DOI: 10.1016/j.jbior.2012.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/19/2023]
Abstract
The mRNA 3'-untranslated region (3'-UTR) modulates message stability, transport, intracellular location and translation. We have discovered a novel nuclear poly(A) polymerase termed Star-PAP (nuclear speckle targeted PIPKIα regulated-poly(A) polymerase) that couples with the transcriptional machinery and is regulated by the phosphoinositide lipid messenger phosphatidylinositol-4,5-bisphosphate (PI4,5P(2)), the central lipid in phosphoinositide signaling. PI4,5P(2) is generated primarily by type I phosphatidylinositol phosphate kinases (PIPKI). Phosphoinositides are present in the nucleus including at nuclear speckles compartments separate from known membrane structures. PIPKs regulate cellular functions by interacting with PI4,5P(2) effectors where PIPKs generate PI4,5P(2) that then modulates the activity of the associated effectors. Nuclear PIPKIα interacts with and regulates Star-PAP, and PI4,5P(2) specifically activates Star-PAP in a gene- and signaling-dependent manner. Importantly, other select signaling molecules integrated into the Star-PAP complex seem to regulate Star-PAP activities and processivities toward RNA substrates, and unique sequence elements around the Star-PAP binding sites within the 3'-UTR of target genes contribute to Star-PAP specificity for processing. Therefore, Star-PAP and its regulatory molecules form a signaling nexus at the 3'-end of target mRNAs to control the expression of select group of genes including the ones involved in stress responses.
Collapse
Affiliation(s)
- Weimin Li
- University of Wisconsin-Madison, School of Medicine and Public Health, Medical Sciences Center, 1300 University Ave., Madison, WI 53706, USA
| | | | | |
Collapse
|
8
|
Yang Q, Doublié S. Structural biology of poly(A) site definition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:732-47. [PMID: 21823232 DOI: 10.1002/wrna.88] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
3' processing is an essential step in the maturation of all messenger RNAs (mRNAs) and is a tightly coupled two-step reaction: endonucleolytic cleavage at the poly(A) site is followed by the addition of a poly(A) tail, except for metazoan histone mRNAs, which are cleaved but not polyadenylated. The recognition of a poly(A) site is coordinated by the sequence elements in the mRNA 3' UTR and associated protein factors. In mammalian cells, three well-studied sequence elements, UGUA, AAUAAA, and GU-rich, are recognized by three multisubunit factors: cleavage factor I(m) (CFI(m) ), cleavage and polyadenylation specificity factor (CPSF), and cleavage stimulation factor (CstF), respectively. In the yeast Saccharomyces cerevisiae, UA repeats and A-rich sequence elements are recognized by Hrp1p and cleavage factor IA. Structural studies of protein-RNA complexes have helped decipher the mechanisms underlying sequence recognition and shed light on the role of protein factors in poly(A) site selection and 3' processing machinery assembly. In this review we focus on the interactions between the mRNA cis-elements and the protein factors (CFI(m) , CPSF, CstF, and homologous factors from yeast and other eukaryotes) that define the poly(A) site. WIREs RNA 2011 2 732-747 DOI: 10.1002/wrna.88 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Qin Yang
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, USA
| | | |
Collapse
|
9
|
Moreno-Morcillo M, Minvielle-Sébastia L, Mackereth C, Fribourg S. Hexameric architecture of CstF supported by CstF-50 homodimerization domain structure. RNA (NEW YORK, N.Y.) 2011; 17:412-418. [PMID: 21233223 PMCID: PMC3039141 DOI: 10.1261/rna.2481011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/08/2010] [Indexed: 05/30/2023]
Abstract
The Cleavage stimulation Factor (CstF) complex is composed of three subunits and is essential for pre-mRNA 3'-end processing. CstF recognizes U and G/U-rich cis-acting RNA sequence elements and helps stabilize the Cleavage and Polyadenylation Specificity Factor (CPSF) at the polyadenylation site as required for productive RNA cleavage. Here, we describe the crystal structure of the N-terminal domain of Drosophila CstF-50 subunit. It forms a compact homodimer that exposes two geometrically opposite, identical, and conserved surfaces that may serve as binding platform. Together with previous data on the structure of CstF-77, homodimerization of CstF-50 N-terminal domain supports the model in which the functional state of CstF is a heterohexamer.
Collapse
Affiliation(s)
- María Moreno-Morcillo
- Institut Européen de Chimie et Biologie, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, Pessac, France
| | | | | | | |
Collapse
|
10
|
The poly A polymerase Star-PAP controls 3'-end cleavage by promoting CPSF interaction and specificity toward the pre-mRNA. EMBO J 2010; 29:4132-45. [PMID: 21102410 DOI: 10.1038/emboj.2010.287] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 10/25/2010] [Indexed: 11/08/2022] Open
Abstract
Star-PAP is a poly (A) polymerase (PAP) that is putatively required for 3'-end cleavage and polyadenylation of a select set of pre-messenger RNAs (mRNAs), including heme oxygenase (HO-1) mRNA. To investigate the underlying mechanism, the cleavage and polyadenylation of pre-mRNA was reconstituted with nuclear lysates. siRNA knockdown of Star-PAP abolished cleavage of HO-1, and this phenotype could be rescued by recombinant Star-PAP but not PAPα. Star-PAP directly associated with cleavage and polyadenylation specificity factor (CPSF) 160 and 73 subunits and also the targeted pre-mRNA. In vitro and in vivo Star-PAP was required for the stable association of CPSF complex to pre-mRNA and then CPSF 73 specifically cleaved the mRNA at the 3'-cleavage site. This mechanism is distinct from canonical PAPα, which is recruited to the cleavage complex by interacting with CPSF 160. The data support a model where Star-PAP binds to the RNA, recruits the CPSF complex to the 3'-end of pre-mRNA and then defines cleavage by CPSF 73 and subsequent polyadenylation of its target mRNAs.
