1
|
Jangir DK, Kundu S, Mehrotra R. Role of minor groove width and hydration pattern on amsacrine interaction with DNA. PLoS One 2013; 8:e69933. [PMID: 23922861 PMCID: PMC3726726 DOI: 10.1371/journal.pone.0069933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
Amsacrine is an anilinoacridine derivative anticancer drug, used to treat a wide variety of malignancies. In cells, amsacrine poisons topoisomerase 2 by stabilizing DNA-drug-enzyme ternary complex. Presence of amsacrine increases the steady-state concentration of these ternary complexes which in turn hampers DNA replication and results in subsequent cell death. Due to reversible binding and rapid slip-out of amsacrine from DNA duplex, structural data is not available on amsacrine-DNA complexes. In the present work, we designed five oligonucleotide duplexes, differing in their minor groove widths and hydration pattern, and examined their binding with amsacrine using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Complexes of amsacrine with calf thymus DNA were also evaluated for a comparison. Our results demonstrate for the first time that amsacrine is not a simple intercalator; rather mixed type of DNA binding (intercalation and minor groove) takes place between amsacrine and DNA. Further, this binding is highly sensitive towards the geometries and hydration patterns of different minor grooves present in the DNA. This study shows that ligand binding to DNA could be very sensitive to DNA base composition and DNA groove structures. Results demonstrated here could have implication for understanding cytotoxic mechanism of aminoacridine based anticancer drugs and provide directions to modify these drugs for better efficacy and few side-effects.
Collapse
Affiliation(s)
- Deepak K Jangir
- Quantum Optics and Photon Physics, National Physical Laboratory, Council of Scientific and Industrial Research, New Delhi, India
| | | | | |
Collapse
|
2
|
Seiler JA, Conti C, Syed A, Aladjem MI, Pommier Y. The intra-S-phase checkpoint affects both DNA replication initiation and elongation: single-cell and -DNA fiber analyses. Mol Cell Biol 2007; 27:5806-18. [PMID: 17515603 PMCID: PMC1952133 DOI: 10.1128/mcb.02278-06] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To investigate the contribution of DNA replication initiation and elongation to the intra-S-phase checkpoint, we examined cells treated with the specific topoisomerase I inhibitor camptothecin. Camptothecin is a potent anticancer agent producing well-characterized replication-mediated DNA double-strand breaks through the collision of replication forks with topoisomerase I cleavage complexes. After a short dose of camptothecin in human colon carcinoma HT29 cells, DNA replication was inhibited rapidly and did not recover for several hours following drug removal. That inhibition occurred preferentially in late-S-phase, compared to early-S-phase, cells and was due to both an inhibition of initiation and elongation, as determined by pulse-labeling nucleotide incorporation in replication foci and DNA fibers. DNA replication was actively inhibited by checkpoint activation since 7-hydroxystaurosporine (UCN-01), the specific Chk1 inhibitor CHIR-124, or transfection with small interfering RNA targeting Chk1 restored both initiation and elongation. Abrogation of the checkpoint markedly enhanced camptothecin-induced DNA damage at replication sites where histone gamma-H2AX colocalized with replication foci. Together, our study demonstrates that the intra-S-phase checkpoint is exerted by Chk1 not only upon replication initiation but also upon DNA elongation.
Collapse
Affiliation(s)
- Jennifer A Seiler
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | |
Collapse
|
3
|
Abdurashidova G, Radulescu S, Sandoval O, Zahariev S, Danailov MB, Demidovich A, Santamaria L, Biamonti G, Riva S, Falaschi A. Functional interactions of DNA topoisomerases with a human replication origin. EMBO J 2007; 26:998-1009. [PMID: 17290216 PMCID: PMC1852844 DOI: 10.1038/sj.emboj.7601578] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 01/04/2007] [Indexed: 01/22/2023] Open
Abstract
The human DNA replication origin, located in the lamin B2 gene, interacts with the DNA topoisomerases I and II in a cell cycle-modulated manner. The topoisomerases interact in vivo and in vitro with precise bonds ahead of the start sites of bidirectional replication, within the pre-replicative complex region; topoisomerase I is bound in M, early G1 and G1/S border and topoisomerase II in M and the middle of G1. The Orc2 protein competes for the same sites of the origin bound by either topoisomerase in different moments of the cell cycle; furthermore, it interacts on the DNA with topoisomerase II during the assembly of the pre-replicative complex and with DNA-bound topoisomerase I at the G1/S border. Inhibition of topoisomerase I activity abolishes origin firing. Thus, the two topoisomerases are closely associated with the replicative complexes, and DNA topology plays an essential functional role in origin activation.
