1
|
Sato M, Liebau RC, Liu Z, Liu L, Rabadan R, Gautier J. The UVSSA complex alleviates MYC-driven transcription stress. J Cell Biol 2021; 220:e201807163. [PMID: 33404608 PMCID: PMC7791342 DOI: 10.1083/jcb.201807163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/05/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023] Open
Abstract
Cancer cells develop strong genetic dependencies, enabling survival under oncogenic stress. MYC is a key oncogene activated across most cancers, and identifying associated synthetic lethality or sickness can provide important clues about its activity and potential therapeutic strategies. On the basis of previously conducted genome-wide screenings in MCF10A cells expressing MYC fused to an estrogen receptor fragment, we identified UVSSA, a gene involved in transcription-coupled repair, whose knockdown or knockout decreased cell viability when combined with MYC expression. Synthetic sick interactions between MYC expression and UVSSA down-regulation correlated with ATM/CHK2 activation, suggesting increased genome instability. We show that the synthetic sick interaction is diminished by attenuating RNA polymerase II (RNAPII) activity; yet, it is independent of UV-induced damage repair, suggesting that UVSSA has a critical function in regulating RNAPII in the absence of exogenous DNA damage. Supporting this hypothesis, RNAPII ChIP-seq revealed that MYC-dependent increases in RNAPII promoter occupancy are reduced or abrogated by UVSSA knockdown, suggesting that UVSSA influences RNAPII dynamics during MYC-dependent transcription. Taken together, our data show that the UVSSA complex has a significant function in supporting MYC-dependent RNAPII dynamics and maintaining cell survival during MYC addiction. While the role of UVSSA in regulating RNAPII has been documented thus far only in the context of UV-induced DNA damage repair, we propose that its activity is also required to cope with transcriptional changes induced by oncogene activation.
Collapse
Affiliation(s)
- Mai Sato
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Rowyn C. Liebau
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
- Department of Biology, Columbia University, New York, NY
| | - Zhaoqi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY
| | - Lizhi Liu
- Department of Biology, Columbia University, New York, NY
| | - Raul Rabadan
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| |
Collapse
|
2
|
Luo B, Zhan Y, Luo M, Dong H, Liu J, Lin Y, Zhang J, Wang G, Verhoeyen E, Zhang Y, Zhang H. Engineering of α-PD-1 antibody-expressing long-lived plasma cells by CRISPR/Cas9-mediated targeted gene integration. Cell Death Dis 2020; 11:973. [PMID: 33184267 PMCID: PMC7661525 DOI: 10.1038/s41419-020-03187-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Long-lived plasma cells (LLPCs) are robust specialized antibody-secreting cells that mainly stay in the bone marrow and can persist a lifetime. As they can be generated by inducing the differentiation of B-lymphocytes, we investigated the possibility that human LLPCs might be engineered to express α-PD-1 monoclonal antibody to substitute recombinant α-PD-1 antitumor immunotherapy. To this end, we inserted an α-PD-1 cassette into the GAPDH locus through Cas9/sgRNA-guided specific integration in B-lymphocytes, which was mediated by an integrase-defective lentiviral vector. The edited B cells were capable of differentiating into LLPCs both in vitro and in vivo. Transcriptional profiling analysis confirmed that these cells were typical LLPCs. Importantly, these cells secreted de novo antibodies persistently, which were able to inhibit human melanoma growth via an antibody-mediated checkpoint blockade in xenograft-tumor mice. Our work suggests that the engineered LLPCs may be utilized as a vehicle to constantly produce special antibodies for long-term cellular immunotherapy to eradicate tumors and cellular reservoirs for various pathogens including human immunodeficiency virus type 1 (HIV-1) and hepatitis B virus (HBV).
Collapse
Affiliation(s)
- Baohong Luo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yikang Zhan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Minqi Luo
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Huimin Dong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Yingtong Lin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Junsong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Guanwen Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Els Verhoeyen
- CIRI - International Center for Infectiology, Research team EVIR, Inserm, U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, University of Lyon, Lyon, France.,Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
| | - Yiwen Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China. .,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China. .,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Oestergaard VH, Lisby M. Transcription-replication conflicts at chromosomal fragile sites-consequences in M phase and beyond. Chromosoma 2016; 126:213-222. [PMID: 27796495 DOI: 10.1007/s00412-016-0617-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022]
Abstract
Collision between the molecular machineries responsible for transcription and replication is an important source of genome instability. Certain transcribed regions known as chromosomal fragile sites are particularly prone to recombine and mutate in a manner that correlates with specific transcription and replication patterns. At the same time, these chromosomal fragile sites engage in aberrant DNA structures in mitosis. Here, we discuss the mechanistic details of transcription-replication conflicts including putative scenarios for R-loop-induced replication inhibition to understand how transcription-replication conflicts transition from S phase into various aberrant DNA structures in mitosis.
Collapse
Affiliation(s)
- Vibe H Oestergaard
- Department of Biology, University of Copenhagen, Ole Maaloees Vej 5, DK-2200, Copenhagen N, Denmark.
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Ole Maaloees Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
4
|
He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res 2016; 44:e85. [PMID: 26850641 PMCID: PMC4872082 DOI: 10.1093/nar/gkw064] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 12/23/2022] Open
Abstract
CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which, however, has focused on HDR-based strategies and was proven inefficient. Here, we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs, and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy, integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells, and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells.
Collapse
Affiliation(s)
- Xiangjun He
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chunlai Tan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Feng Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yaofeng Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK Shenzhen Research Institute, Shenzhen, 518057, China
| | - Rui Zhou
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK Shenzhen Research Institute, Shenzhen, 518057, China
| | - Dexuan Cui
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenxing You
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jianwei Ren
- CUHK Shenzhen Research Institute, Shenzhen, 518057, China Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bo Feng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China CUHK Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
5
|
Yadav P, Owiti N, Kim N. The role of topoisomerase I in suppressing genome instability associated with a highly transcribed guanine-rich sequence is not restricted to preventing RNA:DNA hybrid accumulation. Nucleic Acids Res 2015; 44:718-29. [PMID: 26527723 PMCID: PMC4737143 DOI: 10.1093/nar/gkv1152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/19/2015] [Indexed: 11/21/2022] Open
Abstract
Highly transcribed guanine-run containing sequences, in Saccharomyces cerevisiae, become unstable when topoisomerase I (Top1) is disrupted. Topological changes, such as the formation of extended RNA:DNA hybrids or R-loops or non-canonical DNA structures including G-quadruplexes has been proposed as the major underlying cause of the transcription-linked genome instability. Here, we report that R-loop accumulation at a guanine-rich sequence, which is capable of assembling into the four-stranded G4 DNA structure, is dependent on the level and the orientation of transcription. In the absence of Top1 or RNase Hs, R-loops accumulated to substantially higher extent when guanine-runs were located on the non-transcribed strand. This coincides with the orientation where higher genome instability was observed. However, we further report that there are significant differences between the disruption of RNase Hs and Top1 in regards to the orientation-specific elevation in genome instability at the guanine-rich sequence. Additionally, genome instability in Top1-deficient yeasts is not completely suppressed by removal of negative supercoils and further aggravated by expression of mutant Top1. Together, our data provide a strong support for a function of Top1 in suppressing genome instability at the guanine-run containing sequence that goes beyond preventing the transcription-associated RNA:DNA hybrid formation.
Collapse
Affiliation(s)
- Puja Yadav
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Norah Owiti
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
6
|
Replication stress in Mammalian cells and its consequences for mitosis. Genes (Basel) 2015; 6:267-98. [PMID: 26010955 PMCID: PMC4488665 DOI: 10.3390/genes6020267] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/23/2022] Open
Abstract
The faithful transmission of genetic information to daughter cells is central to maintaining genomic stability and relies on the accurate and complete duplication of genetic material during each cell cycle. However, the genome is routinely exposed to endogenous and exogenous stresses that can impede the progression of replication. Such replication stress can be an early cause of cancer or initiate senescence. Replication stress, which primarily occurs during S phase, results in consequences during mitosis, jeopardizing chromosome segregation and, in turn, genomic stability. The traces of replication stress can be detected in the daughter cells during G1 phase. Alterations in mitosis occur in two types: 1) local alterations that correspond to breaks, rearrangements, intertwined DNA molecules or non-separated sister chromatids that are confined to the region of the replication dysfunction; 2) genome-wide chromosome segregation resulting from centrosome amplification (although centrosomes do not contain DNA), which amplifies the local replication stress to the entire genome. Here, we discuss the endogenous causes of replication perturbations, the mechanisms of replication fork restart and the consequences for mitosis, chromosome segregation and genomic stability.