Collapse
|
11
|
Balbo PB, Toth J, Bohm A. X-ray crystallographic and steady state fluorescence characterization of the protein dynamics of yeast polyadenylate polymerase. J Mol Biol 2006; 366:1401-15. [PMID: 17223131 PMCID: PMC2034415 DOI: 10.1016/j.jmb.2006.12.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 11/17/2022]
Abstract
Polyadenylate polymerase (PAP) catalyzes the synthesis of poly(A) tails on the 3'-end of pre-mRNA. PAP is composed of three domains: an N-terminal nucleotide-binding domain (homologous to the palm domain of DNA and RNA polymerases), a middle domain (containing other conserved, catalytically important residues), and a unique C-terminal domain (involved in protein-protein interactions required for 3'-end formation). Previous X-ray crystallographic studies have shown that the domains are arranged in a V-shape such that they form a central cleft with the active site located at the base of the cleft at the interface between the N-terminal and middle domains. In the previous studies, the nucleotides were bound directly to the N-terminal domain and exhibited a conspicuous lack of adenine-specific interactions that would constitute nucleotide recognition. Furthermore, it was postulated that base-specific contacts with residues in the middle domain could occur either as a result of a change in the conformation of the nucleotide or domain movement. To address these issues and to better characterize the structural basis of substrate recognition and catalysis, we report two new crystal structures of yeast PAP. A comparison of these structures reveals that the N-terminal and C-terminal domains of PAP move independently as rigid bodies along two well defined axes of rotation. Modeling of the nucleotide into the most closed state allows us to deduce specific nucleotide interactions involving residues in the middle domain (K215, Y224 and N226) that are proposed to be involved in substrate binding and specificity. To further investigate the nature of PAP domain flexibility, 2-aminopurine labeled molecular probes were employed in steady state fluorescence and acrylamide quenching experiments. The results suggest that the closed domain conformation is stabilized upon recognition of the correct subtrate, MgATP, in an enzyme-substrate ternary complex. The implications of these results on the enzyme mechanism of PAP and the possible role for domain motion in an induced fit mechanism are discussed.
Collapse
Affiliation(s)
- Paul B Balbo
- Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Department of Biochemistry, Boston, MA 02111, USA
| | | | | |
Collapse
|
12
|
McMahon KW, Hirsch BA, MacDonald CC. Differences in polyadenylation site choice between somatic and male germ cells. BMC Mol Biol 2006; 7:35. [PMID: 17038175 PMCID: PMC1618850 DOI: 10.1186/1471-2199-7-35] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/12/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have previously noted that there were differences in somatic and male germ cell polyadenylation site choices. First, male germ cells showed a lower incidence of the sequence AAUAAA (an important element for somatic polyadenylation site choice) near the polyadenylation site choice. Second, the polyadenylation sites chosen in male germ cells tended to be nearer the 5' end of the mRNA than those chosen in somatic cells. Finally, a number of mRNAs used a different polyadenylation site in male germ cells than in somatic cells. These differences suggested that male germ cell-specific polyadenylation sites may be poor substrates for polyadenylation in somatic cells. We therefore hypothesized that male germ cell-specific polyadenylation sites would be inefficiently used in somatic cells. RESULTS We tested whether pre-mRNA sequences surrounding male germ cell-specific polyadenylation sites (polyadenylation cassettes) could be used to direct polyadenylation efficiently in somatic cells. To do this, we developed a luciferase reporter system in which luciferase activity correlated with polyadenylation efficiency. We showed that in somatic cells, somatic polyadenylation cassettes were efficiently polyadenylated, while male germ cell-specific polyadenylation cassettes were not. We also developed a sensitive, 3' RACE-based assay to analyze polyadenylation site choice. Using this assay, we demonstrated that male germ cell-specific polyadenylation cassettes were not polyadenylated at the expected site in somatic cells, but rather at aberrant sites upstream of the sites used in male germ cells. Finally, mutation of the male germ cell-specific poly(A) signal to a somatic poly(A) signal resulted in more efficient polyadenylation in somatic cells. CONCLUSION These data suggest that regulated polyadenylation site choice of male germ cell-specific polyadenylation sites requires one or more factors that are absent from somatic cells.
Collapse
Affiliation(s)
- K Wyatt McMahon
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4St, Lubbock, TX 79430-6540 USA
| | - Benjamin A Hirsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4St, Lubbock, TX 79430-6540 USA
| | - Clinton C MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4St, Lubbock, TX 79430-6540 USA
| |
Collapse
|
13
|
Rouget C, Papin C, Mandart E. Cytoplasmic CstF-77 Protein Belongs to a Masking Complex with Cytoplasmic Polyadenylation Element-binding Protein in Xenopus Oocytes. J Biol Chem 2006; 281:28687-98. [PMID: 16882666 DOI: 10.1074/jbc.m601116200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated mRNA translation is a hallmark of oocytes and early embryos, of which cytoplasmic polyadenylation is a major mechanism. This process involves multiple protein components, including the CPSF (cleavage and polyadenylation specificity factor), which is also required for nuclear polyadenylation. The CstF (cleavage stimulatory factor), with CPSF, is required for the pre-mRNA cleavage before nuclear polyadenylation. However, some evidence suggests that the CstF-77 subunit might have a function independent of nuclear polyadenylation, which could be related to the cell cycle. As such, we addressed the question whether CstF-77 might have a role in cytoplasmic polyadenylation. We investigated the function of the CstF-77 protein in Xenopus oocytes, and show that CstF-77 has indeed a role in the cytoplasm. The Xenopus CstF-77 protein (X77K) localizes mainly to the nucleus, but also in punctuate cytoplasmic foci. We show that X77K resides in a cytoplasmic complex with eIF4E, CPEB (cytoplasmic polyadenylation element-binding protein), CPSF-100 and XGLD2, but is not required for cytoplasmic polyadenylation per se. Impairment of X77K function in ovo leads to an acceleration of the G(2)/M transition, with a premature synthesis of Mos and AuroraA proteins. However, the kinetic of Mos mRNA polyadenylation is not modified. Furthermore, X77K represses mRNA translation in vitro. These results suggest that X77K could be involved in masking of mRNA prior to polyadenylation.
Collapse
Affiliation(s)
- Christel Rouget
- Centre de Recherches de Biochimie Macromoléculaire, CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 05, France
| | | | | |
Collapse
|
14
|
Liang S, Lutz CS. p54nrb is a component of the snRNP-free U1A (SF-A) complex that promotes pre-mRNA cleavage during polyadenylation. RNA (NEW YORK, N.Y.) 2006; 12:111-21. [PMID: 16373496 PMCID: PMC1370891 DOI: 10.1261/rna.2213506] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 10/12/2005] [Indexed: 05/05/2023]
Abstract
The U1 snRNP-A (U1A) protein has been known for many years as a component of the U1 snRNP. We have previously described a form of U1A present in human cells in significant amounts that is not associated with the U1 snRNP or U1 RNA but instead is part of a novel complex of non-snRNP proteins that we have termed snRNP-free U1A, or SF-A. Antibodies that specifically recognize this complex inhibit in vitro splicing and polyadenylation of pre-mRNA, suggesting that this complex may play an important functional role in these mRNA-processing activities. This finding was underscored by the determination that one of the components of this complex is the polypyrimidine-tract-binding protein-associated splicing factor, PSF. In order to further our studies on this complex and to determine the rest of the components of the SF-A complex, we prepared several stable HeLa cell lines that overexpress a tandem-affinity-purification-tagged version of U1A (TAP-tagged U1A). Nuclear extract was prepared from one of these cell lines, line 107, and affinity purification was performed along with RNase treatment. We have used mass spectrometry analysis to identify the candidate factors that associate with U1A. We have now identified and characterized PSF, p54(nrb), and p68 as novel components of the SF-A complex. We have explored the function of this complex in RNA processing, specifically cleavage and polyadenylation, by performing immunodepletions followed by reconstitution experiments, and have found that p54(nrb) is critical.
