1
|
Vargas-Suárez M, Castro-Sánchez A, Toledo-Ortiz G, González de la Vara LE, García E, Loza-Tavera H. Protein phosphorylation regulates in vitro spinach chloroplast petD mRNA 3'-untranslated region stability, processing, and degradation. Biochimie 2012; 95:400-9. [PMID: 23108228 DOI: 10.1016/j.biochi.2012.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 10/17/2012] [Indexed: 12/19/2022]
Abstract
RNA-binding proteins (RNPs) participate in diverse processes of mRNA metabolism, and phosphorylation changes their binding properties. In spinach chloroplasts, 24RNP and 28RNP are associated with polynucleotide posphorylase forming a complex on charge of pre-mRNA 3'-end maturation. Here, we tested the hypothesis that the phosphorylation status of 24RNP and 28RNP, present in a spinach chloroplast mRNA 3'-UTR processing extract (CPE), controls the transition between petD precursor stabilization, 3'-UTR processing, and RNA degradation in vitro. The CPE processed or stabilized petD precursor depending on the ATP concentration present in an in vitro 3'-UTR processing (IVP) assay. These effects were also observed when ATP was pre-incubated and removed before the IVP assay. Moreover, a dephosphorylated (DP)-CPE degraded petD precursor and recovered 3'-UTR processing or stabilization activities in an ATP concentration dependent manner. To determine the role 24/28RNP plays in regulating these processes a 24/28RNP-depleted (Δ24/28)CPE was generated. The Δ24/28CPE degraded the petD precursor, but when it was reconstituted with recombinant non-phosphorylated (NP)-24RNP or NP-28RNP, the precursor was stabilized, whereas when Δ24/28CPE was reconstituted with phosphorylated (P)-24RNP or P-28RNP, it recovered 3'-UTR processing, indicating that 24RNP or 28RNP is needed to stabilize the precursor, have a redundant role, and their phosphorylation status regulates the transition between precursor stabilization and 3'-UTR processing. A DP-Δ24/28CPE reconstituted or not with NP-24/28RNP degraded petD precursor. Pre-incubation of DP-Δ24/28CPE with NP-24/28RNP plus 0.03 mM ATP recovered 3'-UTR processing activity, and its reconstitution with P-24/28RNP stabilized the precursor. However, pre-incubation of DP-Δ24/28CPE with 0.03 mM ATP, and further reconstitution with NP-24/28RNP or P-24/28RNP produced precursor stability instead of RNA degradation, and RNA processing instead of precursor stability, respectively. Moreover, in vitro phosphorylation of CPE showed that 24RNP, 28RNP, and other proteins may be phosphorylated. Altogether, these results reveal that phosphorylation of 24RNP, 28RNP, and other unidentified CPE proteins mediates the in vitro interplay between petD precursor stability, 3'-UTR processing, and degradation, and support the idea that protein phosphorylation plays an important role in regulating mRNA metabolism in chloroplast.
Collapse
Affiliation(s)
- Martín Vargas-Suárez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Colonia Ciudad Universitaria, 04510 México, DF, Mexico.
| | | | | | | | | | | |
Collapse
|
2
|
Zhelyazkova P, Hammani K, Rojas M, Voelker R, Vargas-Suárez M, Börner T, Barkan A. Protein-mediated protection as the predominant mechanism for defining processed mRNA termini in land plant chloroplasts. Nucleic Acids Res 2012; 40:3092-105. [PMID: 22156165 PMCID: PMC3326301 DOI: 10.1093/nar/gkr1137] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/19/2011] [Accepted: 11/09/2011] [Indexed: 11/12/2022] Open
Abstract
Most chloroplast mRNAs are processed from larger precursors. Several mechanisms have been proposed to mediate these processing events, including site-specific cleavage and the stalling of exonucleases by RNA structures. A protein barrier mechanism was proposed based on analysis of the pentatricopeptide repeat (PPR) protein PPR10: PPR10 binds two intercistronic regions and impedes 5'- and 3'-exonucleases, resulting in processed RNAs with PPR10 bound at the 5'- or 3'-end. In this study, we provide evidence that protein barriers are the predominant means for defining processed mRNA termini in chloroplasts. First, we map additional RNA termini whose arrangement suggests biogenesis via a PPR10-like mechanism. Second, we show that the PPR protein HCF152 binds to the immediate 5'- or 3'-termini of transcripts that require HCF152 for their accumulation, providing evidence that HCF152 defines RNA termini by blocking exonucleases. Finally, we build on the observation that the PPR10 and HCF152 binding sites accumulate as small chloroplast RNAs to infer binding sites of other PPR proteins. We show that most processed mRNA termini are represented by small RNAs whose sequences are highly conserved. We suggest that each such small RNA is the footprint of a PPR-like protein that protects the adjacent RNA from degradation.
Collapse
Affiliation(s)
- Petya Zhelyazkova
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Kamel Hammani
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Margarita Rojas
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Rodger Voelker
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Martín Vargas-Suárez
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Thomas Börner
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alice Barkan
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
3
|
Zhelyazkova P, Sharma CM, Förstner KU, Liere K, Vogel J, Börner T. The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase. THE PLANT CELL 2012; 24:123-36. [PMID: 22267485 PMCID: PMC3289561 DOI: 10.1105/tpc.111.089441] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/09/2011] [Accepted: 01/02/2012] [Indexed: 05/18/2023]
Abstract
Gene expression in plastids of higher plants is dependent on two different transcription machineries, a plastid-encoded bacterial-type RNA polymerase (PEP) and a nuclear-encoded phage-type RNA polymerase (NEP), which recognize distinct types of promoters. The division of labor between PEP and NEP during plastid development and in mature chloroplasts is unclear due to a lack of comprehensive information on promoter usage. Here, we present a thorough investigation into the distribution of PEP and NEP promoters within the plastid genome of barley (Hordeum vulgare). Using a novel differential RNA sequencing approach, which discriminates between primary and processed transcripts, we obtained a genome-wide map of transcription start sites in plastids of mature first leaves. PEP-lacking plastids of the albostrians mutant allowed for the unambiguous identification of NEP promoters. We observed that the chloroplast genome contains many more promoters than genes. According to our data, most genes (including genes coding for photosynthesis proteins) have both PEP and NEP promoters. We also detected numerous transcription start sites within operons, indicating transcriptional uncoupling of genes in polycistronic gene clusters. Moreover, we mapped many transcription start sites in intergenic regions and opposite to annotated genes, demonstrating the existence of numerous noncoding RNA candidates.
