1
|
Krishnan JM, Roskin KM, Meeds HL, Blackard JT. Effect of fentanyl on HIV expression in peripheral blood mononuclear cells. Front Microbiol 2024; 15:1463441. [PMID: 39386369 PMCID: PMC11461324 DOI: 10.3389/fmicb.2024.1463441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Illicit drug use, particularly the synthetic opioid fentanyl, presents a significant global health challenge. Previous studies have shown that fentanyl enhances viral replication; yet, the mechanisms by which it affects HIV pathogenesis remain unclear. This study investigated the impact of fentanyl on HIV replication in CD4+ T lymphocytes. Methods CD4+ T lymphocytes from HIV-negative donors were activated, infected with HIVNL4-3, and treated with fentanyl. HIV proviral DNA and p24 antigen expression were quantified using real-time PCR and ELISA, respectively. Single-cell RNA libraries were analyzed to identify differentially expressed genes. Results Results indicated that fentanyl treatment increased HIV p24 expression and proviral DNA levels, and naltrexone mitigated these effects. Single-cell RNAseq analysis identified significantly altered gene expression in CD4+ T lymphocytes. Discussion The results of our findings suggest that fentanyl promotes HIV replication ex vivo, emphasizing the need for a deeper understanding of opioid-virus interactions to develop better treatment strategies for individuals with HIV and opioid use disorder.
Collapse
Affiliation(s)
- Janani Madhuravasal Krishnan
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Krishna M. Roskin
- Divisions of Biomedical Informatics and Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Heidi L. Meeds
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jason T. Blackard
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
2
|
Jiang X, Hanna Z, Kaouass M, Girard L, Jolicoeur P. Ahi-1, a novel gene encoding a modular protein with WD40-repeat and SH3 domains, is targeted by the Ahi-1 and Mis-2 provirus integrations. J Virol 2002; 76:9046-59. [PMID: 12186888 PMCID: PMC136442 DOI: 10.1128/jvi.76.18.9046-9059.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ahi-1 locus was initially identified as a common helper provirus integration site in Abelson pre-B-cell lymphomas and shown to be closely linked to the c-myb proto-oncogene. Since no significant alteration of c-myb expression was found in Abelson murine leukemia virus-induced pre-B-lymphomas harboring a provirus inserted within the Ahi-1 locus, this suggested that it harbors another gene whose dysregulation is involved in tumor formation. Here we report the identification of a novel gene (Ahi-1) targeted by these provirus insertional mutations and the cloning of its cDNA. The Ahi-1 proviral insertions were found at the 3' end of the gene, in an inverse transcriptional orientation, with most of them located around and downstream of the last exon, whereas another insertion was within intron 22. In addition, another previously identified provirus insertion site, Mis-2, was found to map within the 16th intron of the Ahi-1 gene. The Ahi-1 cDNA encodes a 1,047-amino-acid protein. The predicted Ahi-1 protein is a modular protein that contains one SH3 motif and seven WD40 repeats. The Ahi-1 gene is conserved in mammals and encodes two major RNA species of 5 and 4.2 kb and several other shorter splicing variants. The Ahi-1 gene is expressed in mouse embryos and in several organs of the mouse and rat, notably at high levels in the brain and testes. In tumor cells harboring insertional mutations in Ahi-1, truncated Ahi-1/viral fused transcripts were identified, including some splicing variants with deletion of the SH3 domain. Therefore, Ahi-1 is a novel gene targeted by provirus insertion and encoding a protein that exhibits several features of a signaling molecule. Thus, Ahi-1 may play an important role in signal transduction in normal cells and may be involved in tumor development, possibly in cooperation with other oncogenes (such as v-abl and c-myc) or with a tumor suppressor gene (Nf1), since Ahi-1 insertion sites were identified in tumors harboring v-abl defective retroviruses or a c-myc transgene or in tumors exhibiting deletion of Nf1.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, H2W 1R7 Quebéc, Canada
| | | | | | | | | |
Collapse
|
3
|