Collapse
|
7
|
Hamperl S, Cimprich KA. The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair (Amst) 2014; 19:84-94. [PMID: 24746923 PMCID: PMC4051866 DOI: 10.1016/j.dnarep.2014.03.023] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell.
Collapse
Affiliation(s)
- Stephan Hamperl
- Department of Chemical, Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Karlene A Cimprich
- Department of Chemical, Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA.
| |
Collapse
|
8
|
Abstract
Alterations in genome sequence and structure contribute to somatic disease, affect the fitness of subsequent generations and drive evolutionary processes. The crucial roles of highly accurate replication and efficient repair in maintaining overall genome integrity are well-known, but the more localized stability costs that are associated with transcribing DNA into RNA molecules are less appreciated. Here we review the diverse ways in which the essential process of transcription alters the underlying DNA template and thereby modifies the genetic landscape.
Collapse
|
9
|
Zhang W, Wu W, Lin W, Zhou P, Dai L, Zhang Y, Huang J, Zhang D. Deciphering heterogeneity in pig genome assembly Sscrofa9 by isochore and isochore-like region analyses. PLoS One 2010; 5:e13303. [PMID: 20948965 PMCID: PMC2952626 DOI: 10.1371/journal.pone.0013303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 09/15/2010] [Indexed: 11/18/2022] Open
Abstract
Background The isochore, a large DNA sequence with relatively small GC variance, is one of the most important structures in eukaryotic genomes. Although the isochore has been widely studied in humans and other species, little is known about its distribution in pigs. Principal Findings In this paper, we construct a map of long homogeneous genome regions (LHGRs), i.e., isochores and isochore-like regions, in pigs to provide an intuitive version of GC heterogeneity in each chromosome. The LHGR pattern study not only quantifies heterogeneities, but also reveals some primary characteristics of the chromatin organization, including the followings: (1) the majority of LHGRs belong to GC-poor families and are in long length; (2) a high gene density tends to occur with the appearance of GC-rich LHGRs; and (3) the density of LINE repeats decreases with an increase in the GC content of LHGRs. Furthermore, a portion of LHGRs with particular GC ranges (50%–51% and 54%–55%) tend to have abnormally high gene densities, suggesting that biased gene conversion (BGC), as well as time- and energy-saving principles, could be of importance to the formation of genome organization. Conclusion This study significantly improves our knowledge of chromatin organization in the pig genome. Correlations between the different biological features (e.g., gene density and repeat density) and GC content of LHGRs provide a unique glimpse of in silico gene and repeats prediction.
Collapse
Affiliation(s)
- Wenqian Zhang
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Wenwu Wu
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Wenchao Lin
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Pengfang Zhou
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Li Dai
- Bioinformatics Center, College of Life Science, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yang Zhang
- Investigation Group of Molecular Virology, Immunology, Oncology and Systems Biology, and Bioinformatics Center, College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jingfei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail: (DZ); (JH)
| | - Deli Zhang
- Investigation Group of Molecular Virology, Immunology, Oncology and Systems Biology, and Bioinformatics Center, College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
- * E-mail: (DZ); (JH)
| |
Collapse
|
10
|
Polak P, Querfurth R, Arndt PF. The evolution of transcription-associated biases of mutations across vertebrates. BMC Evol Biol 2010; 10:187. [PMID: 20565875 PMCID: PMC2927911 DOI: 10.1186/1471-2148-10-187] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 06/18/2010] [Indexed: 02/03/2024] Open
Abstract
Background The interplay between transcription and mutational processes can lead to particular mutation patterns in transcribed regions of the genome. Transcription introduces several biases in mutational patterns; in particular it invokes strand specific mutations. In order to understand the forces that have shaped transcripts during evolution, one has to study mutation patterns associated with transcription across animals. Results Using multiple alignments of related species we estimated the regional single-nucleotide substitution patterns along genes in four vertebrate taxa: primates, rodents, laurasiatheria and bony fishes. Our analysis is focused on intronic and intergenic regions and reveals differences in the patterns of substitution asymmetries between mammals and fishes. In mammals, the levels of asymmetries are stronger for genes starting within CpG islands than in genes lacking this property. In contrast to all other species analyzed, we found a mutational pressure in dog and stickleback, promoting an increase of GC-contents in the proximity to transcriptional start sites. Conclusions We propose that the asymmetric patterns in transcribed regions are results of transcription associated mutagenic processes and transcription coupled repair, which both seem to evolve in a taxon related manner. We also discuss alternative mechanisms that can generate strand biases and involves error prone DNA polymerases and reverse transcription. A localized increase of the GC content near the transcription start site is a signature of biased gene conversion (BGC) that occurs during recombination and heteroduplex formation. Since dog and stickleback are known to be subject to rapid adaptations due to population bottlenecks and breeding, we further hypothesize that an increase in recombination rates near gene starts has been part of an adaptive process.
Collapse
Affiliation(s)
- Paz Polak
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | |
Collapse
|
11
|
RecQL5 promotes genome stabilization through two parallel mechanisms--interacting with RNA polymerase II and acting as a helicase. Mol Cell Biol 2010; 30:2460-72. [PMID: 20231364 DOI: 10.1128/mcb.01583-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RecQL5 helicase is essential for maintaining genome stability and reducing cancer risk. To elucidate its mechanism of action, we purified a RecQL5-associated complex and identified its major component as RNA polymerase II (Pol II). Bioinformatics and structural modeling-guided mutagenesis revealed two conserved regions in RecQL5 as KIX and SRI domains, already known in transcriptional regulators for Pol II. The RecQL5-KIX domain binds both initiation (Pol IIa) and elongation (Pol IIo) forms of the polymerase, whereas the RecQL5-SRI domain interacts only with the elongation form. Fully functional RecQL5 requires both helicase activity and associations with the initiation polymerase, because mutants lacking either activity are partially defective in the suppression of sister chromatid exchange and resistance to camptothecin-induced DNA damage, and mutants lacking both activities are completely defective. We propose that RecQL5 promotes genome stabilization through two parallel mechanisms: by participation in homologous recombination-dependent DNA repair as a RecQ helicase and by regulating the initiation of Pol II to reduce transcription-associated replication impairment and recombination.
Collapse
|
12
|
Abstract
The effects of chromosomal position and neighboring genomic elements on gene targeting in human cells remain largely unexplored. To study these, we used a shuttle vector system in which murine leukemia virus (MLV)-based proviral targets present at different chromosomal locations and containing mutations in the neomycin phosphotransferase (neo) gene were corrected by adeno-associated virus (AAV)-mediated gene targeting. Sixteen identical target loci present in HT-1080 human sarcoma cells were all successfully corrected by gene targeting. The gene targeting frequencies varied by as much as 10-fold, and there was a clear bias for correction of one of the targets in clones containing two target sites. The targeting frequency at each site was correlated to the proximity and density of various genomic elements, and we found a significant association of higher targeting frequencies at loci near a subset of dinucleotide microsatellite repeats (r = –0.55, P < 0.05), in particular GT repeats (r = –0.87, P < 0.0001). Additionally, there was a correlation between meiotic recombination rates and targeting frequencies at the target loci (r = 0.52, P < 0.05). There was no correlation between surrounding chromosomal transcription units and targeting frequencies. Our results indicate that certain chromosomal positions are preferred sites for gene targeting in human cells.
Collapse
Affiliation(s)
- Anda M Cornea
- Molecular and Cellular Biology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
13
|
Transcription-associated recombination is dependent on replication in Mammalian cells. Mol Cell Biol 2007; 28:154-64. [PMID: 17967877 DOI: 10.1128/mcb.00816-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transcription can enhance recombination; this is a ubiquitous phenomenon from prokaryotes to higher eukaryotes. However, the mechanism of transcription-associated recombination in mammalian cells is poorly understood. Here we have developed a construct with a recombination substrate in which levels of recombination can be studied in the presence or absence of transcription. We observed a direct enhancement in recombination when transcription levels through the substrate were increased. This increase in homologous recombination following transcription is locus specific, since homologous recombination at the unrelated hprt gene is unaffected. In addition, we have shown that transcription-associated recombination involves both short-tract and long-tract gene conversions in mammalian cells, which are different from double-strand-break-induced recombination events caused by endonucleases. Transcription fails to enhance recombination in cells that are not in the S phase of the cell cycle. Furthermore, inhibition of transcription suppresses induction of recombination at stalled replication forks, suggesting that recombination may be involved in bypassing transcription during replication.
