1
|
Richetta C, Thierry S, Thierry E, Lesbats P, Lapaillerie D, Munir S, Subra F, Leh H, Deprez E, Parissi V, Delelis O. Two-long terminal repeat (LTR) DNA circles are a substrate for HIV-1 integrase. J Biol Chem 2019; 294:8286-8295. [PMID: 30971426 DOI: 10.1074/jbc.ra118.006755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/08/2019] [Indexed: 02/01/2023] Open
Abstract
Integration of the HIV-1 DNA into the host genome is essential for viral replication and is catalyzed by the retroviral integrase. To date, the only substrate described to be involved in this critical reaction is the linear viral DNA produced in reverse transcription. However, during HIV-1 infection, two-long terminal repeat DNA circles (2-LTRcs) are also generated through the ligation of the viral DNA ends by the host cell's nonhomologous DNA end-joining pathway. These DNAs contain all the genetic information required for viral replication, but their role in HIV-1's life cycle remains unknown. We previously showed that both linear and circular DNA fragments containing the 2-LTR palindrome junction can be efficiently cleaved in vitro by recombinant integrases, leading to the formation of linear 3'-processed-like DNA. In this report, using in vitro experiments with purified proteins and DNAs along with DNA endonuclease and in vivo integration assays, we show that this circularized genome can also be efficiently used as a substrate in HIV-1 integrase-mediated integration both in vitro and in eukaryotic cells. Notably, we demonstrate that the palindrome cleavage occurs via a two-step mechanism leading to a blunt-ended DNA product, followed by a classical 3'-processing reaction; this cleavage leads to integrase-dependent integration, highlighted by a 5-bp duplication of the host genome. Our results suggest that 2-LTRc may constitute a reserve supply of HIV-1 genomes for proviral integration.
Collapse
Affiliation(s)
- Clémence Richetta
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan
| | - Sylvain Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan
| | - Eloise Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan
| | - Paul Lesbats
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, Centre National de la Recherche Scientifique UMR5234, Université Victor Segalen Bordeaux 2, 33076 Bordeaux, France
| | - Delphine Lapaillerie
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, Centre National de la Recherche Scientifique UMR5234, Université Victor Segalen Bordeaux 2, 33076 Bordeaux, France
| | - Soundasse Munir
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan
| | - Frédéric Subra
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan
| | - Hervé Leh
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan
| | - Vincent Parissi
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, Centre National de la Recherche Scientifique UMR5234, Université Victor Segalen Bordeaux 2, 33076 Bordeaux, France
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan.
| |
Collapse
|
2
|
Voziyanova E, Anderson RP, Shah R, Li F, Voziyanov Y. Efficient Genome Manipulation by Variants of Site-Specific Recombinases R and TD. J Mol Biol 2015; 428:990-1003. [PMID: 26555749 DOI: 10.1016/j.jmb.2015.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 10/17/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Genome engineering benefits from the availability of DNA modifying enzymes that have different target specificities and have optimized performance in different cell types. This variety of site-specific enzymes can be used to develop complex genome engineering applications at multiple loci. Although eight yeast site-specific tyrosine recombinases are known, only Flp is actively used in genome engineering. To expand the pool of the yeast site-specific tyrosine recombinases capable of mediating genome manipulations in mammalian cells, we engineered and analyzed variants of two tyrosine recombinases: R and TD. The activity of the evolved variants, unlike the activity of the native R and TD recombinases, is suitable for genome engineering in Escherichia coli and mammalian cells. Unexpectedly, we found that R recombinase benefits from the shortening of its C-terminus. We also found that the activity of wild-type R can be modulated by its non-consensus "head" sequence but this modulation became not apparent in the evolved R variants. The engineered recombinase variants were found to be active in all recombination reactions tested: excision, integration, and dual recombinase-mediated cassette exchange. The analysis of the latter reaction catalyzed by the R/TD recombinase pair shows that the condition supporting the most efficient replacement reaction favors efficient TD-mediated integration reaction while favoring efficient R-mediated integration and deletion reactions.
Collapse
Affiliation(s)
- Eugenia Voziyanova
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Rachelle P Anderson
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Riddhi Shah
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Feng Li
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Yuri Voziyanov
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA.
| |
Collapse
|
3
|
Rowley PA, Kachroo AH, Ma CH, Maciaszek AD, Guga P, Jayaram M. Stereospecific suppression of active site mutants by methylphosphonate substituted substrates reveals the stereochemical course of site-specific DNA recombination. Nucleic Acids Res 2015; 43:6023-37. [PMID: 25999343 PMCID: PMC4499138 DOI: 10.1093/nar/gkv513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/21/2015] [Accepted: 05/05/2015] [Indexed: 11/14/2022] Open
Abstract
Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5' to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions.