Collapse
Affiliation(s)
- Songchun Liang
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School MSB E671, 185 S. Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|
15
|
Venkataraman K, Brown KM, Gilmartin GM. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev 2005. [PMID: 15937220 DOI: 10.1101/gad.1298605.least] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
At least half of all human pre-mRNAs are subject to alternative 3' processing that may modulate both the coding capacity of the message and the array of post-transcriptional regulatory elements embedded within the 3' UTR. Vertebrate poly(A) site selection appears to rely primarily on the binding of CPSF to an A(A/U)UAAA hexamer upstream of the cleavage site and CstF to a downstream GU-rich element. At least one-quarter of all human poly(A) sites, however, lack the A(A/U)UAAA motif. We report that sequence-specific RNA binding of the human 3' processing factor CFI(m) can function as a primary determinant of poly(A) site recognition in the absence of the A(A/U)UAAA motif. CFI(m) is sufficient to direct sequence-specific, A(A/U)UAAA-independent poly(A) addition in vitro through the recruitment of the CPSF subunit hFip1 and poly(A) polymerase to the RNA substrate. ChIP analysis indicates that CFI(m) is recruited to the transcription unit, along with CPSF and CstF, during the initial stages of transcription, supporting a direct role for CFI(m) in poly(A) site recognition. The recognition of three distinct sequence elements by CFI(m), CPSF, and CstF suggests that vertebrate poly(A) site definition is mechanistically more similar to that of yeast and plants than anticipated.
Collapse
Affiliation(s)
- Krishnan Venkataraman
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, 05405, USA
| | | | | |
Collapse
|
16
|
Liu Y, Kuersten S, Huang T, Larsen A, MacMorris M, Blumenthal T. An uncapped RNA suggests a model for Caenorhabditis elegans polycistronic pre-mRNA processing. RNA (NEW YORK, N.Y.) 2003; 9:677-87. [PMID: 12756326 PMCID: PMC1370435 DOI: 10.1261/rna.2128903] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2002] [Accepted: 02/27/2003] [Indexed: 05/24/2023]
Abstract
Polycistronic pre-mRNAs from Caenohabditis elegans operons are processed by internal cleavage and polyadenylation to create 3' ends of mature mRNAs. This is accompanied by trans-splicing with SL2 approximately 100 nucleotides downstream of the 3' end formation sites to create the 5' ends of downstream mRNAs. SL2 trans-splicing depends on a U-rich element (Ur), located approximately 70 nucleotides upstream of the trans-splice site in the intercistronic region (ICR), as well as a functional 3' end formation signal. Here we report the existence of a novel gene-length RNA, the Ur-RNA, starting just upstream of the Ur element. The expression of Ur-RNA is dependent on 3' end formation as well as on the presence of the Ur element, but does not require a trans-splice site. The Ur-RNA is not capped, and alteration of the location of the Ur element in either the 5' or 3' direction alters the location of the 5' end of the Ur-RNA. We propose that a 5' to 3' exonuclease degrades the precursor RNA following cleavage at the poly(A) site, stopping when it reaches the Ur element, presumably attributable to a bound protein. Part of the function of this protein can be performed by the MS2 coat protein. Recruitment of coat protein to the ICR in the absence of the Ur element results in accumulation of an RNA equivalent to Ur-RNA, and restores trans-splicing. Only SL1, however, is used. Therefore, coat protein is sufficient for blocking the exonuclease and thereby allowing formation of a substrate for trans-splicing, but it lacks the ability to recruit the SL2 snRNP. Our results also demonstrate that MS2 coat protein can be used as an in vivo block to an exonuclease, which should have utility in mRNA stability studies.
Collapse
Affiliation(s)
- Yingmiao Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
17
|
Edmonds M. A history of poly A sequences: from formation to factors to function. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:285-389. [PMID: 12102557 DOI: 10.1016/s0079-6603(02)71046-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biological polyadenylation, first recognized as an enzymatic activity, remained an orphan enzyme until poly A sequences were found on the 3' ends of eukarvotic mRNAs. Their presence in bacteria viruses and later in archeae (ref. 338) established their universality. The lack of compelling evidence for a specific function limited attention to their cellular formation. Eventually the newer techniques of molecular biology and development of accurate nuclear processing extracts showed 3' end formation to be a two-step process. Pre-mRNA was first cleaved endonucleolytically at a specific site that was followed by sequential addition of AMPs from ATP to the 3' hydroxyl group at the end of mRNA. The site of cleavage was specified by a conserved hexanucleotide, AAUAAA, from 10 to 30 nt upstream of this 3' end. Extensive purification of these two activities showed that more than 10 polypeptides were needed for mRNA 3' end formation. Most of these were in complexes involved in the cleavage step. Two of the best characterized are CstF and CPSF, while two other remain partially purified but essential. Oddly, the specific proteins involved in phosphodiester bond hydrolysis have yet to be identified. The polyadenylation step occurs within the complex of poly A polymerase and poly A-binding protein, PABII, that controls poly A length. That the cleavage complex, CPSF, is also required for this step attests to a tight coupling of the two steps of 3' and formation. The reaction reconstituted from these RNA-free purified factors correctly processes pre-mRNAs. Meaningful analysis of the role of poly A in mRNA metabolism or function was possible once quantities of these proteins most often over-expressed from cDNA clones became available. The large number needed for two simple reactions of an endonuclease, a polymerase and a sequence recognition factor, pointed to 3' end formation as a regulated process. Polyadenylation itself had appeared to require regulation in cases where two poly A sites were alternatively processed to produce mRNA coding for two different proteins. The 64-KDa subunit of CstF is now known to be a regulator of poly A site choice between two sites in the immunoglobulin heavy chain of B cells. In resting cells the site used favors the mRNA for a membrane-bound protein. Upon differentiation to plasma cells, an upstream site is used the produce a secreted form of the heavy chain. Poly A site choice in the calcitonin pre-mRNA involves splicing factors at a pseudo splice site in an intron downstream of the active poly site that interacts with cleavage factors for most tissues. The molecular basis for choice of the alternate site in neuronal tissue is unknown. Proteins needed for mRNA 3' end formation also participate in other RNA-processing reactions: cleavage factors bind to the C-terminal domain of RNA polymerase during transcription; splicing of 3' terminal exons is stimulated port of by cleavage factors that bind to splicing factors at 3' splice sites. nuclear ex mRNAs is linked to cleavage factors and requires the poly A II-binding protein. Most striking is the long-sought evidence for a role for poly A in translation in yeast where it provides the surface on which the poly A-binding protein assembles the factors needed for the initiation of translation. This adaptability of eukaryotic cells to use a sequence of low information content extends to bacteria where poly A serves as a site for assembly of an mRNA degradation complex in E. coli. Vaccinia virus creates mRNA poly A tails by a streamlined mechanism independent of cleavage that requires only two proteins that recognize unique poly A signals. Thus, in spite of 40 years of study of poly A sequences, this growing multiplicity of uses and even mechanisms of formation seem destined to continue.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- History, 20th Century