Collapse
Affiliation(s)
- Gulnara Abdurashidova
- Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Sorina Radulescu
- Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Oscar Sandoval
- Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Sotir Zahariev
- Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | - Laura Santamaria
- Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giuseppe Biamonti
- Molecular Biology Section, Istituto di Genetica Molecolare, CNR, Pavia, Italy
| | - Silvano Riva
- Molecular Biology Section, Istituto di Genetica Molecolare, CNR, Pavia, Italy
| | - Arturo Falaschi
- Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Molecular Biology Laboratory, Scuola Normale Superiore, Pisa, Italy
- Laboratory of Gene and Molecular Therapy, Istituto di Fisiologia Clinica, CNR, Pisa, Italy
| |
Collapse
|
4
|
Nelson SM, Ferguson LR, Denny WA. DNA and the chromosome - varied targets for chemotherapy. CELL & CHROMOSOME 2004; 3:2. [PMID: 15157277 PMCID: PMC421739 DOI: 10.1186/1475-9268-3-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 05/24/2004] [Indexed: 12/29/2022]
Abstract
The nucleus of the cell serves to maintain, regulate, and replicate the critical genetic information encoded by the genome. Genomic DNA is highly associated with proteins that enable simple nuclear structures such as nucleosomes to form higher-order organisation such as chromatin fibres. The temporal association of regulatory proteins with DNA creates a dynamic environment capable of quickly responding to cellular requirements and distress. The response is often mediated through alterations in the chromatin structure, resulting in changed accessibility of specific DNA sequences that are then recognized by specific proteins. Anti-cancer drugs that target cellular DNA have been used clinically for over four decades, but it is only recently that nuclease specific drugs have been developed to not only target the DNA but also other components of the nuclear structure and its regulation. In this review, we discuss some of the new drugs aimed at primary DNA sequences, DNA secondary structures, and associated proteins, keeping in mind that these agents are not only important from a clinical perspective but also as tools for understanding the nuclear environment in normal and cancer cells.
Collapse
Affiliation(s)
- Stephanie M Nelson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 10000, New Zealand
| | - Lynnette R Ferguson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 10000, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 10000, New Zealand
| |
Collapse
|
5
|
Gerrits CJ, Schellens JH, Creemers GJ, Wissel P, Planting AS, Pritchard JF, DePee S, de Boer-Dennert M, Harteveld M, Verweij J. The bioavailability of oral GI147211 (GG211), a new topoisomerase I inhibitor. Br J Cancer 1997; 76:946-51. [PMID: 9328158 PMCID: PMC2228077 DOI: 10.1038/bjc.1997.490] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Topoisomerase I inhibitors are new compounds of interest for cancer chemotherapy. We performed a study with GI147211, a new semisynthetic camptothecin analogue, to determine the absolute bioavailability of the drug given orally. Patients with a histologically confirmed diagnosis of a solid tumour refractory to standard forms of therapy were eligible for the study. GI147211 was given orally on day 1 and as a 30-min infusion daily on days 2-5. The treatment course was repeated every 3 weeks. In subsequent patient cohorts, the dose of the oral formulation was escalated from 1.5 mg m(-2) to 6.0 mg m(-2); the dose for i.v. administration was fixed at 1.2 mg m(-2). Plasma pharmacokinetics was performed on day 1 and 2 of the first course and on day 1 of the second course using a validated high-performance liquid chromatographic assay. Nineteen patients were entered into the study; one patient was not evaluable because the treatment course was stopped prematurely. Eighteen patients received a total of 47 treatment courses. The absolute bioavailability of GI147211 averaged 1.3 +/- 5.2%. Drug appeared quickly in plasma with a median Tmax at 0.5 h. Fasting or fed state had no significant influence on the bioavailability of GI147211. The terminal half-life after administration of oral GI147211 was 6.85 +/- 3.13 h, similar to the half-life after intravenous administration. The major toxicities were neutropenia and thrombocytopenia. Nadirs for neutropenia and thrombocytopenia occurred on day 8 and day 15 respectively. Other toxicities predominantly consisted of mild and infrequent nausea and vomiting, and fatigue. The oral administration of the drug is well tolerated. Oral administration of topoisomerase I inhibitor GI147211 results in a low bioavailability with relatively wide interpatient variation. The intravenous route of administration is advised for further development of this promising topoisomerase I inhibitor.