Collapse
|
14
|
Ren L, Gao G, Zhao D, Ding M, Luo J, Deng H. Developmental stage related patterns of codon usage and genomic GC content: searching for evolutionary fingerprints with models of stem cell differentiation. Genome Biol 2007; 8:R35. [PMID: 17349061 PMCID: PMC1868930 DOI: 10.1186/gb-2007-8-3-r35] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/08/2007] [Accepted: 03/12/2007] [Indexed: 11/26/2022] Open
Abstract
Developmental-stage-related patterns of gene expression correlate with codon usage and genomic GC content in stem cell hierarchies. Background The usage of synonymous codons shows considerable variation among mammalian genes. How and why this usage is non-random are fundamental biological questions and remain controversial. It is also important to explore whether mammalian genes that are selectively expressed at different developmental stages bear different molecular features. Results In two models of mouse stem cell differentiation, we established correlations between codon usage and the patterns of gene expression. We found that the optimal codons exhibited variation (AT- or GC-ending codons) in different cell types within the developmental hierarchy. We also found that genes that were enriched (developmental-pivotal genes) or specifically expressed (developmental-specific genes) at different developmental stages had different patterns of codon usage and local genomic GC (GCg) content. Moreover, at the same developmental stage, developmental-specific genes generally used more GC-ending codons and had higher GCg content compared with developmental-pivotal genes. Further analyses suggest that the model of translational selection might be consistent with the developmental stage-related patterns of codon usage, especially for the AT-ending optimal codons. In addition, our data show that after human-mouse divergence, the influence of selective constraints is still detectable. Conclusion Our findings suggest that developmental stage-related patterns of gene expression are correlated with codon usage (GC3) and GCg content in stem cell hierarchies. Moreover, this paper provides evidence for the influence of natural selection at synonymous sites in the mouse genome and novel clues for linking the molecular features of genes to their patterns of expression during mammalian ontogenesis.
Collapse
Affiliation(s)
- Lichen Ren
- College of Life Sciences, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ge Gao
- Center for Bioinformatics, College of Life Sciences, National Laboratory of Protein Engineering and Plant Genetics Engineering, Peking University, Beijing, 100871, PR China
| | - Dongxin Zhao
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, 100871, PR China
| | - Mingxiao Ding
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, 100871, PR China
| | - Jingchu Luo
- Center for Bioinformatics, College of Life Sciences, National Laboratory of Protein Engineering and Plant Genetics Engineering, Peking University, Beijing, 100871, PR China
| | - Hongkui Deng
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, 100871, PR China
| |
Collapse
|
15
|
Chan W, Costantino N, Li R, Lee SC, Su Q, Melvin D, Court DL, Liu P. A recombineering based approach for high-throughput conditional knockout targeting vector construction. Nucleic Acids Res 2007; 35:e64. [PMID: 17426124 PMCID: PMC1885671 DOI: 10.1093/nar/gkm163] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 03/05/2007] [Accepted: 03/05/2007] [Indexed: 12/30/2022] Open
Abstract
Functional analysis of mammalian genes in vivo is primarily achieved through analysing knockout mice. Now that the sequencing of several mammalian genomes has been completed, understanding functions of all the genes represents the next major challenge in the post-genome era. Generation of knockout mutant mice has currently been achieved by many research groups but only by making individual knockouts, one by one. New technological advances and the refinements of existing technologies are critical for genome-wide targeted mutagenesis in the mouse. We describe here new recombineering reagents and protocols that enable recombineering to be carried out in a 96-well format. Consequently, we are able to construct 96 conditional knockout targeting vectors simultaneously. Our new recombineering system makes it a reality to generate large numbers of precisely engineered DNA constructs for functional genomics studies.
Collapse
Affiliation(s)
- Waiin Chan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Nina Costantino
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Ruixue Li
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Song Choon Lee
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Qin Su
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - David Melvin
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Donald L. Court
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK and National Cancer Institute-Frederick, Frederick, MD 21702, USA
| |
Collapse
|
16
|
Schildkraut E, Miller CA, Nickoloff JA. Transcription of a donor enhances its use during double-strand break-induced gene conversion in human cells. Mol Cell Biol 2006; 26:3098-105. [PMID: 16581784 PMCID: PMC1446947 DOI: 10.1128/mcb.26.8.3098-3105.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination (HR) mediates accurate repair of double-strand breaks (DSBs) but carries the risk of large-scale genetic change, including loss of heterozygosity, deletions, inversions, and translocations. Nearly one-third of the human genome consists of repetitive sequences, and DSB repair by HR often requires choices among several homologous repair templates, including homologous chromosomes, sister chromatids, and linked or unlinked repeats. Donor preference during DSB-induced gene conversion was analyzed by using several HR substrates with three copies of neo targeted to a human chromosome. Repair of I-SceI nuclease-induced DSBs in one neo (the recipient) required a choice between two donor neo genes. When both donors were downstream, there was no significant bias for proximal or distal donors. When donors flanked the recipient, we observed a marked (85%) preference for the downstream donor. Reversing the HR substrate in the chromosome eliminated this preference, indicating that donor choice is influenced by factors extrinsic to the HR substrate. Prior indirect evidence suggested that transcription might increase donor use. We tested this question directly and found that increased transcription of a donor enhances its use during gene conversion. A preference for transcribed donors would minimize the use of nontranscribed (i.e., pseudogene) templates during repair and thus help maintain genome stability.
Collapse
Affiliation(s)
- Ezra Schildkraut
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
17
|
Antonell A, de Luis O, Domingo-Roura X, Pérez-Jurado LA. Evolutionary mechanisms shaping the genomic structure of the Williams-Beuren syndrome chromosomal region at human 7q11.23. Genome Res 2005; 15:1179-88. [PMID: 16140988 PMCID: PMC1199532 DOI: 10.1101/gr.3944605] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 06/09/2005] [Indexed: 01/22/2023]
Abstract
About 5% of the human genome consists of segmental duplications or low-copy repeats, which are large, highly homologous (>95%) fragments of sequence. It has been estimated that these segmental duplications emerged during the past approximately 35 million years (Myr) of human evolution and that they correlate with chromosomal rearrangements. Williams-Beuren syndrome (WBS) is a segmental aneusomy syndrome that is the result of a frequent de novo deletion at 7q11.23, mediated by large (approximately 400-kb) region-specific complex segmental duplications composed of different blocks. We have precisely defined the structure of the segmental duplications on human 7q11.23 and characterized the copy number and structure of the orthologous regions in other primates (macaque, orangutan, gorilla, and chimpanzee). Our data indicate a recent origin and rapid evolution of the 7q11.23 segmental duplications, starting before the diversification of hominoids (approximately 12-16 million years ago [Mya]), with species-specific duplications and intrachromosomal rearrangements that lead to significant differences among those genomes. Alu sequences are located at most edges of the large hominoid-specific segmental duplications, suggesting that they might have facilitated evolutionary rearrangements. We propose a mechanistic model based on Alu-mediated duplicated transposition along with nonallelic homologous recombination for the generation and local expansion of the segmental duplications. The extraordinary rate of evolutionary turnover of this region, rich in segmental duplications, results in important genomic variation among hominoid species, which could be of functional relevance and predispose to disease.
Collapse
Affiliation(s)
- Anna Antonell
- Unitat de Genètica, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
18
|
Abstract
Homologous recombination can produce directed mutations in the genomes of a number of model organisms, including Drosophila melanogaster. One of the most useful applications has been to delete target genes to generate null alleles. In Drosophila, specific gene deletions have not yet been produced by this method. To test whether such deletions could be produced by homologous recombination in D. melanogaster we set out to delete the Hsp70 genes. Six nearly identical copies of this gene, encoding the major heat-shock protein in Drosophila, are found at two separate but closely linked loci. This arrangement has thwarted standard genetic approaches to generate an Hsp70-null fly, making this an ideal test of gene targeting. In this study, ends-out targeting was used to generate specific deletions of all Hsp70 genes, including one deletion that spanned approximately 47 kb. The Hsp70-null flies are viable and fertile. The results show that genomic deletions of varied sizes can be readily generated by homologous recombination in Drosophila.