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/history
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Vaccinia virus/genetics
- Vaccinia virus/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Mary Edmonds
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
18
|
Scorilas A. Polyadenylate polymerase (PAP) and 3' end pre-mRNA processing: function, assays, and association with disease. Crit Rev Clin Lab Sci 2002; 39:193-224. [PMID: 12120781 DOI: 10.1080/10408360290795510] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polyadenylate polymerase (PAP) is one of the enzymes involved in the formation of the polyadenylate tail of the 3' end of mRNA. Poly (A) tail formation is a significant component of 3' processing, a link in the chain of events, including transcription, splicing, and cleavage/polyadenylation of pre-mRNA. Transcription, capping, splicing, polyadenylation, and transport take place as coupled processes that can regulate one another. The poly(A) tail is found in almost all eukaryotic mRNA and is important in enhancing translation initiation and determining mRNA stability. Control of poly(A) tail synthesis could possibly be a key regulatory step in gene expression. PAP-specific activity values are measured by a highly sensitive assays and immunocytochemical methods. High levels of PAP activity are associated with rapidly proliferating cells, it also prevents apoptosis. Changes of PAP activity may cause a decrease in the rate of polyadenylation in the brain during epileptic seizures. Testis-specific PAP may play an important role in spermiogenesis. PAP was found to be an unfavorable prognostic factor in leukemia and breast cancer. Furthermore, measurements of PAP activity may contribute to the definition of the biological profile of tumor cells. It is crucial to know the specific target causing the elevation of serum PAP, for it to be used as a marker for disease. This review summarizes the recently accumulated knowledge on PAP including its function, assays, and association with various human diseases, and proposes future avenues for research.
Collapse
Affiliation(s)
- Andreas Scorilas
- National Center for Scientific Research Demokritos, IPC, Athens, Greece.
| |
Collapse
|
19
|
Ahuja D, Karow DS, Kilpatrick JE, Imperiale MJ. RNA polymerase II-dependent positional effects on mRNA 3' end processing in the adenovirus major late transcription unit. J Biol Chem 2001; 276:41825-31. [PMID: 11551915 DOI: 10.1074/jbc.m104709200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the early phase of adenovirus infection, the promoter-proximal L1 poly(A) site in the major late transcription unit is used preferentially despite the fact that the distal L3 poly(A) site is stronger (i.e. it competes better for processing factors and is cleaved at a faster rate, in vitro). Previous work had established that this was due at least in part to the stable binding of the processing factor, cleavage and polyadenylation specificity factor, to the L1 poly(A) site as mediated by specific regulatory sequences. It is now demonstrated that in addition, the L1 poly(A) site has a positional advantage because of its 5' location in the transcription unit. We also show that preferential processing of a particular poly(A) site in a complex transcription unit is dependent on RNA polymerase II. Our results are consistent with recent reports demonstrating that the processing factors cleavage and polyadenylation specificity factor and cleavage stimulatory factor are associated with the RNA polymerase II holoenzyme; thus, processing at a weak poly(A) site like L1 can be enhanced by virtue of its being the first site to be transcribed.
Collapse
Affiliation(s)
- D Ahuja
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
20
|
Berkhout B. Multiple biological roles associated with the repeat (R) region of the HIV-1 RNA genome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:29-73. [PMID: 10987088 DOI: 10.1016/s1054-3589(00)48003-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- B Berkhout
- Department of Human Retrovirology, University of Amsterdam, The Netherlands
| |
Collapse
|
21
|
Mendez R, Murthy KG, Ryan K, Manley JL, Richter JD. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell 2000; 6:1253-9. [PMID: 11106762 DOI: 10.1016/s1097-2765(00)00121-0] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The release of Xenopus oocytes from prophase I arrest is largely driven by the cytoplasmic polyadenylation-induced translation of dormant maternal mRNAs. Two cis elements, the CPE and the hexanucleotide AAUAAA, and their respective binding factors, CPEB and a cytoplasmic form of CPSF, control polyadenylation. The most proximal stimulus for polyadenylation is Eg2-catalyzed phosphorylation of CPEB serine 174. Here, we show that this phosphorylation event stimulates an interaction between CPEB and CPSF. This interaction is direct, does not require RNA tethering, and occurs through the 160 kDa subunit of CPSF. Eg2-stimulated and CPE-dependent polyadenylation is reconstituted in vitro using purified components. These results demonstrate that the molecular function of Eg2-phosphorylated CPEB is to recruit CPSF into an active cytoplasmic polyadenylation complex.
Collapse
Affiliation(s)
- R Mendez
- Department of Molecular Genetics and Microbiology University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
22
|
Veraldi KL, Edwalds-Gilbert G, MacDonald CC, Wallace AM, Milcarek C. Isolation and characterization of polyadenylation complexes assembled in vitro. RNA (NEW YORK, N.Y.) 2000; 6:768-77. [PMID: 10836797 PMCID: PMC1369956 DOI: 10.1017/s135583820099246x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We developed a two-step purification of mammalian polyadenylation complexes assembled in vitro. Biotinylated pre-mRNAs containing viral or immunoglobulin poly(A) sites were incubated with nuclear extracts prepared from mouse myeloma cells under conditions permissive for in vitro cleavage and polyadenylation and the mixture was fractionated by gel filtration; complexes containing biotinylated pre-mRNA and bound proteins were affinity purified on avidin-agarose resin. Western analysis of known components of the polyadenylation complex demonstrated copurification of polyadenylation factors with poly(A) site-containing RNA but not with control RNA substrates containing either no polyadenylation signals or a point mutation of the AAUAAA polyadenylation signal. Polyadenylation complexes that were assembled on exogenous RNA eluted from the Sephacryl column in fractions consistent with their size range extending from 2 to 4 x 10(6) Mr. Complexes endogenous to the extract were of approximately the same apparent size, but more heterogeneous in distribution. This method can be used to study polyadenylation/cleavage complexes that may form upon a number of different RNA sequences, an important step towards defining which factors might differentially associate with specific RNAs.