Collapse
Affiliation(s)
- C J Gerrits
- Department of Medical Oncology, Rotterdam Cancer Institute (Daniel den Hoed Kliniek) and University Hospital, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lawlis SJ, Keezer SM, Wu JR, Gilbert DM. Chromosome architecture can dictate site-specific initiation of DNA replication in Xenopus egg extracts. J Cell Biol 1996; 135:1207-18. [PMID: 8947545 PMCID: PMC2121087 DOI: 10.1083/jcb.135.5.1207] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Xenopus egg extracts initiate DNA replication specifically at the dihydrofolate reductase (DHFR) origin locus with intact nuclei from late G1-phase CHO cells as a substrate, but at nonspecific sites when purified DNA is assembled by the extract into an embryonic nuclear structure. Here we show that late G1-phase CHO nuclei can be cycled through an in vitro Xenopus egg mitosis, resulting in the assembly of an embryonic nuclear envelope around G1-phase chromatin. Surprisingly, replication within these chimeric nuclei initiated at a novel specific site in the 5' region of the DHFR structural gene that does not function as an origin in cultured CHO cells. Preferential initiation at this unusual site required topoisomerase II-mediated chromosome condensation during mitosis. Nuclear envelope breakdown and reassembly in the absence of chromosome condensation resulted in nonspecific initiation. Introduction of condensed chromosomes from metaphase-arrested CHO cells directly into Xenopus egg extracts was sufficient to elicit assembly of chimeric nuclei and preferential initiation at this same site. These results demonstrate clearly that chromosome architecture can determine the sites of initiation of replication in Xenopus egg extracts, supporting the hypothesis that patterns of initiation in vertebrate cells are established by higher order features of chromosome structure.
Collapse
Affiliation(s)
- S J Lawlis
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center, Syracuse 13210, USA
| | | | | | | |
Collapse
|
7
|
Speevak MD, Chevrette M. Human chromosome 3 mediates growth arrest and suppression of apoptosis in microcell hybrids. Mol Cell Biol 1996; 16:2214-25. [PMID: 8628288 PMCID: PMC231209 DOI: 10.1128/mcb.16.5.2214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chemotherapeutic treatment of tumor cells leads either to tumor cell death (usually by apoptosis) or to the formation of drug-resistant subpopulations. Known mechanisms of cancer cell drug resistance include gene amplification and increased expression of drug transporters. On the other hand, normal cells survive many forms of chemotherapy with minimal damage probably because of their capacity for growth arrest and stringent control of apoptosis. Microcell hybrids between B78 (murine melanoma) and HSF5 (normal human fibroblasts) were analyzed to identify a new human chromosomal region involved in the promotion of drug-induced growth arrest and suppression of apoptosis. In these hybrids, the presence of human chromosome 3 was strongly associated with suppression of apoptosis via G1 and G2 growth arrest during exposure to the antimetabolite N-phosphonoacetyl-L-aspartate (PALA), suggesting that a gene(s) on chromosome 3 serves an antiproliferative role in a drug-responsive growth arrest pathway.
Collapse
Affiliation(s)
- M D Speevak
- Department of Biochemistry, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
8
|
DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol 1994. [PMID: 8114714 DOI: 10.1128/mcb.14.3.1815] [Citation(s) in RCA: 513] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor protein p53 serves as a critical regulator of a G1 cell cycle checkpoint and of apoptosis following exposure of cells to DNA-damaging agents. The mechanism by which DNA-damaging agents elevate p53 protein levels to trigger G1/S arrest or cell death remains to be elucidated. In fact, whether damage to the DNA template itself participates in transducing the signal leading to p53 induction has not yet been demonstrated. We exposed human cell lines containing wild-type p53 alleles to several different DNA-damaging agents and found that agents which rapidly induce DNA strand breaks, such as ionizing radiation, bleomycin, and DNA topoisomerase-targeted drugs, rapidly triggered p53 protein elevations. In addition, we determined that camptothecin-stimulated trapping of topoisomerase I-DNA complexes was not sufficient to elevate p53 protein levels; rather, replication-associated DNA strand breaks were required. Furthermore, treatment of cells with the antimetabolite N(phosphonoacetyl)-L-aspartate (PALA) did not cause rapid p53 protein increases but resulted in delayed increases in p53 protein levels temporally correlated with the appearance of DNA strand breaks. Finally, we concluded that DNA strand breaks were sufficient for initiating p53-dependent signal transduction after finding that introduction of nucleases into cells by electroporation stimulated rapid p53 protein elevations. While DNA strand breaks appeared to be capable of triggering p53 induction, DNA lesions other than strand breaks did not. Exposure of normal cells and excision repair-deficient xeroderma pigmentosum cells to low doses of UV light, under conditions in which thymine dimers appear but DNA replication-associated strand breaks were prevented, resulted in p53 induction attributable to DNA strand breaks associated with excision repair. Our data indicate that DNA strand breaks are sufficient and probably necessary for p53 induction in cells with wild-type p53 alleles exposed to DNA-damaging agents.