Collapse
Affiliation(s)
- Wei J Gong
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
19
|
Raynard SJ, Baker MD. Cis-acting regulatory sequences promote high-frequency gene conversion between repeated sequences in mammalian cells. Nucleic Acids Res 2004; 32:5916-27. [PMID: 15528639 PMCID: PMC528808 DOI: 10.1093/nar/gkh926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 10/19/2004] [Accepted: 10/19/2004] [Indexed: 01/23/2023] Open
Abstract
In mammalian cells, little is known about the nature of recombination-prone regions of the genome. Previously, we reported that the immunoglobulin heavy chain (IgH) mu locus behaved as a hotspot for mitotic, intrachromosomal gene conversion (GC) between repeated mu constant (Cmu) regions in mouse hybridoma cells. To investigate whether elements within the mu gene regulatory region were required for hotspot activity, gene targeting was used to delete a 9.1 kb segment encompassing the mu gene promoter (Pmu), enhancer (Emu) and switch region (Smu) from the locus. In these cell lines, GC between the Cmu repeats was significantly reduced, indicating that this 'recombination-enhancing sequence' (RES) is necessary for GC hotspot activity at the IgH locus. Importantly, the RES fragment stimulated GC when appended to the same Cmu repeats integrated at ectopic genomic sites. We also show that deletion of Emu and flanking matrix attachment regions (MARs) from the RES abolishes GC hotspot activity at the IgH locus. However, no stimulation of ectopic GC was observed with the Emu/MARs fragment alone. Finally, we provide evidence that no correlation exists between the level of transcription and GC promoted by the RES. We suggest a model whereby Emu/MARS enhances mitotic GC at the endogenous IgH mu locus by effecting chromatin modifications in adjacent DNA.
Collapse
Affiliation(s)
- Steven J Raynard
- Department of Molecular Biology and Genetics, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
20
|
Lippert MJ, Freedman JA, Barber MA, Jinks-Robertson S. Identification of a distinctive mutation spectrum associated with high levels of transcription in yeast. Mol Cell Biol 2004; 24:4801-9. [PMID: 15143174 PMCID: PMC416428 DOI: 10.1128/mcb.24.11.4801-4809.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High levels of transcription are associated with increased mutation rates in Saccharomyces cerevisiae, a phenomenon termed transcription-associated mutation (TAM). To obtain insight into the mechanism of TAM, we obtained LYS2 forward mutation spectra under low- versus high-transcription conditions in which LYS2 was expressed from either the low-level pLYS2 promoter or the strong pGAL1-10 promoter, respectively. Because of the large size of the LYS2 locus, forward mutations first were mapped to specific LYS2 subregions, and then those mutations that occurred within a defined 736-bp target region were sequenced. In the low-transcription strain base substitutions comprised the majority (64%) of mutations, whereas short insertion-deletion mutations predominated (56%) in the high-transcription strain. Most notably, deletions of 2 nucleotides (nt) comprised 21% of the mutations in the high-transcription strain, and these events occurred predominantly at 5'-(G/C)AAA-3' sites. No -2 events were present in the low-transcription spectrum, thus identifying 2-nt deletions as a unique mutational signature for TAM.
Collapse
Affiliation(s)
- Malcolm J Lippert
- Department of Biology, Saint Michael's College, 1 Winooski Park, Colchester, VT 05439, USA.
| | | | | | | |
Collapse
|
21
|
Vinogradov AE. Isochores and tissue-specificity. Nucleic Acids Res 2003; 31:5212-20. [PMID: 12930973 PMCID: PMC212799 DOI: 10.1093/nar/gkg699] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 05/11/2003] [Accepted: 07/03/2003] [Indexed: 11/13/2022] Open
Abstract
The housekeeping (ubiquitously expressed) genes in the mammal genome were shown here to be on average slightly GC-richer than tissue-specific genes. Both housekeeping and tissue-specific genes occupy similar ranges of GC content, but the former tend to concentrate in the upper part of the range. In the human genome, tissue-specific genes show two maxima, GC-poor and GC-rich. The strictly tissue-specific human genes tend to concentrate in the GC-poor region; their distribution is left-skewed and thus reciprocal to the distribution of housekeeping genes. The intermediately tissue-specific genes show an intermediate GC content and the right-skewed distribution. Both in the human and mouse, genes specific for some tissues (e.g., parts of the central nervous system) have a higher average GC content than housekeeping genes. Since they are not transcribed in the germ line (in contrast to housekeeping genes), and therefore have a lower probability of inheritable gene conversion, this finding contradicts the biased gene conversion (BGC) explanation for elevated GC content in the heavy isochores of mammal genome. Genes specific for germ-line tissues (ovary, testes) show a low average GC content, which is also in contradiction to the BGC explanation. Both for the total data set and for the most part of tissues taken separately, a weak positive correlation was found between gene GC content and expression level. The fraction of ubiquitously expressed genes is nearly 1.5-fold higher in the mouse than in the human. This suggests that mouse tissues are comparatively less differentiated (on the molecular level), which can be related to a less pronounced isochoric structure of the mouse genome. In each separate tissue (in both species), tissue-specific genes do not form a clear-cut frequency peak (in contrast to housekeeping genes), but constitute a continuum with a gradually increasing degree of tissue-specificity, which probably reflects the path of cell differentiation and/or an independent use of the same protein in several unrelated tissues.
Collapse
Affiliation(s)
- Alexander E Vinogradov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, St Petersburg 194064, Russia.
| |
Collapse
|
22
|
Yáñez RJ, Porter ACG. A chromosomal position effect on gene targeting in human cells. Nucleic Acids Res 2002; 30:4892-901. [PMID: 12433992 PMCID: PMC137162 DOI: 10.1093/nar/gkf614] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Revised: 09/17/2002] [Accepted: 09/17/2002] [Indexed: 11/13/2022] Open
Abstract
We describe gene targeting experiments involving a human cell line (RAN10) containing, in addition to its endogenous alleles, two ectopic alleles of the interferon-inducible gene 6-16. The frequency of gene targeting at one of the ectopic 6-16 alleles (H3.7) was 34-fold greater than the combined frequency of gene targeting involving endogenous 6-16 alleles in RAN10. Preference for H3.7 was maintained when the target loci in RAN10 were transcriptionally activated by interferon. Despite the 34-fold preference for H3.7, the absolute gene targeting efficiency in RAN10 was only 3-fold higher than in the parental HT1080 cell line. These data suggest that different alleles can compete with each other, and perhaps with non-homologous loci, in a step which is necessary, but not normally rate-limiting, for gene targeting. The efficiency of this step can therefore be more sensitive to chromosomal position effects than the rate-determining steps for gene targeting. The nature of the position effects involved remains unknown but does not correlate with transcription status, which in our system has a very modest influence on the frequency of gene targeting. In summary, our work unequivocally identifies a position effect on gene targeting in human cells.
Collapse
Affiliation(s)
- Rafael J Yáñez
- Gene Targeting Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|
23
|
Abstract
Transcription is a central aspect of DNA metabolism that takes place on the same substrate as replication, repair and recombination. Not surprisingly, therefore, there is a physical and functional connection between these processes. In recent years, transcription has proven to be a relevant player in the maintenance of genome integrity and in the induction of genetic instability and diversity. The aim of this review is to provide an integrative view on how transcription can control different aspects of genomic integrity, by exploring different mechanisms that might be responsible for transcription-associated mutation (TAM) and transcription-associated recombination (TAR).