Collapse
Affiliation(s)
- Petya Zhelyazkova
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany
| | - Cynthia M. Sharma
- Research Center for Infectious Diseases, University of Würzburg, D-97080 Wuerzburg, Germany
| | - Konrad U. Förstner
- Research Center for Infectious Diseases, University of Würzburg, D-97080 Wuerzburg, Germany
- Institute for Molecular Infection Biology, University of Würzburg, D-97080 Wuerzburg, Germany
| | - Karsten Liere
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, D-97080 Wuerzburg, Germany
| | - Thomas Börner
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Germany
| |
Collapse
|
4
|
Tangphatsornruang S, Birch-Machin I, Newell CA, Gray JC. The effect of different 3' untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco. PLANT MOLECULAR BIOLOGY 2011; 76:385-96. [PMID: 20859755 DOI: 10.1007/s11103-010-9689-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 09/07/2010] [Indexed: 05/11/2023]
Abstract
The 3' untranslated region (3' UTR) of transcripts is a major determinant of transcript stability in plastids and plays an important role in regulating gene expression. In order to compare the effect of different 3' UTRs on transgene expression in tobacco chloroplasts, the 3' UTRs from the tobacco chloroplast rbcL, psbA, petD and rpoA genes and the terminator region of the Escherichia coli rrnB operon were inserted downstream of the gfp reporter gene under the control of the psbA promoter, and the constructs were introduced into the plastid genome by particle bombardment. RNA-gel blot analysis of homoplasmic transplastomic plants identified gfp transcripts of ~1.0 and ~1.4 kb from all constructs and showed that plants expressing gfp with the rrnB terminator contained 4 times more gfp transcripts than plants expressing gfp with the rbcL and rpoA 3' UTRs. The amounts of transcripts accumulated roughly correlated with the half-life of the transcripts, determined by RNA-gel blot analysis of transcripts present in leaves treated with actinomycin D to prevent continued transcription of the chimeric gfp genes. Transcripts containing the 3' region of rrnB were most stable, with half-lives of ~43 h, considerably longer than the half-lives of the other ~1.0 kb gfp transcripts (13-26 h). Immunoblot analysis with antibodies to GFP indicated that all plants contained about the same amount of GFP (~0.2% total soluble protein), suggesting either that translation was limited by something other than the amount of transcript or that the 3' UTR was affecting translation.
Collapse
|
5
|
Loza-Tavera H, Vargas-Suárez M, Díaz-Mireles E, Torres-Márquez ME, González de la Vara LE, Moreno-Sánchez R, Gruissem W. Phosphorylation of the spinach chloroplast 24 kDa RNA-binding protein (24RNP) increases its binding to petD and psbA 3' untranslated regions. Biochimie 2006; 88:1217-28. [PMID: 16675088 DOI: 10.1016/j.biochi.2006.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 03/31/2006] [Indexed: 11/27/2022]
Abstract
The chloroplast 24 kDa RNA binding protein (24RNP) from Spinacea oleracea is a nuclear encoded protein that binds the 3' untranslated region (3'UTR) of some chloroplast mRNAs and seems to be involved in some processes of mRNA metabolism, such as 3'UTR processing, maturation and stabilization. The 24RNP is similar to the 28RNP which is involved in the correct maturation of petD and psbA 3'UTRs, and when phosphorylated, decreases its binding affinity for RNA. In the present work, we determined that the recombinant 24RNP was phosphorylated in vitro either by an animal protein kinase C, a plant Ca(2+)-dependent protein kinase, or a chloroplastic kinase activity present in a protein extract with 3'-end processing activity in which the 24RNP is also present. Phosphorylation of 24RNP increased the binding capacity (B(max)) 0.25 time for petD 3'UTR, and three times for psbA 3'UTR; the affinity for P-24RNP only increased when the interaction with petD was tested. Competition experiments suggested that B(max), not K(d), might be a more important factor in the P-24RNP-3'UTR interaction. The data suggested that the 24RNP role in chloroplast mRNA metabolism may be regulated in vivo by changes in its phosphorylation status carried out by a chloroplastic kinase.
Collapse
Affiliation(s)
- H Loza-Tavera
- Departamento de Bioquímica y Biología Molecular de Plantas, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 Mexico, D.F. Mexico.
| | | | | | | | | | | | | |
Collapse
|
6
|
Bollenbach TJ, Tatman DA, Stern DB. CSP41a, a multifunctional RNA-binding protein, initiates mRNA turnover in tobacco chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:842-52. [PMID: 14675449 DOI: 10.1046/j.1365-313x.2003.01935.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Expression of chloroplast stem-loop binding protein (CSP)41a, a highly conserved chloroplast endoribonuclease, was reduced >90% by the expression of antisense RNA in Nicotiana tabacum. The most striking effects of this silencing were two- to sevenfold decreases in the degradation rates of rbcL, psbA, and petD transcripts in lysed chloroplast extracts. These results are consistent with the hypothesis that CSP41a participates in initiating mRNA turnover through endonucleolytic cleavages. Surprisingly, rbcL and psbA mRNAs accumulated to similar levels in wild-type and antisense lines. This suggested that decreased degradation was compensated by reduced transcription, which was confirmed using run-on transcription assays. The collective accumulation of petD-containing mRNAs in antisense plants decreased by 25% compared to wild-type controls. However, the relative levels of petD processing intermediates in wild-type and antisense plants did not differ, and there were no changes in petD 3'-end maturation, suggesting that CSP41a is not required for petD RNA processing. CSP41a is a Mg2+-dependent enzyme; therefore, extracts from antisense plants were tested at different Mg2+ concentrations. These experiments showed that the half-life of rbcL decreased as the Mg2+ concentration was reduced, and at <1 mm free Mg2+, conditions where CSP41a is nearly inactive in vitro, the rbcL degradation rate was similar in wild-type and antisense extracts, suggesting that CSP41a is normally bypassed under these conditions. Mg2+ has been shown to mediate RNA stability during chloroplast biogenesis, and our data suggest that regulation of CSP41a activity by Mg2+ is a component of this process.