Collapse
Affiliation(s)
- K L Veraldi
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
23
|
Keller RW, Kühn U, Aragón M, Bornikova L, Wahle E, Bear DG. The nuclear poly(A) binding protein, PABP2, forms an oligomeric particle covering the length of the poly(A) tail. J Mol Biol 2000; 297:569-83. [PMID: 10731412 DOI: 10.1006/jmbi.2000.3572] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian nuclear poly(A) binding protein, PABP2, controls the length of the newly synthesized poly(A) tail on messenger RNAs. To gain a better understanding of the mechanism of length control, we have investigated the structure of the PABP2.poly(A) complex. Electron microscopy and scanning force microscopy studies reveal that PABP2, when bound to poly(A), forms both linear filaments and discrete-sized, compact, oligomeric particles. The maximum diameter of the filament is 7 nm; the maximum diameter of the particle is 21(+/-2) nm. Maximum particle size is realized when the PABP2. poly(A) complex is formed with poly(A) molecules 200-300 nt long, which corresponds to the average length of the newly synthesized poly(A) tail in vitro and in vivo. The equilibrium between filaments and particles is highly sensitive to ionic strength; filaments are favored at low ionic strength, while particles predominate at moderate to high ionic strength. Nitrocellulose filter binding and gel mobility shift assays indicate that the PABP2.poly(A) particle formed on A(300) is not significantly more stable than complexes formed with smaller species of poly(A). These results are discussed in the context of the proposed functions for PABP2.
Collapse
Affiliation(s)
- R W Keller
- Department of Cell Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | | | | | | | | | | |
Collapse
|
24
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999. [PMID: 10357856 DOI: 10.1007/s13146-011-0050-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
25
|
Phillips C, Kyriakopoulou CB, Virtanen A. Identification of a stem-loop structure important for polyadenylation at the murine IgM secretory poly(A) site. Nucleic Acids Res 1999; 27:429-38. [PMID: 9862962 PMCID: PMC148197 DOI: 10.1093/nar/27.2.429] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have previously shown that a distal GU-rich downstream element of the mouse IgM secretory poly(A) site is important for polyadenylation in vivo and for polyadenylation specific complex formation in vitro. This element can be predicted to form a stem-loop structure with two asymmetric internal loops. As stem-loop structures commonly define protein RNA binding sites, we have probed the biological activity of the secondary structure of this element. We show that mutations affecting the stem of the structure abolish the biological activity of this element in vivo and in vitro at the level of cleavage and polyadenylation specificity factor/cleavage stimulation factor complex formation and that both internal loops contribute to the enhancing effect of the sequence in vivo. Lead (II) cleavage patterns and RNase H probing of the sequence element in vitro are consistent with the predicted secondary structure. Furthermore, mobility on native PAGE suggests a bent structure. We propose that the secondary structure of this downstream element optimizes its interaction with components of the polyadenylation complex.
Collapse
Affiliation(s)
- C Phillips
- Department of Genetics and Pathology, Uppsala University, Box 589, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
26
|
Klasens BI, Thiesen M, Virtanen A, Berkhout B. The ability of the HIV-1 AAUAAA signal to bind polyadenylation factors is controlled by local RNA structure. Nucleic Acids Res 1999; 27:446-54. [PMID: 9862964 PMCID: PMC148199 DOI: 10.1093/nar/27.2.446] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 5' and 3' ends of HIV-1 transcripts are identical in sequence. This repeat region (R) folds a stem-loop structure that is termed the poly(A) hairpin because it contains polyadenylation or poly(A) signals: the AAUAAA hexamer motif, the cleavage site and part of the GU-rich downstream element. Obviously, HIV-1 gene expression necessitates differential regulation of the two poly(A) sites. Previous transfection experiments indicated that the wild-type poly(A) hairpin is slightly inhibitory to the process of polyadenylation, and further stabilization of the hairpin inhibited polyadenylation completely. In this study, we tested wild-type and mutant transcripts with poly(A) hairpin structures of differing thermodynamic stabilities for the in vitro binding of polyadenylation factors. Mutant transcripts with a destabilized hairpin efficiently bound the polyadenylation factors, which were provided either as purified proteins or as nuclear extract. The RNA mutant with a stabilized hairpin did not form this 'poly(A) complex'. Additional mutations that repair the stability of this hairpin restored the binding capacity. Thus, an inverse correlation was measured between the stability of the poly(A) hairpin and its ability to interact with polyadenylation factors. The wild-type HIV-1 transcript bound the polyadenylation factors suboptimally, but full activity was obtained in the presence of the USE enhancer element that is uniquely present upstream of the 3' poly(A) site. We also found that sequences of the HIV-1 leader, which are uniquely present downstream of the 5' poly(A) site, inhibit formation of the poly(A) complex. This inhibition could not be ascribed to a specific leader sequence, as we measured a gradual loss of complex formation with increasing leader length. We will discuss the regulatory role of RNA structure and the repressive effect of leader sequences in the context of differential HIV-1 polyadenylation.
Collapse
MESH Headings
- Enhancer Elements, Genetic
- Gene Expression Regulation, Viral
- HIV-1/genetics
- Models, Genetic
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- RNA Processing, Post-Transcriptional
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/metabolism
- mRNA Cleavage and Polyadenylation Factors
Collapse
Affiliation(s)
- B I Klasens
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15,1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
27
|
Bagga PS, Arhin GK, Wilusz J. DSEF-1 is a member of the hnRNP H family of RNA-binding proteins and stimulates pre-mRNA cleavage and polyadenylation in vitro. Nucleic Acids Res 1998; 26:5343-50. [PMID: 9826757 PMCID: PMC147992 DOI: 10.1093/nar/26.23.5343] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DSEF-1 protein selectively binds to a G-rich auxiliary sequence element which influences the efficiency of processing of the SV40 late polyadenylation signal. We have obtained cDNA clones of DSEF-1 using sequence information from tryptic peptides isolated from DSEF-1 protein purified from HeLa cells. DSEF-1 protein contains three RNA-binding motifs and is a member of the hnRNP H family of RNA-binding proteins. Recombinant DSEF-1 protein stimulated the efficiency of cleavage and polyadenylation in an AAUAAA-dependent manner in in vitro reconstitution assays. DSEF-1 protein was shown to be able to interact with several poly(A) signals that lacked a G-rich binding site using a less stringent, low ionic strength gel band shift assay. Recombinant DSEF-1 protein specifically stimulated the processing of all of the poly(A) signals tested that contained a high affinity G-rich or low affinity binding site. DSEF-1 specifically increased the level of cross-linking of the 64 kDa protein of CstF to polyadenylation substrate RNAs. These observations suggest that DSEF-1 is an auxiliary factor that assists in the assembly of the general 3'-end processing factors onto the core elements of the polyadenylation signal.