Collapse
Affiliation(s)
- Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain.
| |
Collapse
|
24
|
Kim PM, Allen C, Wagener BM, Shen Z, Nickoloff JA. Overexpression of human RAD51 and RAD52 reduces double-strand break-induced homologous recombination in mammalian cells. Nucleic Acids Res 2001; 29:4352-60. [PMID: 11691922 PMCID: PMC60192 DOI: 10.1093/nar/29.21.4352] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Double-strand breaks (DSBs) can be repaired by homologous recombination (HR) in mammalian cells, often resulting in gene conversion. RAD51 functions with RAD52 and other proteins to effect strand exchange during HR, forming heteroduplex DNA (hDNA) that is resolved by mismatch repair to yield a gene conversion tract. In mammalian cells RAD51 and RAD52 overexpression increase the frequency of spontaneous HR, and one study indicated that overexpression of mouse RAD51 enhances DSB-induced HR in Chinese hamster ovary (CHO) cells. We tested the effects of transient and stable overexpression of human RAD51 and/or human RAD52 on DSB-induced HR in CHO cells and in human cells. DSBs were targeted to chromosomal recombination substrates with I-SceI nuclease. In all cases, excess RAD51 and/or RAD52 reduced DSB-induced HR, contrasting with prior studies. These distinct results may reflect differences in recombination substrate structures or different levels of overexpression. Excess RAD51/RAD52 did not increase conversion tract lengths, nor were product spectra otherwise altered, indicating that excess HR proteins can have dominant negative effects on HR initiation, but do not affect later steps such as hDNA formation, mismatch repair or the resolution of intermediates.
Collapse
Affiliation(s)
- P M Kim
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
25
|
Chávez S, García-Rubio M, Prado F, Aguilera A. Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:7054-64. [PMID: 11564888 PMCID: PMC99881 DOI: 10.1128/mcb.21.20.7054-7064.2001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hpr1 forms, together with Tho2, Mft1, and Thp2, the THO complex, which controls transcription elongation and genome stability in Saccharomyces cerevisiae. Mutations in genes encoding the THO complex confer strong transcription-impairment and hyperrecombination phenotypes in the bacterial lacZ gene. In this work we demonstrate that Hpr1 is a factor required for transcription of long as well as G+C-rich DNA sequences. Using different lacZ segments fused to the GAL1 promoter, we show that the negative effect of lacZ sequences on transcription depends on their distance from the promoter. In parallel, we show that transcription of either a long LYS2 fragment or the S. cerevisiae YAT1 G+C-rich open reading frame fused to the GAL1 promoter is severely impaired in hpr1 mutants, whereas transcription of LAC4, the Kluyveromyces lactis ortholog of lacZ but with a lower G+C content, is only slightly affected. The hyperrecombination behavior of the DNA sequences studied is consistent with the transcriptional defects observed in hpr1 cells. These results indicate that both length and G+C content are important elements influencing transcription in vivo. We discuss their relevance for the understanding of the functional role of Hpr1 and, by extension, the THO complex.
Collapse
Affiliation(s)
- S Chávez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | | | | | | |
Collapse
|
26
|
Chávez S, Beilharz T, Rondón AG, Erdjument-Bromage H, Tempst P, Svejstrup JQ, Lithgow T, Aguilera A. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J 2000; 19:5824-34. [PMID: 11060033 PMCID: PMC305808 DOI: 10.1093/emboj/19.21.5824] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcription-induced recombination has been reported in all organisms from bacteria to mammals. We have shown previously that the yeast genes HPR1 and THO2 may be keys to the understanding of transcription-associated recombination, as they both affect transcription elongation and hyper-recombination in a concerted manner. Using a yeast strain that has the wild-type THO2 gene replaced by one encoding a His(6)-HA-tagged version, we have isolated an oligomeric complex containing four proteins: Tho2, Hpr1, Mft1 and a novel protein that we have named Thp2. We have reciprocally identified a complex containing Hpr1, Tho2 and Mft1 using anti-Mft1 antibodies in immunoprecipitation experiments. The protein complex is mainly nuclear; therefore, Tho2 and Hpr1 are physically associated. Like hpr1Delta and tho2Delta cells, mft1Delta and thp2Delta cells show mitotic hyper- recombination and impaired transcription elongation, in particular, through the bacterial lacZ sequence. Hyper-recombination conferred by mft1Delta and thp2Delta is only observed in DNA regions under transcription conditions. We propose that this protein complex acts as a functional unit connecting transcription elongation with the incidence of mitotic recombination.
Collapse
Affiliation(s)
- S Chávez
- Departamento de Genética, Facultad de Biología, Avd. Reina Mercedes 6, Universidad de Sevilla, Sevilla 41012, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Saxe D, Datta A, Jinks-Robertson S. Stimulation of mitotic recombination events by high levels of RNA polymerase II transcription in yeast. Mol Cell Biol 2000; 20:5404-14. [PMID: 10891481 PMCID: PMC85992 DOI: 10.1128/mcb.20.15.5404-5414.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The impact of high levels of RNA polymerase II transcription on mitotic recombination was examined using lys2 recombination substrates positioned on nonhomologous chromosomes. Substrates were used that could produce Lys(+) recombinants by either a simple (noncrossover) gene conversion event or a crossover-associated recombination event, by only a simple gene conversion event, or by only a crossover event. Transcription of the lys2 substrates was regulated by the highly inducible GAL1-10 promoter or the low-level LYS2 promoter, with GAL1-10 promoter activity being controlled by the presence or absence of the Gal80p negative regulatory protein. Transcription was found to stimulate recombination in all assays used, but the level of stimulation varied depending on whether only one or both substrates were highly transcribed. In addition, there was an asymmetry in the types of recombination events observed when one substrate versus the other was highly transcribed. Finally, the lys2 substrates were positioned as direct repeats on the same chromosome and were found to exhibit a different recombinational response to high levels of transcription from that exhibited by the repeats on nonhomologous chromosomes. The relevance of these results to the mechanisms of transcription-associated recombination are discussed.
Collapse
Affiliation(s)
- D Saxe
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
28
|
Dronkert ML, Beverloo HB, Johnson RD, Hoeijmakers JH, Jasin M, Kanaar R. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol Cell Biol 2000; 20:3147-56. [PMID: 10757799 PMCID: PMC85609 DOI: 10.1128/mcb.20.9.3147-3156.2000] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we analyzed the effect of mRAD54, a gene involved in homologous recombination, on the repair of a site-specific I-SceI-induced DSB located in a repeated DNA sequence in the genome of mouse embryonic stem cells. We used six isogenic cell lines differing solely in the orientation of the repeats. The combination of the three recombination-test substrates used discriminated among SSA, intrachromatid gene conversion, and sister chromatid gene conversion. DSB repair was most efficient for the substrate that allowed recovery of SSA events. Gene conversion with crossover, indistinguishable from long tract gene conversion, preferentially involved the sister chromatid rather than the repeat on the same chromatid. Comparing DSB repair in mRAD54 wild-type and knockout cells revealed direct evidence for a role of mRAD54 in DSB repair. The substrate measuring SSA showed an increased efficiency of DSB repair in the absence of mRAD54. The substrate measuring sister chromatid gene conversion showed a decrease in gene conversion with and without crossover. Consistent with this observation, DNA damage-induced sister chromatid exchange was reduced in mRAD54-deficient cells. Our results suggest that mRAD54 promotes gene conversion with predominant use of the sister chromatid as the repair template at the expense of error-prone SSA.
Collapse
Affiliation(s)
- M L Dronkert
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Li W, Hesabi B, Babbo A, Pacione C, Liu J, Chen DJ, Nickoloff JA, Shen Z. Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein. Nucleic Acids Res 2000; 28:1145-53. [PMID: 10666456 PMCID: PMC102610 DOI: 10.1093/nar/28.5.1145] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian RAD51 protein plays essential roles in DNA homologous recombination, DNA repair and cell proliferation. RAD51 activities are regulated by its associated proteins. It was previously reported that a ubiquitin-like protein, UBL1, associates with RAD51 in the yeast two-hybrid system. One function of UBL1 is to covalently conjugate with target proteins and thus modify their function. In the present study we found that non-conjugated UBL1 forms a complex with RAD51 and RAD52 proteins in human cells. Overexpression of UBL1 down-regulates DNA double-strand break-induced homologous recombination in CHO cells and reduces cellular resistance to ionizing radiation in HT1080 cells. With or without overexpressed UBL1, most homologous recombination products arise by gene conversion. However, overexpression of UBL1 reduces the fraction of bidirectional gene conversion tracts. Overexpression of a mutant UBL1 that is incapable of being conjugated retains the ability to inhibit homologous recombination. These results suggest a regulatory role for UBL1 in homologous recombination.