Collapse
Affiliation(s)
- Thomas J Bollenbach
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
7
|
Bollenbach TJ, Stern DB. Secondary structures common to chloroplast mRNA 3'-untranslated regions direct cleavage by CSP41, an endoribonuclease belonging to the short chain dehydrogenase/reductase superfamily. J Biol Chem 2003; 278:25832-8. [PMID: 12734190 DOI: 10.1074/jbc.m303559200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CSP41 (chloroplast stem-loop-binding protein of 41 kDa), a chloroplast endonuclease belonging to the SDR superfamily, preferentially cleaves stem-loop-containing RNAs in vitro. This potentially directs it to the 3'-ends of mature chloroplast mRNAs, which generally possess such structures. To understand the basis for this discrimination, the RNA elements directing CSP41 cleavage of petD RNA in vitro were dissected. Substrates containing fully base-paired stem-loops were optimal substrates, whereas deletion of part of the stem-loop decreased activity by 100-fold, and deletion of the distal arm of the stem-loop abolished cleavage, even in substrates containing the primary CSP41 cleavage site. Competition assays showed that the decrease in activity resulted from decreased affinity for the RNA by CSP41. Mutations of the residues at the scissile bond and mutations and deletions at the terminal loop of the stem had a moderate effect on activity but no effect on cleavage site specificity, suggesting that CSP41 has no sequence specificity. Titration of ethidium bromide into the assay decreased activity to a basal level of approximately 18%, and introduction of a single base bulge into either arm of the stem-loop decreased cleavage at the primary cleavage site by up to 70%. This suggests that changing the structure of the helical stem has a mild effect on activity. Deletion analysis of CSP41 suggests that the specificity domain lies in the first 73 amino acids of the protein, a domain that also contains a putative dehydrogenaselike mononucleotide binding motif. These results are consistent with a broad role for CSP41 in the degradation of stem-loop-containing mRNAs.
Collapse
Affiliation(s)
- Thomas J Bollenbach
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
8
|
McCormac DJ, Litz H, Wang J, Gollnick PD, Berry JO. Light-associated and processing-dependent protein binding to 5' regions of rbcL mRNA in the chloroplasts of a C4 plant. J Biol Chem 2001; 276:3476-83. [PMID: 11076953 DOI: 10.1074/jbc.m009236200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In amaranth, a C(4) dicotyledonous plant, the plastid rbcL gene (encoding the large subunit of ribulose-1,5-bisphosphate carboxylase) is regulated post-transcriptionally during many developmental processes, including light-mediated development. To identify post-transcriptional regulators of rbcL expression, three types of analyses (polysome heel printing, gel retardation, and UV cross-linking) were utilized. These approaches revealed that multiple proteins interact with 5' regions of rbcL mRNA in light-grown, but not etiolated, amaranth plants. Light-associated binding of a 47-kDa protein (p47), observed by UV cross-linking, was highly specific for the rbcL 5' RNA. Binding of p47 occurred only with RNAs corresponding to mature processed rbcL transcripts (5'-untranslated region (UTR) terminating at -66); transcripts with longer 5'-UTRs did not associate with p47 in vitro. Variations in the length of the rbcL 5'-UTR were found to occur in vivo, and these different 5' termini may prevent or enhance light-associated p47 binding, possibly affecting rbcL expression as well. p47 binding correlates with light-dependent rbcL polysome association of the fully processed transcripts in photosynthetic leaves and cotyledons but not with cell-specific rbcL mRNA accumulation in bundle sheath and mesophyll chloroplasts.
Collapse
Affiliation(s)
- D J McCormac
- Department of Biological Sciences, State University of New York, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
9
|
Nakamura T, Ohta M, Sugiura M, Sugita M. Chloroplast ribonucleoproteins function as a stabilizing factor of ribosome-free mRNAs in the stroma. J Biol Chem 2001; 276:147-52. [PMID: 11038367 DOI: 10.1074/jbc.m008817200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-transcriptional RNA processing is an important step in the regulation of chloroplast gene expression, and a number of chloroplast ribonucleoproteins (cpRNPs) are likely to be involved in this process. The major tobacco cpRNPs are composed of five species: cp28, cp29A, cp29B, cp31, and cp33 and these are divided into three groups (I, II, and III). By immunoprecipitation, gel filtration, and Western blot analysis, we demonstrated that these cpRNPs are abundant stromal proteins that exist as complexes with ribosome-free mRNAs. Many ribosome-free psbA mRNAs coprecipitate with cpRNPs, indicating that the majority of stromal psbA mRNAs are associated with cpRNPs. In addition, an in vitro mRNA degradation assay indicated that exogenous psbA mRNA is more rapidly degraded in cpRNP-depleted extracts than in nondepleted extracts. When the depleted extract was reconstituted with recombinant cpRNPs, the psbA mRNA in the extract was protected from degradation to a similar extent as the psbA mRNA in the nondepleted extract. Moreover, restoration of the stabilizing activity varied following addition of individual group-specific cpRNPs alone or in combination. When the five cpRNPs were supplemented in the depleted extract, full activity was restored. We propose that these cpRNPs act as stabilizing factors for nonribosome-bound mRNAs in the stroma.