Collapse
Affiliation(s)
- P S Bagga
- UMDNJ-New Jersey Medical School, Department of Microbiology and Molecular Genetics, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | |
Collapse
|
28
|
Chen F, Wilusz J. Auxiliary downstream elements are required for efficient polyadenylation of mammalian pre-mRNAs. Nucleic Acids Res 1998; 26:2891-8. [PMID: 9611233 PMCID: PMC147640 DOI: 10.1093/nar/26.12.2891] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously identified a G-rich sequence (GRS) as an auxiliary downstream element (AUX DSE) which influences the processing efficiency of the SV40 late polyadenylation signal. We have now determined that sequences downstream of the core U-rich element (URE) form a fundamental part of mammalian polyadenylation signals. These novel AUX DSEs all influenced the efficiency of 3'-end processing in vitro by stabilizing the assembly of CstF on the core downstream URE. Three possible mechanisms by which AUX DSEs mediate efficient in vitro 3'-end processing have been explored. First, AUX DSEs can promote processing efficiency by maintaining the core elements in an unstructured domain which allows the general polyadenylation factors to efficiently assemble on the RNA substrate. Second, AUX DSEs can enhance processing by forming a stable structure which helps focus binding of CstF to the core downstream URE. Finally, the GRS element, but not the binding site for the bacteriophage R17 coat protein, can substitute for the auxiliary downstream region of the adenovirus L3 polyadenylation signal. This suggests that AUX DSE binding proteins may play an active role in stimulating 3'-end processing by stabilizing the association of CstF with the RNA substrate. AUX DSEs, therefore, serve as a integral part of the polyadenylation signal and can affect signal strength and possibly regulation.
Collapse
Affiliation(s)
- F Chen
- UMDNJ-New Jersey Medical School, Department of Microbiology and Molecular Genetics, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|
29
|
Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3'end formation of cellular pre-mRNAs. Mol Cell 1998; 1:991-1000. [PMID: 9651582 DOI: 10.1016/s1097-2765(00)80099-4] [Citation(s) in RCA: 506] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inhibition of the nuclear export of poly(A)-containing mRNAs caused by the influenza A virus NS1 protein requires its effector domain. Here, we demonstrate that the NS1 effector domain functionally interacts with the cellular 30 kDa subunit of CPSF, an essential component of the 3' end processing machinery of cellular pre-mRNAs. In influenza virus-infected cells, the NS1 protein is physically associated with CPSF 30 kDa. Binding of the NS1 protein to the 30 kDa protein in vitro prevents CPSF binding to the RNA substrate and inhibits 3' end cleavage and polyadenylation of host pre-mRNAs. The NS1 protein also inhibits 3' end processing in vivo, and the uncleaved pre-mRNA remains in the nucleus. Via this novel regulation of pre-mRNA 3' end processing, the NS1 protein selectively inhibits the nuclear export of cellular, and not viral, mRNAs.
Collapse
Affiliation(s)
- M E Nemeroff
- Department of Molecular Biology and Biochemistry Rutgers University Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
30
|
Bai C, Tolias PP. Drosophila clipper/CPSF 30K is a post-transcriptionally regulated nuclear protein that binds RNA containing GC clusters. Nucleic Acids Res 1998; 26:1597-604. [PMID: 9512528 PMCID: PMC147443 DOI: 10.1093/nar/26.7.1597] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An essential component of the mammalian pre-mRNA 3'-end processing machinery is a multimeric protein complex known as cleavage and polyadenylation specificity factor (CPSF). The Drosophila melanogaster gene, clipper ( clp ), encodes a homolog of the CPSF 30K subunit. We have shown previously that CLP possesses N-terminal endoribonucleolytic activity and that the relative expression of its mRNA fluctuates during fly development. In the present study, we report that CLP's C-terminus, containing two CCHC zinc knuckles, confers a binding preference for RNAs that contain G- and/or C-rich clusters. We also show, for the first time, that a member of the highly conserved CPSF 30K family is a nuclear and developmentally regulated protein. Though clp transcripts are detectable throughout embryogenesis, CLP protein is not present. We demonstrate that post-transcriptional regulation of clp mRNA in the embryo occurs by a process that does not involve poly(A) tail length shortening. Thus, a key component of the pre-mRNA 3'-end processing machinery is subject to post-transcriptional regulation during development. These results support the existence of a distinct mechanism controlling eukaryotic gene expression through the regulated processing of pre-mRNAs in the nucleus.
Collapse
Affiliation(s)
- C Bai
- Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
31
|
Hirose Y, Manley JL. Creatine phosphate, not ATP, is required for 3' end cleavage of mammalian pre-mRNA in vitro. J Biol Chem 1997; 272:29636-42. [PMID: 9368030 DOI: 10.1074/jbc.272.47.29636] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The poly(A) tail of a mammalian mRNA is generated by endonucleolytic cleavage and poly(A) addition. Previous studies conducted with nuclear extracts suggested an ATP requirement for the cleavage step. We have reexamined the cofactor requirement, initially with the SV40 late pre-mRNA, which requires for cleavage four protein factors, cleavage and polyadenylation specificity factor, cleavage stimulation factor, cleavage factor I, and cleavage factor II. Using highly purified preparations of these factors, which lacked detectable creatine phosphokinase and ATPase activities, creatine phosphate (CP) was, surprisingly, found to be sufficient to promote efficient cleavage. Although other phosphate compounds substituted poorly or not at all for CP, another phosphoguanidine, arginine phosphate, was fully functional. Notably, ATP was neither necessary nor sufficient, and could in fact inhibit the reaction. Treatment of the purified factors with hexokinase plus glucose (to deplete any contaminating ATP) was without effect, as was addition of EDTA. Using 32P-labeled CP, we found that neither hydrolysis of CP nor phosphate transfer from CP occurred during the cleavage reaction. CP also allowed cleavage of the adenovirus 2 L3 pre-mRNA. However, in this case, ATP both enhanced the reaction and influenced the precise site of cleavage, perhaps reflecting the requirement of poly(A) polymerase for cleavage of this RNA. These results indicate that ATP is not essential for 3' pre-mRNA cleavage and that CP or a related compound can function as a necessary cofactor.