Collapse
Affiliation(s)
- W Li
- Department of Molecular Genetics (MC669), College of Medicine, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Amos-Landgraf JM, Ji Y, Gottlieb W, Depinet T, Wandstrat AE, Cassidy SB, Driscoll DJ, Rogan PK, Schwartz S, Nicholls RD. Chromosome breakage in the Prader-Willi and Angelman syndromes involves recombination between large, transcribed repeats at proximal and distal breakpoints. Am J Hum Genet 1999; 65:370-86. [PMID: 10417280 PMCID: PMC1377936 DOI: 10.1086/302510] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct neurobehavioral disorders that most often arise from a 4-Mb deletion of chromosome 15q11-q13 during paternal or maternal gametogenesis, respectively. At a de novo frequency of approximately.67-1/10,000 births, these deletions represent a common structural chromosome change in the human genome. To elucidate the mechanism underlying these events, we characterized the regions that contain two proximal breakpoint clusters and a distal cluster. Novel DNA sequences potentially associated with the breakpoints were positionally cloned from YACs within or near these regions. Analyses of rodent-human somatic-cell hybrids, YAC contigs, and FISH of normal or rearranged chromosomes 15 identified duplicated sequences (the END repeats) at or near the breakpoints. The END-repeat units are derived from large genomic duplications of a novel gene (HERC2), many copies of which are transcriptionally active in germline tissues. One of five PWS/AS patients analyzed to date has an identifiable, rearranged HERC2 transcript derived from the deletion event. We postulate that the END repeats flanking 15q11-q13 mediate homologous recombination resulting in deletion. Furthermore, we propose that active transcription of these repeats in male and female germ cells may facilitate the homologous recombination process.
Collapse
Affiliation(s)
- J M Amos-Landgraf
- Department of Genetics, Case Western Reserve University School of Medicine, and Center for Human Genetics, University Hospitals of Cleveland, Cleveland, OH 44106-4955, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Piruat JI, Aguilera A. A novel yeast gene, THO2, is involved in RNA pol II transcription and provides new evidence for transcriptional elongation-associated recombination. EMBO J 1998; 17:4859-72. [PMID: 9707445 PMCID: PMC1170815 DOI: 10.1093/emboj/17.16.4859] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have identified two novel yeast genes, THO1 and THO2, that partially suppress the transcription defects of hpr1Delta mutants by overexpression. We show by in vivo transcriptional and recombinational analysis of tho2Delta cells that THO2 plays a role in RNA polymerase II (RNA pol II)-dependent transcription and is required for the stability of DNA repeats, as previously shown for HPR1. The tho2Delta mutation reduces the transcriptional efficiency of yeast DNA sequences down to 25% of the wild-type levels and abolishes transcription of the lacZ sequence. In addition, tho2Delta causes a strong increase in the frequency of recombination between direct repeats (>2000-fold above wild-type levels). Some DNA repeats cannot even be maintained in the cell. This hyper-recombination phenotype is dependent on transcription and is not observed in DNA repeats that are not transcribed. The higher the impairment of transcription caused by tho2Delta, the higher the frequency of recombination of a particular DNA region. The tho2Delta mutation also increases the frequency of plasmid loss. Our work not only identifies a novel yeast gene, THO2, with similar function to HPR1, but also provides new evidence for transcriptional blocks as a source of recombination. We propose that there is a set of proteins including Hpr1p and Tho2p, in the absence of which RNA pol II transcription is stalled or blocked, causing genetic instability.
Collapse
Affiliation(s)
- J I Piruat
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Sevilla, Spain
| | | |
Collapse
|
32
|
Chávez S, Aguilera A. The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev 1997; 11:3459-70. [PMID: 9407037 PMCID: PMC316820 DOI: 10.1101/gad.11.24.3459] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The yeast HPR1 gene plays an important role in genome stability, as indicated by the observation that hpr1 mutants have high frequencies of DNA repeat recombination and chromosome loss. Here we report that HPR1 is required for transcriptional elongation. Transcription driven from constitutive and regulated yeast promoters cannot elongate through the bacterial lacZ coding region in hpr1Delta cells, but progresses efficiently through other sequences such as yeast PHO5. We show that HPR1 is not required for transcription activation and that the previously reported effects of hpr1Delta on the activation of different promoters is a consequence of the incapacity of hpr1Delta cells to elongate transcription through lacZ, used as reporter. Transcriptional defects are also observed in yeast DNA sequences of hpr1Delta cells in the presence of the transcription elongation inhibitor 6-azauracil. In all cases, the blockage of transcription elongation in hpr1Delta is associated with both the high frequency of deletions and the increase in plasmid instability that we report here. Therefore, in addition to the identification of a new element involved in transcriptional elongation, our work provides evidence for a new source of genomic instability.
Collapse
Affiliation(s)
- S Chávez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | | |
Collapse
|
33
|
Papadopoulou B, Dumas C. Parameters controlling the rate of gene targeting frequency in the protozoan parasite Leishmania. Nucleic Acids Res 1997; 25:4278-86. [PMID: 9336458 PMCID: PMC147044 DOI: 10.1093/nar/25.21.4278] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study we investigated the role of several parameters governing the efficiency of gene targeting mediated by homologous recombination in the protozoan parasite Leishmania. We evaluated the relative targeting frequencies of different replacement vectors designed to target several sequences within the parasite genome. We found that a decrease in the length of homologous sequences <1 kb on one arm of the vector linearly influences the targeting frequency. No homologous recombination was detected, however, when the flanking homologous regions were <180 bp. A requirement for a very high degree of homology between donor and target sequences was found necessary for efficient gene targeting in Leishmania , as targeted recombination was strongly affected by base pair mismatches. Targeting frequency increased proportionally with copy number of the target only when the target was part of a linear amplicon, but remained unchanged when it was present on circles. Different chromosomal locations were found to be targeted with significantly variable levels of efficiency. Finally, different strains of the same species showed differences in gene targeting frequency. Overall, gene targeting mediated by homologous recombination in Leishmania shares similarities to both the yeast and the mammalian recombination systems.
Collapse
Affiliation(s)
- B Papadopoulou
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval and Département de Microbiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | |
Collapse
|
34
|
Taghian DG, Nickoloff JA. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol Cell Biol 1997; 17:6386-93. [PMID: 9343400 PMCID: PMC232490 DOI: 10.1128/mcb.17.11.6386] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Double-strand breaks (DSBs) stimulate chromosomal and extrachromosomal recombination and gene targeting. Transcription also stimulates spontaneous recombination by an unknown mechanism. We used Saccharomyces cerevisiae I-SceI to stimulate recombination between neo direct repeats in Chinese hamster ovary (CHO) cell chromosomal DNA. One neo allele was controlled by the dexamethasone-inducible mouse mammary tumor virus promoter and inactivated by an insertion containing an I-SceI site at which DSBs were introduced in vivo. The other neo allele lacked a promoter but carried 12 phenotypically silent single-base mutations that create restriction sites (restriction fragment length polymorphisms). This system allowed us to generate detailed conversion tract spectra for recipient alleles transcribed at high or low levels. Transient in vivo expression of I-SceI increased homologous recombination 2,000- to 10,000-fold, yielding recombinants at frequencies as high as 1%. Strikingly, 97% of these products arose by gene conversion. Most products had short, bidirectional conversion tracts, and in all cases, donor neo alleles (i.e., those not suffering a DSB) remained unchanged, indicating that conversion was fully nonreciprocal. DSBs in exogenous DNA are usually repaired by end joining requiring little or no homology or by nonconservative homologous recombination (single-strand annealing). In contrast, we show that chromosomal DSBs are efficiently repaired via conservative homologous recombination, principally gene conversion without associated crossing over. For DSB-induced events, similar recombination frequencies and conversion tract spectra were found under conditions of low and high transcription. Thus, transcription does not further stimulate DSB-induced recombination, nor does it appear to affect the mechanism(s) by which DSBs induce gene conversion.