Collapse
Affiliation(s)
- T Nakamura
- Center for Gene Research, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
10
|
Horlitz M, Klaff P. Gene-specific trans-regulatory functions of magnesium for chloroplast mRNA stability in higher plants. J Biol Chem 2000; 275:35638-45. [PMID: 10918066 DOI: 10.1074/jbc.m005622200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In higher plant chloroplasts the accumulation of plastid-encoded mRNAs during leaf maturation is regulated via gene-specific mRNA stabilization. The half-lives of chloroplast RNAs are specifically affected by magnesium ions. psbA mRNA (D1 protein of photosystem II), rbcL mRNA (large subunit of ribulose-1,5-bisphosphate carboxylase), 16 S rRNA, and tRNA(His) gain stability at specific magnesium concentrations in an in vitro degradation system from spinach chloroplasts. Each RNA exhibits a typical magnesium concentration-dependent stabilization profile. It shows a cooperative response of the stability-regulated psbA mRNA and a saturation curve for the other RNAs. The concentration of free Mg(2+) rises during chloroplast development within a range sufficient to mediate gene-specific mRNA stabilization in vivo as observed in vitro. We suggest that magnesium ions are a trans-acting factor mediating differential mRNA stability.
Collapse
Affiliation(s)
- M Horlitz
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Federal Republic of Germany
| | | |
Collapse
|
11
|
Monde RA, Greene JC, Stern DB. The sequence and secondary structure of the 3'-UTR affect 3'-end maturation, RNA accumulation, and translation in tobacco chloroplasts. PLANT MOLECULAR BIOLOGY 2000; 44:529-42. [PMID: 11197327 DOI: 10.1023/a:1026540310934] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
RNA maturation and modulation of RNA stability play important roles in chloroplast gene expression. In vitro and in vivo studies have shown that both the 5'- and 3'-untranslated regions (UTRs) contain sequence and structural elements that guide these processes, and interact with specific proteins. We have previously characterized the spinach chloroplast petD 3'-UTR in detail by in vitro approaches. This stem-loop forming sequence is a weak terminator but is required for RNA maturation and also exhibits sequence-specific protein binding. To test petD 3'-UTR function in vivo, tobacco chloroplast transformants were generated containing uidA reporter genes flanked by variants of the petD 3'-UTR, including one which does not form an RNA-protein complex in vitro, and one which lacks a stem-loop structure. Analysis of uidA mRNA indicated that a stable secondary structure is required to accumulate a discrete mRNA, and that changes in the 3'-UTR sequence which affect protein binding in vitro can also affect RNA metabolism in vivo. The 3'-UTR also influenced beta-glucuronidase protein accumulation, but not in proportion to RNA levels. These results raise the possibility that in tobacco chloroplasts, the 3'-UTR may influence translational yield.
Collapse
Affiliation(s)
- R A Monde
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
12
|
Abstract
The expression of the plastid genome is dependent on a large number of nucleus-encoded factors. Some of these factors have been identified through biochemical assays, and many others by genetic screens in Arabidopsis, Chlamydomonas and maize. Nucleus-encoded factors function in each step in plastid gene expression, including transcription, RNA editing, RNA splicing, RNA processing, RNA degradation, and translation. Many of the factors discovered via biochemical approaches play general roles as components of the basic gene expression machinery, whereas the majority of those identified by genetic approaches are specifically required for the expression of small subsets of chloroplast genes and are involved in post-transcriptional steps. Some of the nucleus-encoded factors may play regulatory roles and modulate chloroplast gene expression in response to developmental or environmental cues. They may also serve to couple chloroplast gene expression with the assembly of the protein products into the large complexes of the photosynthetic apparatus. The convergence of biochemical approaches with those of classical and reverse genetics, and the contributions from large scale genomic sequencing should result in rapid advances in our understanding of the regulatory interactions that govern plastid gene expression.
Collapse
Affiliation(s)
- A Barkan
- Institute of Molecular Biology, University of Oregon, OR 97403, Eugene, USA
| | | |
Collapse
|
13
|
Levy H, Kindle KL, Stern DB. Target and specificity of a nuclear gene product that participates in mRNA 3'-end formation in Chlamydomonas chloroplasts. J Biol Chem 1999; 274:35955-62. [PMID: 10585484 DOI: 10.1074/jbc.274.50.35955] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chloroplast mRNA maturation is catalyzed by nucleus-encoded processing enzymes. We previously described a recessive nuclear mutation (crp3) that affects 3'-end formation of several chloroplast mRNAs in Chlamydomonas reinhardtii (Levy, H., Kindle, K. L., and Stern, D. B. (1997) Plant Cell 9, 825-836). In the crp3 background, atpB mRNA lacking a 3'-inverted repeat normally required for stability accumulates as a discrete transcript. The mutation also affects the atpA gene cluster; polycistronic mRNAs with psbI or cemA 3'-ends accumulate to a lower level in the crp3 background. Here, we demonstrate that the crp3 mutation also alters 3'-end formation of psbI mRNA and cemA-containing mRNAs. A novel 3'-end is formed in monocistronic psbI transcripts, and this is the only terminus observed when the psbI 3'-untranslated region is fused to an aadA reporter gene. Accumulation of mRNAs with 3'-ends between cemA and atpH, which is immediately downstream, was reduced. However, this sequence was not recognized as a 3'-end formation element in chimeric genes. The crp3 mutation was able to confer stability to three different atpB 3'-stem-loop-disrupting mutations that lack sequence similarity, but are located at a similar distance from the translation termination codon. We propose that the wild-type CRP3 gene product is part of the general 3' --> 5' processing machinery.