Collapse
|
9
|
Nelson WG, Kastan MB. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol 1994; 14:1815-23. [PMID: 8114714 PMCID: PMC358539 DOI: 10.1128/mcb.14.3.1815-1823.1994] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The tumor suppressor protein p53 serves as a critical regulator of a G1 cell cycle checkpoint and of apoptosis following exposure of cells to DNA-damaging agents. The mechanism by which DNA-damaging agents elevate p53 protein levels to trigger G1/S arrest or cell death remains to be elucidated. In fact, whether damage to the DNA template itself participates in transducing the signal leading to p53 induction has not yet been demonstrated. We exposed human cell lines containing wild-type p53 alleles to several different DNA-damaging agents and found that agents which rapidly induce DNA strand breaks, such as ionizing radiation, bleomycin, and DNA topoisomerase-targeted drugs, rapidly triggered p53 protein elevations. In addition, we determined that camptothecin-stimulated trapping of topoisomerase I-DNA complexes was not sufficient to elevate p53 protein levels; rather, replication-associated DNA strand breaks were required. Furthermore, treatment of cells with the antimetabolite N(phosphonoacetyl)-L-aspartate (PALA) did not cause rapid p53 protein increases but resulted in delayed increases in p53 protein levels temporally correlated with the appearance of DNA strand breaks. Finally, we concluded that DNA strand breaks were sufficient for initiating p53-dependent signal transduction after finding that introduction of nucleases into cells by electroporation stimulated rapid p53 protein elevations. While DNA strand breaks appeared to be capable of triggering p53 induction, DNA lesions other than strand breaks did not. Exposure of normal cells and excision repair-deficient xeroderma pigmentosum cells to low doses of UV light, under conditions in which thymine dimers appear but DNA replication-associated strand breaks were prevented, resulted in p53 induction attributable to DNA strand breaks associated with excision repair. Our data indicate that DNA strand breaks are sufficient and probably necessary for p53 induction in cells with wild-type p53 alleles exposed to DNA-damaging agents.
Collapse
Affiliation(s)
- W G Nelson
- Johns Hopkins Oncology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | | |
Collapse
|
10
|
Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci U S A 1992; 89:7491-5. [PMID: 1323840 PMCID: PMC49736 DOI: 10.1073/pnas.89.16.7491] [Citation(s) in RCA: 1196] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cell cycle checkpoints appear to contribute to an increase in cell survival and a decrease in abnormal heritable genetic changes following exposure to DNA damaging agents. Though several radiation-sensitive yeast mutants have been identified, little is known about the genes that control these responses in mammalian cells. Recent studies from our laboratory have demonstrated a close correlation between expression of wild-type p53 genes in human hematopoietic cells and their ability to arrest in G1 phase after certain types of DNA damage. In the present study, this correlation was first generalized to nonhematopoietic mammalian cells as well. A cause and effect relationship between expression of wild-type p53 and the G1 arrest that occurs after gamma irradiation was then established by demonstrating (i) acquisition of the G1 arrest after gamma irradiation following transfection of wild-type p53 genes into cells lacking endogenous p53 genes and (ii) loss of the G1 arrest after irradiation following transfection of mutant p53 genes into cells with wild-type endogenous p53 genes. A defined role for p53 (the most commonly mutated gene in human cancers) in a physiologic pathway has, to our knowledge, not been reported previously. Furthermore, these experiments illustrate one way in which a mutant p53 gene product can function in a "dominant negative" manner. Participation of p53 in this pathway suggests a mechanism for the contribution of abnormalities in p53 to tumorigenesis and genetic instability and provides a useful model for studies of the molecular mechanisms of p53 involvement in controlling the cell cycle.
Collapse
Affiliation(s)
- S J Kuerbitz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | |
Collapse
|