Broussard DR, Mertz JA, Lozano M, Dudley JP. Selection for c-myc integration sites in polyclonal T-cell lymphomas. J Virol 2002; 76:2087-99. [PMID: 11836386 PMCID: PMC153816 DOI: 10.1128/jvi.76.5.2087-2099.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type B leukemogenic virus (TBLV) is highly related to mouse mammary tumor virus but induces rapidly appearing T-cell lymphomas in mice. Unlike other T-cell tumors induced by retroviruses, only 5 to 10% of TBLV-induced lymphomas have detectable viral integrations near c-myc by Southern blotting, whereas Northern blotting has shown that most tumors have two- to sixfold overexpression of c-myc RNA. In this report, PCR was used to demonstrate that at least 30% of these lymphomas have TBLV insertions near c-myc. Some tumors contained multiple TBLV proviruses in different locations and orientations, suggesting that the tumors are polyclonal. The integrated proviruses near c-myc had different numbers (two to four) of long terminal repeat (LTR) enhancer repeats, although LTRs with three-repeat enhancers dominated the proviral population. Passage of polyclonal tumors in immunocompetent mice and semiquantitative PCR revealed that only cells with particular integrations were selected for growth. In three of six tumors tested, proviruses containing four-repeat enhancers near c-myc were selected during tumor passage. Since tumor cell selection may be accomplished by overexpression of c-myc RNA due to proximity to the unique TBLV LTR enhancer, we inserted LTRs at various locations within a plasmid containing the entire c-myc locus and cellular flanking sequences. To quantitatively measure effects on transcription, the Renilla luciferase gene was substituted for most of c-myc exon 2, and transient transfections were performed with c-myc reporter constructs in two different T-cell lines. As expected, insertion of a TBLV LTR with three-repeat enhancers in either orientation, 5" and 3", of the myc gene elevated reporter activity from 2- to 160-fold, consistent with enhancer function, but four-repeat LTRs had lower levels of expression compared to three-repeat LTRs. Surprisingly, LTR insertions that gave maximal c-myc expression in transient-transfection assays declined in tumor cells selected for growth in vivo. Selection for clonal growth may occur in tumor cells that have modest c-myc overexpression after proviral insertion to prevent apoptosis.
Collapse
Affiliation(s)
- Dana R Broussard
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 100 W. 24th Street, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
4
|
Mertz JA, Mustafa F, Meyers S, Dudley JP. Type B leukemogenic virus has a T-cell-specific enhancer that binds AML-1. J Virol 2001; 75:2174-84. [PMID: 11160721 PMCID: PMC114801 DOI: 10.1128/jvi.75.5.2174-2184.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Type B leukemogenic virus (TBLV) induces rapidly appearing T-cell tumors in mice. TBLV is highly related to mouse mammary tumor virus (MMTV) except that TBLV long terminal repeats (LTRs) have a deletion of negative regulatory elements and a triplication of sequences flanking the deletion. To determine if the LTR triplication represents a viral enhancer element, we inserted the triplication upstream and downstream in either orientation relative to the thymidine kinase promoter linked to the luciferase gene. These experiments showed that upregulation of reporter gene activity by the TBLV triplication was relatively orientation independent, consistent with the activity of eukaryotic enhancer elements. TBLV enhancer activity was observed in T-cell lines but not in fibroblasts, B cells, or mammary cells, suggesting that enhancer function is cell type dependent. To analyze the transcription factor binding sites that are important for TBLV enhancer function, we prepared substitution mutations in a reconstituted C3H MMTV LTR that recapitulates the deletion observed in the TBLV LTR. Transient transfections showed that a single mutation (556M) decreased TBLV enhancer activity at least 20-fold in two different T-cell lines. This mutation greatly diminished AML-1 (recently renamed RUNX1) binding in gel shift assays with a mutant oligonucleotide, whereas AML-1 binding to a wild-type TBLV oligomer was specific, as judged by competition and supershift experiments. The 556 mutation also reduced TBLV enhancer binding of two other protein complexes, called NF-A and NF-B, that did not appear to be related to c-Myb or Ets. AML-1 overexpression in a mammary cell line enhanced expression from the TBLV LTR approximately 30-fold. These data suggest that binding of AML-1 to the TBLV enhancer, likely in combination with other factors, is necessary for optimal enhancer function.