Collapse
Affiliation(s)
- Paul A Rowley
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Aashiq H Kachroo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Anna D Maciaszek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Gibb B, Gupta K, Ghosh K, Sharp R, Chen J, Van Duyne GD. Requirements for catalysis in the Cre recombinase active site. Nucleic Acids Res 2010; 38:5817-32. [PMID: 20462863 PMCID: PMC2943603 DOI: 10.1093/nar/gkq384] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Members of the tyrosine recombinase (YR) family of site-specific recombinases catalyze DNA rearrangements using phosphoryl transfer chemistry that is identical to that used by the type IB topoisomerases (TopIBs). To better understand the requirements for YR catalysis and the relationship between the YRs and the TopIBs, we have analyzed the in vivo and in vitro recombination activities of all substitutions of the seven active site residues in Cre recombinase. We have also determined the structure of a vanadate transition state mimic for the Cre-loxP reaction that facilitates interpretation of mutant activities and allows for a comparison with similar structures from the related topoisomerases. We find that active site residues shared by the TopIBs are most sensitive to substitution. Only two, the tyrosine nucleophile and a conserved lysine residue that activates the 5'-hydroxyl leaving group, are strictly required to achieve >5% of wild-type activity. The two conserved arginine residues each tolerate one substitution that results in modest recombination activity and the remaining three active site positions can be substituted with several alternative amino acids while retaining a significant amount of activity. The results are discussed in the context of YR and TopIB structural models and data from related YR systems.
Collapse
Affiliation(s)
- Bryan Gibb
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
5
|
Rowley PA, Kachroo AH, Ma CH, Maciaszek AD, Guga P, Jayaram M. Electrostatic suppression allows tyrosine site-specific recombination in the absence of a conserved catalytic arginine. J Biol Chem 2010; 285:22976-85. [PMID: 20448041 DOI: 10.1074/jbc.m110.112292] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The active site of the tyrosine family site-specific recombinase Flp contains a conserved catalytic pentad that includes two arginine residues, Arg-191 and Arg-308. Both arginines are essential for the transesterification steps of strand cleavage and strand joining in DNA substrates containing a phosphate group at the scissile position. During strand cleavage, the active site tyrosine supplies the nucleophile to form a covalent 3'-phosphotyrosyl intermediate. The 5'-hydroxyl group produced by cleavage provides the nucleophile to re-form a 3'-5' phosphodiester bond in a recombinant DNA strand. In previous work we showed that substitution of the scissile phosphate (P) by the charge neutral methylphosphonate (MeP) makes Arg-308 dispensable during the catalytic activation of the MeP diester bond. However, in the Flp(R308A) reaction, water out-competes the tyrosine nucleophile (Tyr-343) to cause direct hydrolysis of the MeP diester bond. We now report that for MeP activation Arg-191 is also not required. In contrast to Flp(R308A), Flp(R191A) primarily mediates normal cleavage by Tyr-343 but also exhibits a weaker direct hydrolytic activity. The cleaved MeP-tyrosyl intermediate formed by Flp(R191A) can be targeted for nucleophilic attack by a 5'-hydroxyl or water and channeled toward strand joining or hydrolysis, respectively. In collaboration with wild type Flp, Flp(R191A) promotes strand exchange between MeP- and P-DNA partners. Loss of a catalytically crucial positively charged side chain can thus be suppressed by a compensatory modification in the DNA substrate that neutralizes the negative charge on the scissile phosphate.
Collapse
Affiliation(s)
- Paul A Rowley
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
CTnDOT integrase (IntDOT) is a member of the tyrosine family of site-specific DNA recombinases. IntDOT is unusual in that it catalyzes recombination between nonidentical sequences. Previous mutational analyses centered on mutants with substitutions of conserved residues in the catalytic (CAT) domain or residues predicted by homology modeling to be close to DNA in the core-binding (CB) domain. That work suggested that a conserved active-site residue (Arg I) of the CAT domain is missing and that some residues in the CB domain are involved in catalysis. Here we used a genetic approach and constructed an Escherichia coli indicator strain to screen for random mutations in IntDOT that disrupt integrative recombination in vivo. Twenty-five IntDOT mutants were isolated and characterized for DNA binding, DNA cleavage, and DNA ligation activities. We found that mutants with substitutions in the amino-terminal (N) domain were catalytically active but defective in forming nucleoprotein complexes, suggesting that they have altered protein-protein interactions or altered interactions with DNA. Replacement of Ala-352 of the CAT domain disrupted DNA cleavage but not DNA ligation, suggesting that Ala-352 may be important for positioning the catalytic tyrosine (Tyr-381) during cleavage. Interestingly, our biochemical data and homology modeling of the CAT domain suggest that Arg-285 is the missing Arg I residue of IntDOT. The predicted position of Arg-285 shows it entering the active site from a position on the polypeptide backbone that is not utilized in other tyrosine recombinases. IntDOT may therefore employ a novel active-site architecture to catalyze recombination.