Collapse
Affiliation(s)
- H Levy
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853-1801, USA
| | | | | |
Collapse
|
14
|
Zerges W, Rochaix JD. Low density membranes are associated with RNA-binding proteins and thylakoids in the chloroplast of Chlamydomonas reinhardtii. J Cell Biol 1998; 140:101-10. [PMID: 9425158 PMCID: PMC2132599 DOI: 10.1083/jcb.140.1.101] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chloroplast subfractions were tested with a UV cross-linking assay for proteins that bind to the 5' untranslated region of the chloroplast psbC mRNA of the green alga Chlamydomonas reinhardtii. These analyses revealed that RNA-binding proteins of 30-32, 46, 47, 60, and 80 kD are associated with chloroplast membranes. The buoyant density and the acyl lipid composition of these membranes are compatible with their origin being the inner chloroplast envelope membrane. However, unlike previously characterized inner envelope membranes, these membranes are associated with thylakoids. One of the membrane-associated RNA-binding proteins appears to be RB47, which has been reported to be a specific activator of psbA mRNA translation. These results suggest that translation of chloroplast mRNAs encoding thylakoid proteins occurs at either a subfraction of the chloroplast inner envelope membrane or a previously uncharacterized intra-chloroplast compartment, which is physically associated with thylakoids.
Collapse
Affiliation(s)
- W Zerges
- Department of Molecular Biology and Department of Plant Biology, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.
| | | |
Collapse
|
15
|
Goldschmidt-Clermont M. Coordination of nuclear and chloroplast gene expression in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 177:115-80. [PMID: 9378616 DOI: 10.1016/s0074-7696(08)62232-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plastid proteins are encoded in two genomes, one in the nucleus and the other in the organelle. The expression of genes in these two compartments in coordinated during development and in response to environmental parameters such as light. Two converging approaches reveal features of this coordination: the biochemical analysis of proteins involved in gene expression, and the genetic analysis of mutants affected in plastid function or development. Because the majority of proteins implicated in plastid gene expression are encoded in the nucleus, regulatory processes in the nucleus and in the cytoplasm control plastid gene expression, in particular during development. Many nucleus-encoded factors involved in transcriptional and posttranscriptional steps of plastid gene expression have been characterized. We are also beginning to understand whether and how certain developmental or environmental signals perceived in one compartment may be transduced to the other.
Collapse
|
16
|
Zhong Z, Wu N. Expressional regulationin vitro of psbA mRNA 3′ untranslated region in rice and sorghum. ACTA ACUST UNITED AC 1997; 40:406-13. [DOI: 10.1007/bf02881735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/1997] [Indexed: 10/22/2022]
|
17
|
Liere K, Link G. Chloroplast endoribonuclease p54 involved in RNA 3'-end processing is regulated by phosphorylation and redox state. Nucleic Acids Res 1997; 25:2403-8. [PMID: 9171092 PMCID: PMC146767 DOI: 10.1093/nar/25.12.2403] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chloroplast RNA-binding protein p54 is an endoribonuclease required for 3'end-processing of plastid precursor transcripts. We find that purified p54 can serve as a phosphate acceptor for protein kinases in vitro. Both the processing and RNA-binding activities of p54 are enhanced by phosphorylation and decreased by dephosphorylation. In addition, the enzyme is activated by the oxidized form of glutathione and inhibited by the reduced form, whereas other redox reagents that were tested showed no effect. Kinase treatment of p54 prior to oxidation by glutathione resulted in highest levels of activation, suggesting that phosphorylation and redox state act together to control p54 activity in vitro and possibly also in vivo.
Collapse
Affiliation(s)
- K Liere
- Plant Cell Physiology and Molecular Biology, University of Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
18
|
Levy H, Kindle KL, Stern DB. A Nuclear Mutation That Affects the 3[prime] Processing of Several mRNAs in Chlamydomonas Chloroplasts. THE PLANT CELL 1997; 9:825-836. [PMID: 12237367 PMCID: PMC156959 DOI: 10.1105/tpc.9.5.825] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We previously created and analyzed a Chlamydomonas reinhardtii strain, [delta]26, in which an inverted repeat in the 3[prime] untranslated region of the chloroplast atpB gene was deleted. In this strain, atpB transcripts are unstable and heterogeneous in size, and growth is poor under conditions in which photosynthesis is required. Spontaneous suppressor mutations that allow rapid photosynthetic growth have been identified. One strain, [delta]26S, retains the atpB deletion yet accumulates a discrete and stable atpB transcript as a consequence of a recessive nuclear mutation. Unlike previously isolated Chlamydomonas nuclear mutations that affect chloroplast mRNA accumulation, the mutation in [delta]26S affects several chloroplast transcripts. For example, in the atpA gene cluster, the relative abundance of several messages was altered in a manner consistent with inefficient mRNA 3[prime] end processing. Furthermore, [delta]26S cells accumulated novel transcripts with 3[prime] termini in the petD-trnR intergenic region. These transcripts are potential intermediates in 3[prime] end processing. In contrast, no alterations were detected for petD, atpA, or atpB mRNA 5[prime] ends; neither were there gross alterations detected for several other mRNAs, including the wild-type atpB transcript. We suggest that the gene identified by the suppressor mutation encodes a product involved in the processing of monocistronic and polycistronic messages.
Collapse
Affiliation(s)
- H. Levy
- Boyce Thompson Institute, Cornell University, Tower Road, Ithaca, New York 14853
| | | | | |
Collapse
|
19
|
Hotchkiss T, Hollingsworth MJ. RNA processing alters open reading frame stoichiometry from the large ATP synthase gene cluster of spinach chloroplasts. PLANT MOLECULAR BIOLOGY 1997; 33:635-640. [PMID: 9132055 DOI: 10.1023/a:1005780404444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The large ATP synthase gene cluster of spinach chloroplasts is a multigenic cluster that encodes the small ribosomal subunit 2 followed by four ATP synthase subunits. The stoichiometry of the ATP synthase gene products from this cluster changes markedly between transcription and assembly of the complex. The two primary transcripts from this gene cluster undergo a complex series of RNA processing steps. Here we show that the extensive RNA processing that the large ATP synthase gene cluster transcripts undergo results in a substantial change in the stoichiometry of complete open reading frames (ORFs) of the four ATP synthase genes. Processing directly affects the stoichiometry of open reading frames from this gene cluster by intragenic cleavage. It may also affect open reading frame stoichiometry more indirectly, but equally significantly, by cleavage-induced alteration of stability of some of the processed transcripts relative to the others.