Collapse
Affiliation(s)
- Y Hirose
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
32
|
Beyer K, Dandekar T, Keller W. RNA ligands selected by cleavage stimulation factor contain distinct sequence motifs that function as downstream elements in 3'-end processing of pre-mRNA. J Biol Chem 1997; 272:26769-79. [PMID: 9334264 DOI: 10.1074/jbc.272.42.26769] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Critical events in 3'-end processing of pre-mRNA are the recognition of the AAUAAA polyadenylation signal by cleavage and polyadenylation specificity factor (CPSF) and the binding of cleavage stimulation factor (CstF) via its 64-kDa subunit to the downstream element. The stability of this CPSF.CstF.RNA complex is thought to determine the efficiency of 3'-end processing. Since downstream elements reveal high sequence variability, in vitro selection experiments with highly purified CstF were performed to investigate the sequence requirements for CstF-RNA interaction. CstF was purified from calf thymus and from HeLa cells. Surprisingly, calf thymus CstF contained an additional, novel form of the 64-kDa subunit with a molecular mass of 70 kDa. RNA ligands selected by HeLa and calf thymus CstF contained three highly conserved sequence elements as follows: element 1 (AUGCGUUCCUCGUCC) and two closely related elements, element 2a (YGUGUYN0-4UUYAYUGYGU) and element 2b (UUGYUN0-4AUUUACU(U/G)N0-2YCU). All selected sequences tested functioned as downstream elements in 3'-end processing in vitro. A computer survey of the EMBL data library revealed significant homologies to all selected elements in naturally occurring 3'-untranslated regions. The majority of element 2a homologies was found downstream of coding sequences. Therefore, we postulate that this element represents a novel consensus sequence for downstream elements in 3'-end processing of pre-mRNA.
Collapse
Affiliation(s)
- K Beyer
- Department of Cell Biology, Biozentrum of the University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
33
|
Phillips C, Virtanen A. The murine IgM secretory poly(A) site contains dual upstream and downstream elements which affect polyadenylation. Nucleic Acids Res 1997; 25:2344-51. [PMID: 9171084 PMCID: PMC146757 DOI: 10.1093/nar/25.12.2344] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Regulation of polyadenylation efficiency at the secretory poly(A) site plays an essential role in gene expression at the immunoglobulin (IgM) locus. At this poly(A) site the consensus AAUAAA hexanucleotide sequence is embedded in an extended AU-rich region and there are two downstream GU-rich regions which are suboptimally placed. As these sequences are involved in formation of the polyadenylation pre-initiation complex, we examined their function in vivo and in vitro . We show that the upstream AU-rich region can function in the absence of the consensus hexanucleotide sequence both in vivo and in vitro and that both GU-rich regions are necessary for full polyadenylation activity in vivo and for formation of polyadenylation-specific complexes in vitro . Sequence comparisons reveal that: (i) the dual structure is distinct for the IgM secretory poly(A) site compared with other immunoglobulin isotype secretory poly(A) sites; (ii) the presence of an AU-rich region close to the consensus hexanucleotide is evolutionarily conserved for IgM secretory poly(A) sites. We propose that the dual structure of the IgM secretory poly(A) site provides a flexibility to accommodate changes in polyadenylation complex components during regulation of polyadenylation efficiency.
Collapse
Affiliation(s)
- C Phillips
- Department of Medical Genetics, Uppsala University, Biomedical Centre, Box 589, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|
34
|
Wahle E, Kühn U. The mechanism of 3' cleavage and polyadenylation of eukaryotic pre-mRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:41-71. [PMID: 9175430 DOI: 10.1016/s0079-6603(08)60277-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- E Wahle
- Institut für Biochemic, Justus-Liebig-Universität Giessen, Germany
| | | |
Collapse
|
35
|
Virtanen A, Aström J. Function and characterization of poly(A)-specific 3' exoribonucleases. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1997; 18:199-220. [PMID: 8994266 DOI: 10.1007/978-3-642-60471-3_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- A Virtanen
- Department of Medical Genetics, Uppsala University, Sweden
| | | |
Collapse
|
36
|
Takagaki Y, Seipelt RL, Peterson ML, Manley JL. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 1996; 87:941-52. [PMID: 8945520 DOI: 10.1016/s0092-8674(00)82000-0] [Citation(s) in RCA: 335] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The switch from membrane-bound to secreted-form IgM that occurs during differentiation of B lymphocytes has long been known to involve regulated processing of the heavy chain pre-mRNA. Here, we show that accumulation of one subunit of an essential polyadenylation factor (CstF-64) is specifically repressed in mouse primary B cells and that overexpression of CstF-64 is sufficient to switch heavy chain expression from membrane-bound (microm) to secreted form (micros). We further show that CstF-64 is limiting for formation of intact CstF, that CstF has a higher affinity for the microm poly(A) site than for the micros site, and that the microm site is stronger in a reconstituted in vitro processing reaction. Our results indicate that CstF-64 plays a key role in regulating IgM heavy chain expression during B cell differentiation.
Collapse
Affiliation(s)
- Y Takagaki
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
37
|
Schul W, Groenhout B, Koberna K, Takagaki Y, Jenny A, Manders EM, Raska I, van Driel R, de Jong L. The RNA 3' cleavage factors CstF 64 kDa and CPSF 100 kDa are concentrated in nuclear domains closely associated with coiled bodies and newly synthesized RNA. EMBO J 1996; 15:2883-92. [PMID: 8654386 PMCID: PMC450226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cleavage stimulation factor (CstF), and the cleavage and polyadenylation specificity factor (CPSF) are necessary for 3'-terminal processing of polyadenylated mRNAs. To study the distribution of 3' cleavage factors in the nuclei of human T24 cells, monoclonal antibodies against the CstF 64 kDa subunit and against the CPSF 100 kDa subunit were used for immunofluorescent labelling. CstF 64 kDa and CPSF 100 kDa were distributed in a fibrogranular pattern in the nucleoplasm and, in addition, were concentrated in 1-4 bright foci. Double immunofluorescence labelling experiments revealed that the foci either overlapped with, or resided next to, a coiled body. Inhibition of transcription with alpha-amanitin or 5,6-dichloro-beta-D-ribofuranosyl-benzimidazole (DRB) resulted in the complete co-localization of coiled bodies and foci containing 3' cleavage factors. Electron microscopy on immunogold double-labelled cells revealed that the foci represent compact spherical fibrous structures, we named 'cleavage bodies', intimately associated with coiled bodies. We found that approximately 20% of the cleavage bodies contained a high concentration of newly synthesized RNA, whereas coiled bodies were devoid of nascent RNA. Our results suggest that the cleavage bodies that contain RNA are those that are adjacent to a coiled body. These findings reveal a dynamic and transcription-dependent interaction between different subnuclear domains, and suggest a relationship between coiled bodies and specific transcripts.
Collapse
Affiliation(s)
- W Schul
- E.C. Slater Institute, Biocentrum, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
In Drosophila, the primary determinant of anterior pattern is the gradient morphogen bicoid (bcd), a homeodomain protein that binds DNA and transcriptionally activates target genes at different threshold concentrations. Here we present evidence that bcd also binds RNA and acts as a translational repressor to generate an opposing gradient of the homeodomain protein caudal (cad). RNA binding by bcd seems to involve direct interactions between the bcd homeodomain and discrete target sequences within the 3' untranslated region of the cad messenger RNA and to block the initiation of cad translation.