Collapse
|
7
|
Nunes-Düby SE, Radman-Livaja M, Kuimelis RG, Pearline RV, McLaughlin LW, Landy A. Gamma integrase complementation at the level of DNA binding and complex formation. J Bacteriol 2002; 184:1385-94. [PMID: 11844768 PMCID: PMC134844 DOI: 10.1128/jb.184.5.1385-1394.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2001] [Accepted: 11/02/2001] [Indexed: 11/20/2022] Open
Abstract
Site-specific recombinases of the gamma Int family carry out two single-strand exchanges by binding as head-to-head dimers on inverted core-type DNA sites. Each protomer may cleave its own site as a monomer in cis (as for Cre recombinase), or it may recruit the tyrosine from its partner in trans to form a composite active site (as for Flp recombinase). The crystal structure of the gamma Int catalytic domain is compatible with both cleavage mechanisms, but two previous biochemical studies on gamma integrase (Int) generated data that were not in agreement. Support for cis and trans cleavage came from assays with bispecific DNA substrates for gamma and HK022 Ints and from functional complementation between recombination-deficient mutants, respectively. The data presented here do not provide new evidence for cis cleavage, but they strongly suggest that the previously described complementation results cannot be used in support of a trans-cleavage mechanism. We show here that IntR212Q retains some residual catalytic function but is impaired in binding to core-type DNA on linear substrates and in forming higher-order attL intasome structures. The binding-proficient mutant IntY342F can stabilize IntR212Q binding to core-type DNA through protein-protein interactions. Similarly, the formation of higher-order Int complexes with arm- and core-type DNA is boosted with both mutants present. This complementation precedes cleavage and thus precludes any conclusions about the mechanism of catalysis. Cross-core stimulation of wild-type HK022-Int cleavage on its cognate site (in cis) by mutant gamma Ints on bispecific core DNA suicide substrates is shown to be independent of the catalytic tyrosine but appears to be proportional to the respective core-binding affinities of the gamma Int mutants.
Collapse
Affiliation(s)
- Simone E Nunes-Düby
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|
8
|
Burns LS, Smith SG, Dorman CJ. Interaction of the FimB integrase with the fimS invertible DNA element in Escherichia coli in vivo and in vitro. J Bacteriol 2000; 182:2953-9. [PMID: 10781567 PMCID: PMC102007 DOI: 10.1128/jb.182.10.2953-2959.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The FimB protein is a site-specific recombinase that inverts the fimS genetic switch in Escherichia coli. Based on amino acid sequence analysis alone, FimB has been assigned to the integrase family of tyrosine recombinases. We show that amino acid substitutions at positions R47, H141, R144, and Y176, corresponding to highly conserved members of the catalytic motif of integrase proteins, render FimB incapable of inverting the fimS element in vivo. The arginine substitutions reduced the ability of FimB to bind to fimS in vivo or in vitro, while the substitution R144Q resulted in a protein unable to bind independently to the half sites located at the left end of fimS in phase-on bacteria. These data confirm that FimB is an integrase and suggest that residue R144 has a role in binding to a specific component of the fim switch.
Collapse
Affiliation(s)
- L S Burns
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Dublin 2, Republic of Ireland
| | | | | |
Collapse
|
9
|
Abstract
Site-specific recombinases of the Integrase family utilize a common chemical mechanism to break DNA strands during recombination. A conserved Arg-His-Arg triad activates the scissile phosphodiester bond, and an active-site tyrosine provides the nucleophile to effect DNA cleavage. Is the tyrosine residue for the cleavage event derived from the same recombinase monomer which provides the RHR triad (DNA cleavage in cis), or are the triad and tyrosine derived from two separate monomers (cleavage in trans)? Do all members of the family follow the same cleavage rule, cis or trans? Solution studies and available structural data have provided conflicting answers. Experimental results with the Flp recombinase which strongly support trans cleavage have been derived either by pairing two catalytic mutants of Flp or by pairing wild-type Flp and a catalytic mutant. The inclusion of the mutant has raised new concerns, especially because of the apparent contradictions in their cleavage modes posed by other Int family members. Here we test the cleavage mode of Flp using an experimental design which excludes the use of the mutant protein, and show that the outcome is still only trans DNA cleavage.