Collapse
Affiliation(s)
- T Hotchkiss
- Department of Biological Sciences, State University of New York, Buffalo 14260, USA
| | | |
Collapse
|
20
|
Kudla J, Hayes R, Gruissem W. Polyadenylation accelerates degradation of chloroplast mRNA. EMBO J 1996; 15:7137-46. [PMID: 9003789 PMCID: PMC452540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The expression of chloroplast genes is regulated by several mechanisms, one of which is the modulation of RNA stability. To understand how this regulatory step is controlled during chloroplast development, we have begun to define the mechanism of plastid mRNA degradation. We show here that the degradation petD mRNA involves endonucleolytic cleavage at specific sites upstream of the 3' stem-loop structure. The endonucleolytic petD cleavage products can be polyadenylated in vitro, and similar polyadenylated RNA products are detectable in vivo. PCR analysis of the psbA and psaA-psaB-rps14 operons revealed other polyadenylated endonucleolytic cleavage products, indicating that poly(A) addition appears to be an integral modification during chloroplast mRNA degradation. Polyadenylation promotes efficient degradation of the cleaved petD RNAs by a 3'-5' exoribonuclease. Furthermore, polyadenylation also plays an important role in the degradation of the petD mRNA 3' end. Although the 3' end stem-loop is usually resistant to nucleases, adenylation renders the secondary structure susceptible to the 3'-5' exoribonuclease. Analysis of 3' ends confirms that polyadenylation occurs in vivo, and reveals that the extent of adenylation increases during the degradation of plastid mRNA in the dark. Based on these results, we propose a novel mechanism for polyadenylation in the regulation of plastid mRNA degradation.
Collapse
Affiliation(s)
- J Kudla
- Department of Plant Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
21
|
Lichtlé C, Garnier F, Bernard C, Zabulon G, Spilar A, Thomas JC, Etienne AL. Differential transcription of phycobiliprotein components in Rhodella violacea. Light and nitrogen effects on the 33-kilodalton phycoerythrin rod linker polypeptide, phycocyanin, and phycoerythrin transcripts. PLANT PHYSIOLOGY 1996; 112:1045-1054. [PMID: 8938410 PMCID: PMC158031 DOI: 10.1104/pp.112.3.1045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In Rhodella violacea phycoerythrin (PE) has two transcripts, a premessenger and a mature messenger (the gene contains an intron). Phycocyanin, which is plastid-encoded, and the 33-kD PE rod linker polypeptide, which is nuclear-encoded, have only one transcript. The PE premessenger had a rapid turnover; mature transcripts were stable in the light and more stable in the dark. In the presence of rifampicin, cells that shifted from dark to light exhibited an active translation of preexisting transcripts. There are indications of a modulation of the nuclear genome expression by the chloroplast; it may involve an unstable, plastid-encoded translational activator. All transcripts disappeared rapidly during nitrogen starvation. If nitrogen addition was carried out in the dark, active transcription and translation resumed as in light conditions, but ceased after 2 d. Both nitrogen and light were required for a total recovery after nitrogen starvation. Compared with the transcripts of phycobilisome components studied so far in cyanobacteria and Rhodophyceae, the mature transcripts of R. violacea are very stable when nitrogen is not limiting. The unstable PE premessenger is a good indicator of active transcription. This organism is therefore an interesting model to study the regulation of gene expression and the interactions between chloroplastic and nuclear genomes.
Collapse
Affiliation(s)
- C Lichtlé
- Laboratoire de Photorégulation et Dynamique des Membranes Végétales, Ecole Normale Supérieure, Centre National de la Recherche Scientifique Unité de Recherche Associée 1810, GDR 1002, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Sugita M, Sugiura M. Regulation of gene expression in chloroplasts of higher plants. PLANT MOLECULAR BIOLOGY 1996; 32:315-26. [PMID: 8980485 DOI: 10.1007/bf00039388] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chloroplasts contain their own genetic system which has a number of prokaryotic as well as some eukaryotic features. Most chloroplast genes of higher plants are organized in clusters and are cotranscribed as polycistronic pre-RNAs which are generally processes into many shorter overlapping RNA species, each of which accumulates of steady-state RNA levels. This indicates that posttranscriptional RNA processing of primary transcripts is an important step in the control of chloroplast gene expression. Chloroplast RNA processing steps include RNA cleavage/trimming, RNA splicing, ENA editing and RNA stabilization. Several chloroplast genes are interrupted by introns and therefore require processing for gene function. In tobacco chloroplasts, 18 genes contain introns, six for tRNA genes and 12 for protein-encoding genes. A number of specific proteins and RNA factors are believed to be involved in splicing and maturation of pre-RNAs in chloroplasts. Processing enzymes and RNA-binding proteins which could be involved in posttranscriptional steps have been identified in the last several years. Our current knowledge of the regulation of gene expression in chloroplasts of higher plants is overviewed and further studies on this matter are also considered.
Collapse
Affiliation(s)
- M Sugita
- Center for Gene Research, Nagoya University, Japan
| | | |
Collapse
|
23
|
Yang J, Schuster G, Stern DB. CSP41, a sequence-specific chloroplast mRNA binding protein, is an endoribonuclease. THE PLANT CELL 1996; 8:1409-20. [PMID: 8776902 PMCID: PMC161263 DOI: 10.1105/tpc.8.8.1409] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Correct 3' processing of chloroplast precursor mRNAs (pre-mRNAs) requires a stem-loop structure within the 3' untranslated region. In spinach, a stable 3' stem-loop-protein complex has been shown to form in vitro between petD pre-mRNA, encoding subunit IV of the cytochrome b6/f complex, and chloroplast proteins. This complex contains three chloroplast stem-loop binding proteins (CSPs), namely, CSP29, CSP41, and CSP55. Here, we report the purification of CSP41 and cloning of the csp41 gene and show that CSP41 is encoded by a single nuclear gene. Characterization of bacterially expressed CSP41 demonstrates that this protein binds specifically to the 3' stem-loop structure and a downstream AU-rich element of petD pre-mRNA and that its binding affinity is enhanced by associating with CSP55. Our data also show that CSP41 has substantial nonspecific endoribonuclease activity. These data suggest that CSP41 could be involved in 3' processing of petD pre-mRNA and/or in RNA degradation. The fact that different reaction conditions favor RNA binding over ribonuclease activities suggests a possible mode of in vivo regulation.