Collapse
Affiliation(s)
- J A Mertz
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
5
|
Yanagawa S, Lee JS, Kakimi K, Matsuda Y, Honjo T, Ishimoto A. Identification of Notch1 as a frequent target for provirus insertional mutagenesis in T-cell lymphomas induced by leukemogenic mutants of mouse mammary tumor virus. J Virol 2000; 74:9786-91. [PMID: 11000255 PMCID: PMC112415 DOI: 10.1128/jvi.74.20.9786-9791.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to wild-type mouse mammary tumor virus (MMTV), the MMTV mutants with specific deletions in the U3 region of their long terminal repeats cause T-cell lymphomas. In 30% of T-cell lymphomas arising in BALB/c mice infected with MLA-MMTV, a leukemogenic MMTV mutant, we have found that MMTV proviruses were integrated into a short region of the Notch1 genome, so that truncated Notch1 transcripts encoding the transmembrane and the cytoplasmic domains of Notch1 protein could be expressed. Thus, Notch1 is a major target of provirus insertional mutagenesis in these T-cell lymphomas.
Collapse
Affiliation(s)
- S Yanagawa
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Rajan L, Broussard D, Lozano M, Lee CG, Kozak CA, Dudley JP. The c-myc locus is a common integration site in type B retrovirus-induced T-cell lymphomas. J Virol 2000; 74:2466-71. [PMID: 10666282 PMCID: PMC111733 DOI: 10.1128/jvi.74.5.2466-2471.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type B leukemogenic virus (TBLV) induces rapidly appearing T-cell leukemias. TBLV insertions near the c-myc gene were detectable in 2 of 30 tumors tested, whereas 80% of the tumors showed c-myc overexpression. TBLV insertions on chromosome 15 (including a newly identified locus, Pad7) may cause c-myc overexpression by cis-acting effects at a distance.
Collapse
Affiliation(s)
- L Rajan
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78705, USA
| | | | | | | | | | | |
Collapse
|
7
|
Doyon L, Simard C, Sékaly RP, Jolicoeur P. Evidence that the murine AIDS defective virus does not encode a superantigen. J Virol 1996; 70:1-9. [PMID: 8523511 PMCID: PMC189780 DOI: 10.1128/jvi.70.1.1-9.1996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The T-cell receptor repertoire was analyzed in C57BL/6 mice upon infection with helper-free stocks of the pathogenic murine AIDS (MAIDS) defective virus in order to demonstrate if, as previously reported, this virus encodes a superantigen. A polyclonal T-cell stimulation involving T cells expressing multiple V beta subsets occurred within the first week of infection, while late in the disease we could note only a 50% deletion of V beta 5 CD8+ cells. Transfection of the MAIDS virus genomic DNA into fibroblasts and B cells expressing major histocompatibility complex class II molecules failed to show any stimulation of cells expressing the specific V beta (V beta 5) previously reported to respond to MAIDS virus-infected cells. In addition, mice lacking V beta 5 cells did not show any significant decrease in susceptibility to the disease compared with mice expressing V beta 5 and bred on the same genetic background. Our in vivo and in vitro results fail to demonstrate a role for a superantigen encoded by the MAIDS defective viral genome in the pathogenesis of MAIDS.