Collapse
Affiliation(s)
- J Lee
- Department of Microbiology and Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
10
|
Gravel A, Messier N, Roy PH. Point mutations in the integron integrase IntI1 that affect recombination and/or substrate recognition. J Bacteriol 1998; 180:5437-42. [PMID: 9765577 PMCID: PMC107594 DOI: 10.1128/jb.180.20.5437-5442.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The site-specific recombinase IntI1 found in class 1 integrons catalyzes the excision and integration of mobile gene cassettes, especially antibiotic resistance gene cassettes, with a site-specific recombination system. The integron integrase belongs to the tyrosine recombinase (phage integrase) family. The members of this family, exemplified by the lambda integrase, do not share extensive amino acid identities, but three invariant residues are found within two regions, designated box I and box II. Two conserved residues are arginines, one located in box I and one in box II, while the other conserved residue is a tyrosine located at the C terminus of box II. We have analyzed the properties of IntI1 variants carrying point mutations at the three conserved residues of the family in in vivo recombination and in vitro substrate binding. We have made four proteins with mutations of the conserved box I arginine (R146) and three mutants with changes of the box II arginine (R280); of these, MBP-IntI1(R146K) and MBP-IntI1(R280K) bind to the attI1 site in vitro, but only MBP-IntI1(R280K) is able to excise cassettes in vivo. However, the efficiency of recombination and DNA binding for MBP-IntI1(R280K) is lower than that obtained with the wild-type MBP-IntI1. We have also made two proteins with mutations of the tyrosine residue (Y312), and both mutant proteins are similar to the wild-type fusion protein in their DNA-binding capacity but are unable to catalyze in vivo recombination.
Collapse
Affiliation(s)
- A Gravel
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval and Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Sainte-Foy, Québec, Canada
| | | | | |
Collapse
|
11
|
Nunes-Düby SE, Kwon HJ, Tirumalai RS, Ellenberger T, Landy A. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 1998; 26:391-406. [PMID: 9421491 PMCID: PMC147275 DOI: 10.1093/nar/26.2.391] [Citation(s) in RCA: 348] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alignments of 105 site-specific recombinases belonging to the Int family of proteins identified extended areas of similarity and three types of structural differences. In addition to the previously recognized conservation of the tetrad R-H-R-Y, located in boxes I and II, several newly identified sequence patches include charged amino acids that are highly conserved and a specific pattern of buried residues contributing to the overall protein fold. With some notable exceptions, unconserved regions correspond to loops in the crystal structures of the catalytic domains of lambda Int (Int c170) and HP1 Int (HPC) and of the recombinases XerD and Cre. Two structured regions also harbor some pronounced differences. The first comprises beta-sheets 4 and 5, alpha-helix D and the adjacent loop connecting it to alpha-helix E: two Ints of phages infecting thermophilic bacteria are missing this region altogether; the crystal structures of HPC, XerD and Cre reveal a lack of beta-sheets 4 and 5; Cre displays two additional beta-sheets following alpha-helix D; five recombinases carry large insertions. The second involves the catalytic tyrosine and is seen in a comparison of the four crystal structures. The yeast recombinases can theoretically be fitted to the Int fold, but the overall differences, involving changes in spacing as well as in motif structure, are more substantial than seen in most other proteins. The phenotypes of mutations compiled from several proteins are correlated with the available structural information and structure-function relationships are discussed. In addition, a few prokaryotic and eukaryotic enzymes with partial homology with the Int family of recombinases may be distantly related, either through divergent or convergent evolution. These include a restriction enzyme and a subgroup of eukaryotic RNA helicases (D-E-A-D proteins).
Collapse
Affiliation(s)
- S E Nunes-Düby
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| | | | | | | | | |
Collapse
|
12
|
Subramanya HS, Arciszewska LK, Baker RA, Bird LE, Sherratt DJ, Wigley DB. Crystal structure of the site-specific recombinase, XerD. EMBO J 1997; 16:5178-87. [PMID: 9311978 PMCID: PMC1170150 DOI: 10.1093/emboj/16.17.5178] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The structure of the site-specific recombinase, XerD, that functions in circular chromosome separation, has been solved at 2.5 A resolution and reveals that the protein comprises two domains. The C-terminal domain contains two conserved sequence motifs that are located in similar positions in the structures of XerD, lambda and HP1 integrases. However, the extreme C-terminal regions of the three proteins, containing the active site tyrosine, are very different. In XerD, the arrangement of active site residues supports a cis cleavage mechanism. Biochemical evidence for DNA bending is encompassed in a model that accommodates extensive biochemical and genetic data, and in which the DNA is wrapped around an alpha-helix in a manner similar to that observed for CAP complexed with DNA.
Collapse
Affiliation(s)
- H S Subramanya
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | | | | | | | | |
Collapse
|