Collapse
Affiliation(s)
- J Yang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
24
|
Hayes R, Kudla J, Schuster G, Gabay L, Maliga P, Gruissem W. Chloroplast mRNA 3'-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO J 1996; 15:1132-41. [PMID: 8605883 PMCID: PMC450011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In the absence of efficient transcription termination correct 3'-end processing is an essential step in the synthesis of stable chloroplast mRNAs in higher plants. We show here that 3'-end processing in vitro involves endonucleolytic cleavage downstream from the mature terminus, followed by exonucleolytic processing to a stem-loop within the 3'-untranslated region. These processing steps require a high molecular weight complex that contains both endoribonucleases and an exoribonuclease. In the presence of ancillary RNA binding proteins the complex correctly processes the 3'-end of precursor RNA. In the absence of these ancillary proteins 3'-end maturation is prevented and plastid mRNAs are degraded. Based on these results we propose a novel mechanism for the regulation of mRNA 3'-end processing and stability in chloroplasts.
Collapse
Affiliation(s)
- R Hayes
- Waksman Institute, Rutgers University, Piscataway, NJ 08855-0759, USA
| | | | | | | | | | | |
Collapse
|
25
|
Memon AR, Meng B, Mullet JE. RNA-binding proteins of 37/38 kDa bind specifically to the barley chloroplast psbA 3'-end untranslated RNA. PLANT MOLECULAR BIOLOGY 1996; 30:1195-1205. [PMID: 8704129 DOI: 10.1007/bf00019552] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The stability of the psbA mRNA increases during barley chloroplast development eventually reaching a half-life of over 40 h. Translation of psbA mRNA is also regulated in a complex way. Sequence-specific RNA binding proteins may modulate the translation or stability of the psbA mRNA during chloroplast development. UV cross-linking assays revealed that chloroplast proteins of 37 and 38 kDA bind specifically to the 3' end of psbA transcripts and not to the 5' end of psbA or rbcL transcripts. The two RNA-binding proteins were partially purified by ammonium sulfate precipitation followed by heparin agarose chromatography. Deletion and site-directed mutation analysis demonstrated that the 37/38RNPs bind in a 30 nucleotide region immediately downstream from the translation termination codon and upstream of sequences capable of forming a stem-loop structure in the 3' end of psbA transcripts. Single-base changes that diminish the binding of the 37RNP also reduce binding of the 38RNP suggesting that these proteins may bind as a heterodimer. The 37/38RNPs that bind within the 3' end of psbA transcripts could modulate transcription termination, translation or mRNA stability.
Collapse
Affiliation(s)
- A R Memon
- Department of Biochemistry and Biophysics, Texas A & M University, College Station 77843, USA
| | | | | |
Collapse
|
26
|
Liere K, Link G. Structure and expression characteristics of the chloroplast DNA region containing the split gene for tRNA(Gly) (UCC) from mustard (Sinapis alba L.). Curr Genet 1994; 26:557-63. [PMID: 7874753 DOI: 10.1007/bf00309950] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mustard chloroplast gene trnG-UCC is split by a 717-bp group-II intron. Northern hybridization and RNase protection experiments suggest cotranscription with the upstream psbK-psbI operon, but not with the downstream trnR-UCU gene. The ends of most RNase-protected fragments between psbI and trnG correlate with the position of two potential stem-loop structures in this region, which could act as RNA processing elements. However, one RNA 5' end, approximately 75 bp upstream of the trnG 5' exon, does not so correlate and is preceded by prokaryotic-type '-10' and '-35' sequence elements. This suggests the possibility that a fraction of the trnG transcripts is initiated here. All precursor transcripts spanning the trnG region seem to have a common 3' end, which was located 117 bp downstream from the 3' exon, immediately after a stem-loop region. During seedling development, the major 0.8-0.9-kb trnG precursor transcripts show a transient maximum level at around 48 h after sowing, at a time when the mature tRNA begins to accumulate to constant levels. No significant differences in transcript patterns were observed either in the light or in darkness.
Collapse
Affiliation(s)
- K Liere
- Arbeitsgruppe Pflanzliche Zellphysiologie und Molekularbiologie, Fakultät für Biologie, Ruhr-Universität Bochum, Germany
| | | |
Collapse
|
27
|
Kim M, Christopher DA, Mullet JE. Direct evidence for selective modulation of psbA, rpoA, rbcL and 16S RNA stability during barley chloroplast development. PLANT MOLECULAR BIOLOGY 1993; 22:447-63. [PMID: 8329684 DOI: 10.1007/bf00015975] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The turnover of RNAs encoded by seven different barley chloroplast genes was analyzed after treatment of barley shoots with tagetitoxin, a selective inhibitor of chloroplast transcription. Changes in RNA stability were examined during chloroplast development using basal and apical leaf sections of 4.5-day-old dark-grown seedlings and apical leaf sections of 4.0-day-old dark-grown seedlings which had been illuminated for 12 h. Of the RNAs examined, a 2.6 kb unspliced precursor of tRNA(lys) exhibited the shortest half-life, which was estimated to be 3 h. The 16S rRNA and psbA mRNA had the longest estimated half-lives, which were greater than 40 h. Among mRNAs, half-lives were estimated to range from 6 h for psaA mRNA, to over 40 h for psbA mRNA. Therefore, barley chloroplast mRNAs have long half-lives relative to bacterial mRNAs. The stability of atpB mRNA and the unspliced precursor of tRNA-lys was not altered during chloroplast development, while the stability of psaA mRNA decreased 2-fold. In contrast, the stability of the 16S rRNA and mRNAs for rpoA, psbA and rbcL increased during chloroplast development. The stability of 16S rRNA increased markedly during chloroplast development in the dark and this increase was maintained in illuminated seedlings. The stability of rbcL mRNA increased 2.5-fold during chloroplast development in the dark, and then decreased 2-fold in chloroplasts of light-grown plants. The initial increase in rpoA and psbA mRNA stability was also light-independent, with total increases in stability of at least 5-fold. In the case of rpoA, the stability of 2 of the 13 polycistronic rpoA transcripts that were detected in dark-grown plants was selectively increased during chloroplast development. In conclusion, the stability of some transcripts is selectively increased and further modulated during chloroplast development in barley. We propose that the selective stabilization of chloroplast mRNA, which occurred independent of light, is an indication that non-light regulated developmental signals are involved in barley chloroplast mRNA stability.