Collapse
Affiliation(s)
- D G Taghian
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
35
|
Prado F, Piruat JI, Aguilera A. Recombination between DNA repeats in yeast hpr1delta cells is linked to transcription elongation. EMBO J 1997; 16:2826-35. [PMID: 9184227 PMCID: PMC1169891 DOI: 10.1093/emboj/16.10.2826] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The induction of recombination by transcription activation has been documented in prokaryotes and eukaryotes. Unwinding of the DNA duplex, disruption of chromatin structure or changes in local supercoiling associated with transcription can be indirectly responsible for the stimulation of recombination. Here we provide genetic and molecular evidence for a specific mechanism of stimulation of recombination by transcription. We show that the induction of deletions between repeats in hpr1delta cells of Saccharomyces cerevisiae is linked to transcription elongation. Molecular analysis of different direct repeat constructs reveals that deletions induced by hpr1delta are specific for repeat constructs in which transcription initiating at an external promoter traverses particular regions of the DNA flanked by the repeats. Transcription becomes HPR1 dependent when elongating through such regions. Both the induction of deletions and the HPR1 dependence of transcription were abolished when a strong terminator was used to prevent transcription from proceeding through the DNA region flanked by the repeats. In contrast to previously reported cases of transcription-induced recombination, there was no correlation between high levels of transcripts and high levels of recombination. Our study provides evidence that direct repeat recombination can be induced by transcriptional elongation.
Collapse
Affiliation(s)
- F Prado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
36
|
Baker MD, Read LR, Beatty BG, Ng P. Requirements for ectopic homologous recombination in mammalian somatic cells. Mol Cell Biol 1996; 16:7122-32. [PMID: 8943368 PMCID: PMC231716 DOI: 10.1128/mcb.16.12.7122] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ectopic recombination occurs between DNA sequences that are not in equivalent positions on homologous chromosomes and has beneficial as well as potentially deleterious consequences for the eukaryotic genome. In the present study, we have examined ectopic recombination in mammalian somatic (murine hybridoma) cells in which a deletion in the mu gene constant (Cmu) region of the endogenous chromosomal immunoglobulin mu gene is corrected by using as a donor an ectopic wild-type Cmu region. Ectopic recombination restores normal immunoglobulin M production in hybridomas. We show that (i) chromosomal mu gene deletions of 600 bp and 4 kb are corrected less efficiently than a deletion of only 2 bp, (ii) the minimum amount of homology required to mediate ectopic recombination is between 1.9 and 4.3 kb, (iii) the frequency of ectopic recombination does not depend on donor copy number, and (iv) the frequency of ectopic recombination in hybridoma lines in which the donor and recipient Cmu regions are physically connected to each other on the same chromosome can be as much as 4 orders of magnitude higher than it is for the same sequences located on homologous or nonhomologous chromosomes. The results are discussed in terms of a model for ectopic recombination in mammalian somatic cells in which the scanning mechanism that is used to locate a homologous partner operates preferentially in cis.
Collapse
Affiliation(s)
- M D Baker
- Department of Pathobiology, University of Guelph, Ontario, Canada.
| | | | | | | |
Collapse
|
37
|
Buzina A, Shulman MJ. An element in the endogenous IgH locus stimulates gene targeting in hybridoma cells. Nucleic Acids Res 1996; 24:1525-30. [PMID: 8628687 PMCID: PMC145805 DOI: 10.1093/nar/24.8.1525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gene targeting of the immunoglobulin (Ig) heavy chain locus is the basis of improved methods of investigating gene expression and of antibody engineering. The VH-Cmu intron is a convenient region for mediating homologous recombination events which result in production of Ig bearing an altered heavy chain. Also, this segment includes several elements which are important for gene expression, replication and isotype switching: in some cases it will be advantageous to alter these processes by modifying this intron. Considering that multiple targeting steps might be needed to accomplish all the requisite changes, it is important to know whether any of the anticipated modifications also alter the recombinogenicity of the IgH locus. To test this possibility we have measured the frequency at which a mutation in the Cmu3 exon of the endogenous mu gene is corrected by homologous recombination with a transfected segment of Cmu DNA. Comparison of recombination frequencies in several engineered hybridomas indicates that deletion of a 7.1 kb segment from the VH-Cmu intron depresses recombination by approximately 10-fold.
Collapse
Affiliation(s)
- A Buzina
- Department of Immunology, University of Toronto, Canada
| | | |
Collapse
|
38
|
Thyagarajan B, Johnson BL, Campbell C. The effect of target site transcription on gene targeting in human cells in vitro. Nucleic Acids Res 1995; 23:2784-90. [PMID: 7651841 PMCID: PMC307105 DOI: 10.1093/nar/23.14.2784] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We evaluate the effect of target site transcription on gene targeting in cultured human fibrosarcoma cells. A number of cell lines that harbored a plasmid recombination substrate within their chromosomal DNA were created. Gene targeting frequency was then measured at these different loci in the presence and absence of an agent that stimulated target site transcription. We observed that gene targeting was significantly enhanced by RNA transcription. The magnitude of transcription-stimulated gene targeting varied from 3-fold to > 20-fold. No increase in gene targeting was observed, however, when transcription proceeded away from, rather than through, the recombination site. Transcription-stimulated gene targeting was also observed when single-stranded plasmid vectors complementary to either the coding or template strand were used as recombination substrates. Our results indicate that gene targeting, like other forms of DNA recombination, can be stimulated by target site transcription. The implications of our observations on current models of transcription-stimulated recombination are discussed.
Collapse
Affiliation(s)
- B Thyagarajan
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | |
Collapse
|
39
|
Nevo-Caspi Y, Kupiec M. Transcriptional induction of Ty recombination in yeast. Proc Natl Acad Sci U S A 1994; 91:12711-5. [PMID: 7809107 PMCID: PMC45509 DOI: 10.1073/pnas.91.26.12711] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Families of repeated sequences are present in the genomes of all eukaryotes. Little is known about the mechanism(s) that prevents recombination between repeated sequences. In the yeast Saccharomyces cerevisiae, recombination between homologous sequences placed at nonhomologous locations in the genome (ectopic recombination) has been shown to occur at high frequencies for artificially created repeats, but at relatively low frequencies for a natural family of repeated sequences, the Ty family. We have previously shown that a high level of Ty cDNA in the cell causes an increase in the rate of nonreciprocal recombination (gene conversion) of a marked Ty element. In the present study, we show that it is also possible to elevate the rate of recombination of a marked Ty by increasing its transcription. This induction is different from, and acts synergistically to, the one seen upon increased levels of donor Ty cDNA. We show that the induction by transcription does not require the products of the RAD50, RAD51, and RAD57 genes. In contrast, cDNA-mediated recombination is dependent on the product of the RAD51 gene but not on products of the genes RAD50 or RAD57.
Collapse
Affiliation(s)
- Y Nevo-Caspi
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
40
|
Ganguly A, Smelt S, Mewar R, Fertala A, Sieron AL, Overhauser J, Prockop DJ. Targeted insertions of two exogenous collagen genes into both alleles of their endogenous loci in cultured human cells: the insertions are directed by relatively short fragments containing the promoters and the 5' ends of the genes. Proc Natl Acad Sci U S A 1994; 91:7365-9. [PMID: 8041796 PMCID: PMC44400 DOI: 10.1073/pnas.91.15.7365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previous studies demonstrated that type II procollagen is synthesized by HT-1080 cells that are stably transfected with constructs of the human COL2A1 gene that contain the promoter and 5' end of either the COL2A1 gene or the human COL1A1 gene. Since the host HT-1080 cells were from a human tumor line that synthesizes type IV collagen but not type II or type I procollagen, the results suggested that the constructs were integrated near active enhancers or promoters. Here, however, we demonstrate that a 33-kb construct of the COL2A1 gene containing a 5' fragment from the same gene was inserted into both alleles of the endogenous COL2A1 gene on chromosome 12, apparently by homologous recombination by a nonconservative pathway. In contrast, a similar construct of the COL2A1 gene in which the 5' end was replaced with a 1.9-kb fragment from the 5' end of the COL1A1 gene was inserted into both alleles of the locus for the COL1A1 gene on chromosome 17. Therefore, targeted insertion of the gene construct was not directed by the degree of sequence homology. Instead, it was directed by the relatively short 5' fragment from the COL1A1 gene that contained the promoter and the initially transcribed sequences of the gene. After insertion, both gene constructs were expressed from previously inactive loci.
Collapse
Affiliation(s)
- A Ganguly
- Department of Biochemistry and Molecular Biology, Jefferson Institute of Molecular Medicine, Jefferson Medical College, Philadelphia, PA 19107
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
RecA protein catalyzes the homologous pairing of a single-stranded circular DNA and a linear duplex DNA molecule. When the duplex is packaged into chromatin, formation of homologously paired complexes is blocked. We have established a system for studying the RecA-promoted reaction by using a duplex fragment containing a single-phased nucleosome. Under these conditions there is no reaction leading to formation of joint molecule complexes. However, transcription on the chromatin template activates the formation of complexes. Reaction is dependent on RNA synthesis and DNA sequence homology and proceeds regardless of the direction of transcription.