Collapse
Affiliation(s)
- J Dubnau
- Howard Hughes Medical Research Institute, Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
39
|
Wahle E. 3'-end cleavage and polyadenylation of mRNA precursors. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:183-94. [PMID: 7711061 DOI: 10.1016/0167-4781(94)00248-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- E Wahle
- Department of Cell Biology, Biozentrum, University of Basel, Switzerland
| |
Collapse
|
40
|
|
41
|
|
42
|
Takagaki Y, Manley JL. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature 1994; 372:471-4. [PMID: 7984242 DOI: 10.1038/372471a0] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Polyadenylation of messenger RNA precursors is a complex process that requires multiple protein factors (for reviews, see refs 1, 2). Cleavage stimulation factor (CstF) is one of these, functioning together with cleavage-polyadenylation specificity factor, two cleavage factors, and poly(A)+ polymerase. CstF is composed of three subunits of M(r) 77, 64 and 50K. The 64K and 50K subunits contain, respectively, an RNP-type RNA-binding domain that contacts the pre-mRNA and transducin repeats characteristic of G-protein beta-subunits. Here we report the cloning and characterization of the 77K subunit of human CstF (referred to as 77K). We show that the 77K subunit is required for formation of active CstF and bridges the 64K and 50K subunits. Sequence analyses indicate that the 77K subunit is the homologue of the protein encoded by the Drosophila melanogaster suppressor of forked (su(f)) gene. Mutations in su(f) can enhance or suppress the effects of transposable element insertions, and our data indicate that this is due to changes in polyadenylation. Both the 77K subunit and the su(f) protein share homology with Saccharomyces cerevisiae RNA14, previously shown to be involved in mRNA metabolism. Our results thus also indicate that components of the complex polyadenylation machinery are conserved from yeast to man.
Collapse
Affiliation(s)
- Y Takagaki
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | |
Collapse
|
43
|
van Oers CC, Bakker L, Baas PD. The exon 4 poly(A) site of the human calcitonin/CGRP-I pre-mRNA is a weak site in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1218:55-63. [PMID: 8193165 DOI: 10.1016/0167-4781(94)90100-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The human calcitonin/CGRP-I (CALC-I) pre-mRNA is processed in a tissue-specific alternative way into either calcitonin (CT) or calcitonin gene-related peptide-I (CGRP-I) mRNA. The exons 1 to 3 are common exons. They are spliced to exon 4, which becomes polyadenylated to form CT mRNA, or to exon 5 and the polyadenylated exon 6 to form CGRP-I mRNA. Polyadenylation at exon 4 and splicing of exon 3 to exon 5 are mutually exclusive processing reactions. Only splicing of exon 3 to exon 5 was detected in vitro, with a minigene containing the exon 3 to exon 5 region. No polyadenylation at the exon 4 poly(A) site could be observed. Investigation of the properties of the exon 4 poly(A) site in vitro shows that it is inefficiently used in vitro. Cleavage and polyadenylation of short RNAs containing only the exon 4 poly(A) site is strongly dependent on the 3' length of the RNA. Downstream sequences located within 39 nucleotides from the cleavage site are required for optimal cleavage and polyadenylation. When the exon 4 poly(A) site in the minigene is replaced with the strong adenovirus L3 or rabbit beta-globin poly(A) sites, these sites can be efficiently used in vitro.
Collapse
Affiliation(s)
- C C van Oers
- Institute of Molecular Biology and Medical Biotechnology, Utrecht University, The Netherlands
| | | | | |
Collapse
|
44
|
Gunderson SI, Beyer K, Martin G, Keller W, Boelens WC, Mattaj LW. The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase. Cell 1994; 76:531-41. [PMID: 8313473 DOI: 10.1016/0092-8674(94)90116-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The human U1 snRNP-specific U1A protein autoregulates its production by binding its own pre-mRNA and inhibiting polyadenylation. The mechanism of this regulation has been elucidated by in vitro studies. U1A protein is shown not to prevent either binding of cleavage and polyadenylation specificity factor (CPSF) to its recognition sequence (AUUAAA) or to prevent cleavage of U1A pre-mRNA. Instead, U1A protein bound to U1A pre-mRNA inhibits both specific and nonspecific polyadenylation by mammalian, but not by yeast, poly(A) polymerase (PAP). Domains are identified in both proteins whose removal uncouples the polyadenylation activity of mammalian PAP from its inhibition via RNA-bound U1A protein. Finally, U1A protein is shown to specifically interact with mammalian PAP in vitro. The possibility that this interaction may reflect a broader role of the U1A protein in polyadenylation is discussed.
Collapse
Affiliation(s)
- S I Gunderson
- European Molecular Biology Laboratory, Gene Expression Programme, Heidelberg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
45
|
Wittop Koning TH, Schümperli D. RNAs and ribonucleoproteins in recognition and catalysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:25-42. [PMID: 7508384 DOI: 10.1007/978-3-642-79502-2_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- T H Wittop Koning
- Max-Planck-Institut für Molekulare Genetik, Otto-Warburg-Laboratorium, Berlin (Dahlem), Germany
| | | |
Collapse
|
46
|
|
47
|
Affiliation(s)
- E Wahle
- Biozentrum der Universität Basel, Abteilung Zellbiologie, Basel, Switzerland
| | | |
Collapse
|
48
|
Abstract
Most eukaryotic messenger RNA (mRNA) species contain a 3'-poly(A) tract. The histone mRNAs are a notable exception although a subclass of histone-encoding mRNAs is polyadenylated. A class of mRNAs lacking a poly(A) tail would be expected to be less stable than poly(A)+ mRNAs and might, like the histones, have a half-life that varied in response to changes in the intracellular milieu. Brain mRNA exhibits an unusually high degree of sequence complexity; studies published ten years ago suggested that a large component of this complexity might be present in a poly(A)- mRNA population that was expressed postnatally. The question of the existence of a complex class of poly(A)- brain mRNAs is particularly tantalizing in light of the heterogeneity of brain cells and the possibility that the stability of these poly(A)- mRNAs might vary with changes in synaptic function, changing hormonal stimulation or with other modulations of neuronal function. The mRNA complexity analyses, although intriguing, did not prove the existence of the complex class of poly(A)- brain mRNAs. The observed mRNA complexity could have resulted from a variety of artifacts, discussed in more detail below. Several attempts have been made to clone members of this class of mRNA. This search for specific poly(A)- brain mRNAs has met with only limited success. Changes in mRNA polyadenylation state do occur in brain in response to specific physiologic stimuli; however, both the role of polyadenylation and de-adenylation in specific neuronal activities and the existence and significance of poly(A)- mRNAs in brain remain unclear.
Collapse
Affiliation(s)
- B J Snider
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas 75235
| | | |
Collapse
|
49
|
|
50
|
Murthy K, Manley J. Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42111-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|