Collapse
Affiliation(s)
- M Kim
- Department of Biochemistry and Biophysics, Texas A & M University, College Station 77843
| | | | | |
Collapse
|
28
|
Blowers AD, Klein U, Ellmore GS, Bogorad L. Functional in vivo analyses of the 3' flanking sequences of the Chlamydomonas chloroplast rbcL and psaB genes. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:339-49. [PMID: 8388079 DOI: 10.1007/bf00291992] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Possible roles of untranslated sequences at the 3' ends of chloroplast genes, which include inverted repeat elements, were investigated in Chlamydomonas reinhardtii in vivo. Chlamydomonas chloroplast rbcL or psaB 3' flanking regions were coupled in various arrangements 3' to a chimeric gene consisting of a Chlamydomonas chloroplast atpB promoter sequence fused 5' to the Escherichia coli uidA (GUS) structural gene. These genes were introduced into the Chlamydomonas chloroplast genome at the same location by homologous recombination following microprojectile bombardment. Transformants harboring chimeric GUS genes fused to rbcL or psaB gene 3' inverted repeat sequences in their normal forward orientations accumulated GUS transcripts of a single size, whereas GUS transcripts of heterogenous sizes accumulated in transformants harboring the same gene lacking an inverted repeat sequence at its 3' end. Thus, the 3' flanking regions of the rbcL and psaB genes can define the location of the 3' terminus of a transcript in vivo. In chloroplast transformants harboring chimeric GUS genes fused to multiple inverted repeat sequences in their normal forward orientations, only GUS transcripts accumulated that were terminated by the first inverted repeat sequence. The latter data suggest that the 3' ends of these RNAs are the products of either transcription termination or endonucleolytic cleavage. Analyses of GUS transcripts in transformants harboring GUS genes terminated by rbcL or psaB gene 3' flanking regions in reversed orientations indicate that transcript 3' end formation in vivo requires nucleotide sequences located outside the inverted repeat elements. Inasmuch as decay rates of GUS transcripts were found to be independent of the presence of a 3' inverted repeat sequence, RNA stabilization does not appear to be a major in vivo function of these elements in the Chlamydomonas chloroplast transcripts studied.
Collapse
Affiliation(s)
- A D Blowers
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| | | | | | | |
Collapse
|
29
|
Subbaiah CC, Tewari KK. Purification and characterization of ribonucleoproteins from pea chloroplasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:171-9. [PMID: 8425527 DOI: 10.1111/j.1432-1033.1993.tb19884.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
RNA-binding proteins are known to mediate the post-transcriptional regulation of genes in many organisms. Recently they have been found to be important in the expression of plastid genes. We have purified a group of three single-stranded nucleic-acid-specific acidic proteins (33, 30 and 28 kDa) from chloroplast extracts of pea (Pisum sativum L.), using single-stranded DNA affinity chromatography. All of them have acidic amino termini but the amino acid sequences are unique to each polypeptide, with partial similarities to the recently reported ribonucleoproteins from tobacco chloroplasts. The pea proteins are also antigenically distinct, as shown by Western blot analysis using polyclonal antisera for purified proteins. Further, from their large nucleic-acid-binding domains and the polynucleotide substrate affinities, they are predicted to belong to a family of pea plastid ribonucleoproteins. In vivo radiolabeling of proteins in the presence of translational inhibitors as well as in vitro translation of leaf tissue RNA suggest that these proteins are encoded in the nucleus. Antibody cross-reactivity experiments reveal that their genes are conserved during plastid evolution.
Collapse
Affiliation(s)
- C C Subbaiah
- Plant Molecular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | |
Collapse
|
30
|
Ekwall K, Kermorgant M, Dujardin G, Groudinsky O, Slonimski PP. The NAM8 gene in Saccharomyces cerevisiae encodes a protein with putative RNA binding motifs and acts as a suppressor of mitochondrial splicing deficiencies when overexpressed. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:136-44. [PMID: 1603056 DOI: 10.1007/bf00587571] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have characterized the nuclear gene NAM8 in Saccharomyces cerevisiae. It acts as a suppressor of mitochondrial splicing deficiencies when present on a multicopy plasmid. The suppressed mutations affect RNA folding and are located in both group I and group II introns. The gene is weakly transcribed in wild-type strains, its overexpression is a prerequisite for the suppressor action. Inactivation of the NAM8 gene does not affect cell viability, mitochondrial function or mitochondrial genome stability. The NAM8 gene encodes a protein of 523 amino acids which includes two conserved (RNP) motifs common to RNA-binding proteins from widely different organisms. This homology with RNA-binding proteins, together with the intronic location of the suppressed mitochondrial mutations, suggests that the NAM8 protein could be a non-essential component of the mitochondrial splicing machinery and, when present in increased amounts, it could convert a deficient intron RNA folding pattern into a productive one.
Collapse
Affiliation(s)
- K Ekwall
- Centre de Génétique Moléculaire, Laboratoire propre du C.N.R.S. associé à l'Université P. et M. Curie, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
31
|
Chen H, Stern D. Specific ribonuclease activities in spinach chloroplasts promote mRNA maturation and degradation. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54413-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|