Collapse
|
42
|
Lang P, Mocikat R. Replacement-like recombination induced by an integration vector with a murine homology flank at the immunoglobulin heavy-chain locus in mouse and rat hybridoma cells. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:528-38. [PMID: 8121411 DOI: 10.1007/bf00285276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vectors for homologous recombination are commonly designed as replacement or integration constructs. We have evaluated integration vectors for the substitution of the immunoglobulin heavy-chain constant region by various human isotypes in mouse and rat hybridomas. It is known that under certain circumstances replacement vectors exhibit a lower target efficiency and can be incorporated by integration events. Conversely, we show here that an integration vector can undergo a replacement event despite having free homologous adjacent DNA ends, which would be expected to initiate integration according to the double-strand break repair model. Moreover, in cases of replacement recombination the 5' crossover is not necessarily located within the homology region, thereby giving rise to a truncated gene product. Whether or not the replacement leads to such deletions is clearly dependent on the isotypes involved in the targeting reaction. The fact that the vector is correctly targeted to the heavy-chain locus, but that the homology region is not always the site of recombination, points to a novel recombination mechanism that may be specific for the immunoglobulin loci and that seems to be predominant even in the presence of the free homologous adjacent ends of an integration vector. Furthermore we demonstrate that homologous recombination at the heavy-chain locus is also possible between sequences from different species. The implications of our findings for the production of chimeric antibodies are discussed.
Collapse
Affiliation(s)
- P Lang
- GSF-Institut für Immunologie, München, Germany
| | | |
Collapse
|
43
|
Abstract
RecA protein catalyzes the homologous pairing of a single-stranded circular DNA and a linear duplex DNA molecule. When the duplex is packaged into chromatin, formation of homologously paired complexes is blocked. We have established a system for studying the RecA-promoted reaction by using a duplex fragment containing a single-phased nucleosome. Under these conditions there is no reaction leading to formation of joint molecule complexes. However, transcription on the chromatin template activates the formation of complexes. Reaction is dependent on RNA synthesis and DNA sequence homology and proceeds regardless of the direction of transcription.
Collapse
Affiliation(s)
- H Kotani
- Department of Pharmacology, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | |
Collapse
|
44
|
Nault C, Veilleux S, Delbecchi L, Bourgaux-Ramoisy D, Bourgaux P. Intramolecular recombination in polyomavirus DNA is controlled by promoter elements. Nucleic Acids Res 1994; 22:485-91. [PMID: 8127689 PMCID: PMC523608 DOI: 10.1093/nar/22.3.485] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We show here that intramolecular homologous recombination in polyomavirus (Py) DNA depends upon discrete sequence elements of the viral regulatory region which are believed to regulate transcription initiation and exert little or no cis-control over replication. Either deleting the viral early promoter (EP) or inverting the viral late promoter (LP) strongly impairs viral DNA recombination under conditions allowing viral DNA replication to proceed undisturbed. These findings suggest that bi-directional transcription proceeding from the intergenic region favors intramolecular recombination.
Collapse
Affiliation(s)
- C Nault
- Department of Microbiology, Faculty of Medicine, Université de Sherbrooke, Québec, Canada
| | | | | | | | | |
Collapse
|
45
|
Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells. Mol Cell Biol 1994. [PMID: 8264607 DOI: 10.1128/mcb.14.1.400] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Previous work indicated that extrachromosomal recombination in mammalian cells could be explained by the single-strand annealing (SSA) model. This model predicts that extrachromosomal recombination leads to nonconservative crossover products and that heteroduplex DNA (hDNA) is formed by annealing of complementary single strands. Mismatched bases in hDNA may subsequently be repaired to wild-type or mutant sequences, or they may remain unrepaired and segregate following DNA replication. We describe a system to examine the formation and mismatch repair of hDNA in recombination intermediates. Our results are consistent with extrachromosomal recombination occurring via SSA and producing crossover recombinant products. As predicted by the SSA model, hDNA was present in double-strand break-induced recombination intermediates. By placing either silent or frameshift mutations in the predicted hDNA region, we have shown that mismatches are efficiently repaired prior to DNA replication.
Collapse
|
46
|
Preferential repair of UV damage in highly transcribed DNA diminishes UV-induced intrachromosomal recombination in mammalian cells. Mol Cell Biol 1994. [PMID: 8264606 DOI: 10.1128/mcb.14.1.391] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The relationships among transcription, recombination, DNA damage, and repair in mammalian cells were investigated. We monitored the effects of transcription on UV-induced intrachromosomal recombination between neomycin repeats including a promoterless allele and an inducible heteroallele regulated by the mouse mammary tumor virus promoter. Although transcription and UV light separately stimulated recombination, increasing transcription levels reduced UV-induced recombination. Preferential repair of UV damage in transcribed strands was shown in highly transcribed DNA, suggesting that recombination is stimulated by unrepaired UV damage and that increased DNA repair in highly transcribed alleles removes recombinogenic lesions. This study indicates that the genetic consequences of DNA damage depend on transcriptional states and provides a basis for understanding tissue- and gene-specific responses to DNA-damaging agents.
Collapse
|
47
|
Deng WP, Nickoloff JA. Preferential repair of UV damage in highly transcribed DNA diminishes UV-induced intrachromosomal recombination in mammalian cells. Mol Cell Biol 1994; 14:391-9. [PMID: 8264606 PMCID: PMC358388 DOI: 10.1128/mcb.14.1.391-399.1994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The relationships among transcription, recombination, DNA damage, and repair in mammalian cells were investigated. We monitored the effects of transcription on UV-induced intrachromosomal recombination between neomycin repeats including a promoterless allele and an inducible heteroallele regulated by the mouse mammary tumor virus promoter. Although transcription and UV light separately stimulated recombination, increasing transcription levels reduced UV-induced recombination. Preferential repair of UV damage in transcribed strands was shown in highly transcribed DNA, suggesting that recombination is stimulated by unrepaired UV damage and that increased DNA repair in highly transcribed alleles removes recombinogenic lesions. This study indicates that the genetic consequences of DNA damage depend on transcriptional states and provides a basis for understanding tissue- and gene-specific responses to DNA-damaging agents.
Collapse
Affiliation(s)
- W P Deng
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
48
|
Deng WP, Nickoloff JA. Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells. Mol Cell Biol 1994; 14:400-6. [PMID: 8264607 PMCID: PMC358389 DOI: 10.1128/mcb.14.1.400-406.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previous work indicated that extrachromosomal recombination in mammalian cells could be explained by the single-strand annealing (SSA) model. This model predicts that extrachromosomal recombination leads to nonconservative crossover products and that heteroduplex DNA (hDNA) is formed by annealing of complementary single strands. Mismatched bases in hDNA may subsequently be repaired to wild-type or mutant sequences, or they may remain unrepaired and segregate following DNA replication. We describe a system to examine the formation and mismatch repair of hDNA in recombination intermediates. Our results are consistent with extrachromosomal recombination occurring via SSA and producing crossover recombinant products. As predicted by the SSA model, hDNA was present in double-strand break-induced recombination intermediates. By placing either silent or frameshift mutations in the predicted hDNA region, we have shown that mismatches are efficiently repaired prior to DNA replication.
Collapse
Affiliation(s)
- W P Deng
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
49
|
Abstract
Purified Cre recombinase protein introduced directly into cultured mammalian cells by lipofection catalyzes both site-specific chromosomal integration of a co-transfected lox targeting vector and precise excision of genomic DNA flanked by directly repeated lox sites. This procedure eliminates the need to transfect cre expression plasmids to activate recombination at lox sites. We used this simplified procedure to investigate the effect on targeting efficiency of both lox vector design and chromosomal position of the lox target. We show that such chromosomal position effects can exert at least a 50-fold per lox target difference in targeting efficiency in a human osteosarcoma cell line.
Collapse
Affiliation(s)
- W Baubonis
- Biotechnology R & D, DuPont Merck Pharmaceutical Co., Wilmington, DE 19880-0400
| | | |
Collapse
|