Collapse
Affiliation(s)
- L Doyon
- Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montréal, Canada
| | | | | | | |
Collapse
|
8
|
Simard C, Huang M, Jolicoeur P. Murine AIDS is initiated in the lymph nodes draining the site of inoculation, and the infected B cells influence T cells located at distance, in noninfected organs. J Virol 1994; 68:1903-12. [PMID: 8107250 PMCID: PMC236652 DOI: 10.1128/jvi.68.3.1903-1912.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The infection of cells which belong to the B-cell lineage is thought to be the primary event leading to the phenotypic and functional alterations seen in the murine AIDS (M. Huang, C. Simard, D. Kay, and P. Jolicoeur, J. Virol. 65:6562-6571, 1991). Using in situ hybridization, we studied the time course of the anatomic distribution of the murine AIDS-infected B cells in C57BL/6 mice inoculated intraperitoneally or in the foot pad with helper-free stocks of the defective murine AIDS virus. The local lymph nodes draining the injection site (the mediastinal or popliteal lymph nodes) were the primary organs in which infected B cells could be detected. From this initial site, the proliferating infected B cells were found to migrate progressively to most of the other lymph nodes and to the spleen. The bone marrow cells (containing the precursor B cells) were not found to be infected by the virus. These results suggest that the defective murine AIDS virus infects mature Ly-1- B cells present in lymph nodes. We compared the concanavalin A response of the T cells at an early time postinoculation, before all lymphoid organs are infiltrated with infected B cells. In lymphoid organs free of infected B cells, T cells were found to be hyperresponsive. In lymphoid organs in which infected B cells were present, T cells were hyporesponsive. These data suggest that infected B cells influence distant T cells, maybe by the release of a circulating factor or through another uninfected cell population activated by the infected B cells.
Collapse
Affiliation(s)
- C Simard
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Quebec, Canada
| | | | | |
Collapse
|
9
|
Specific expression of the human CD4 gene in mature CD4+ CD8- and immature CD4+ CD8+ T cells and in macrophages of transgenic mice. Mol Cell Biol 1994. [PMID: 8289789 DOI: 10.1128/mcb.14.2.1084] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CD4 protein plays a critical role in the development and function of the immune system. To gain more insight into the mechanism of expression of the human CD4 gene, we cloned 42.2 kbp of genomic sequences comprising the CD4 gene and its surrounding sequences. Studies with transgenic mice revealed that a 12.6-kbp fragment of the human CD4 gene (comprising 2.6 kbp of 5' sequences upstream of the transcription initiation site, the first two exons and introns, and part of exon 3) contains the sequences required to support the appropriate expression in murine mature CD4+ CD8- T cells and macrophages but not in immature double-positive CD4+ CD8+ T cells. Expression in CD4+ CD8+ T cells was found to require additional regulatory elements present in a T-cell enhancer fragment recently identified for the murine CD4 gene (S. Sawada and D. R. Littman, Mol. Cell. Biol. 11:5506-5515, 1991). These results suggest that expression of CD4 in mature and immature T-cell subsets may be controlled by distinct and independent regulatory elements. Alternatively, specific regulatory elements may control the expression of CD4 at different levels in mature and immature T-cell subsets. Our data also indicate that mouse macrophages contain the regulatory factors necessary to transcribe the human CD4 gene.
Collapse
|
10
|
Hanna Z, Simard C, Laperrière A, Jolicoeur P. Specific expression of the human CD4 gene in mature CD4+ CD8- and immature CD4+ CD8+ T cells and in macrophages of transgenic mice. Mol Cell Biol 1994; 14:1084-94. [PMID: 8289789 PMCID: PMC358464 DOI: 10.1128/mcb.14.2.1084-1094.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The CD4 protein plays a critical role in the development and function of the immune system. To gain more insight into the mechanism of expression of the human CD4 gene, we cloned 42.2 kbp of genomic sequences comprising the CD4 gene and its surrounding sequences. Studies with transgenic mice revealed that a 12.6-kbp fragment of the human CD4 gene (comprising 2.6 kbp of 5' sequences upstream of the transcription initiation site, the first two exons and introns, and part of exon 3) contains the sequences required to support the appropriate expression in murine mature CD4+ CD8- T cells and macrophages but not in immature double-positive CD4+ CD8+ T cells. Expression in CD4+ CD8+ T cells was found to require additional regulatory elements present in a T-cell enhancer fragment recently identified for the murine CD4 gene (S. Sawada and D. R. Littman, Mol. Cell. Biol. 11:5506-5515, 1991). These results suggest that expression of CD4 in mature and immature T-cell subsets may be controlled by distinct and independent regulatory elements. Alternatively, specific regulatory elements may control the expression of CD4 at different levels in mature and immature T-cell subsets. Our data also indicate that mouse macrophages contain the regulatory factors necessary to transcribe the human CD4 gene.
Collapse
Affiliation(s)
- Z Hanna
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Quebec, Canada
| | | | | | | |
Collapse
|