1
|
Kramer S, Meyer-Natus E, Stigloher C, Thoma H, Schnaufer A, Engstler M. Parallel monitoring of RNA abundance, localization and compactness with correlative single molecule FISH on LR White embedded samples. Nucleic Acids Res 2021; 49:e14. [PMID: 33275141 PMCID: PMC7897490 DOI: 10.1093/nar/gkaa1142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/16/2020] [Accepted: 11/17/2020] [Indexed: 01/19/2023] Open
Abstract
Single mRNA molecules are frequently detected by single molecule fluorescence in situ hybridization (smFISH) using branched DNA technology. While providing strong and background-reduced signals, the method is inefficient in detecting mRNAs within dense structures, in monitoring mRNA compactness and in quantifying abundant mRNAs. To overcome these limitations, we have hybridized slices of high pressure frozen, freeze-substituted and LR White embedded cells (LR White smFISH). mRNA detection is physically restricted to the surface of the resin. This enables single molecule detection of RNAs with accuracy comparable to RNA sequencing, irrespective of their abundance, while at the same time providing spatial information on RNA localization that can be complemented with immunofluorescence and electron microscopy, as well as array tomography. Moreover, LR White embedding restricts the number of available probe pair recognition sites for each mRNA to a small subset. As a consequence, differences in signal intensities between RNA populations reflect differences in RNA structures, and we show that the method can be employed to determine mRNA compactness. We apply the method to answer some outstanding questions related to trans-splicing, RNA granules and mitochondrial RNA editing in single-cellular trypanosomes and we show an example of differential gene expression in the metazoan Caenorhabditis elegans.
Collapse
Affiliation(s)
- Susanne Kramer
- Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | | | - Christian Stigloher
- Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany.,Imaging Core Facility, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Hanna Thoma
- Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Achim Schnaufer
- Institute for Immunology & Infection Research, University of Edinburgh, Edinburgh, UK
| | - Markus Engstler
- Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Rajan KS, Doniger T, Cohen-Chalamish S, Rengaraj P, Galili B, Aryal S, Unger R, Tschudi C, Michaeli S. Developmentally Regulated Novel Non-coding Anti-sense Regulators of mRNA Translation in Trypanosoma b rucei. iScience 2020; 23:101780. [PMID: 33294788 PMCID: PMC7683347 DOI: 10.1016/j.isci.2020.101780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/14/2020] [Accepted: 11/03/2020] [Indexed: 01/19/2023] Open
Abstract
The parasite Trypanosoma brucei is the causative agent of sleeping sickness and cycles between insect and mammalian hosts. The parasite appears to lack conventional transcriptional regulation of protein coding genes, and mRNAs are processed from polycistronic transcripts by the concerted action of trans-splicing and polyadenylation. Regulation of mRNA function is mediated mainly by RNA binding proteins affecting mRNA stability and translation. In this study, we describe the identification of 62 non-coding (nc) RNAs that are developmentally regulated and/or respond to stress. We characterized two novel anti-sense RNA regulators (TBsRNA-33 and 37) that originate from the rRNA loci, associate with ribosomes and polyribosomes, and interact in vivo with distinct mRNA species to regulate translation. Thus, this study suggests for the first-time anti-sense RNA regulators as an additional layer for controlling gene expression in these parasites. Trypanosome non-coding RNAs (ncRNAs) are developmentally regulated during cycling between two hosts ncRNAs originate from rRNA locus and associate with the ribosome en route to cytoplasm In vivo cross-linking enable identification of target RNA species regulated by ncRNAs Trypanosomes possess anti-sense ncRNAs that regulate translation
Collapse
Affiliation(s)
- K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Praveenkumar Rengaraj
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Beathrice Galili
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06536, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
3
|
Cesaro G, Carneiro FRG, Ávila AR, Zanchin NIT, Guimarães BG. Trypanosoma brucei RRP44 is involved in an early stage of large ribosomal subunit RNA maturation. RNA Biol 2018; 16:133-143. [PMID: 30593255 DOI: 10.1080/15476286.2018.1564463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ribosomal RNA precursors undergo a series of structural and chemical modifications to generate matured RNA molecules that will comprise ribosomes. This maturation process involves a large set of accessory proteins as well as ribonucleases, responsible for removal of the external and internal transcribed spacers from the pre-rRNA. Early-diverging eukaryotes belonging to the Kinetoplastida class display several unique characteristics, in particular in terms of RNA synthesis and maturation. These peculiarities include the rRNA biogenesis and the extensive fragmentation of the large ribosomal subunit (LSU) rRNA. The role of specific endo- and exonucleases in the maturation of the unusual rRNA precursor of trypanosomatids remains largely unknown. One of the nucleases involved in rRNA processing is Rrp44, an exosome associated ribonuclease in yeast, which is involved in several metabolic RNA pathways. Here, we investigated the function of Trypanosoma brucei RRP44 orthologue (TbRRP44) in rRNA processing. Our results revealed that TbRRP44 depletion causes unusual polysome profile and accumulation of the complete LSU rRNA precursor, in addition to 5.8S maturation impairment. We also determined the crystal structure of TbRRP44 endonucleolytic domain. Structural comparison with Saccharomyces cerevisiae Rrp44 revealed differences in the catalytic site and substitutions of surface residues, which could provide molecular bases for the lack of interaction of RRP44 with the exosome complex in T. brucei.
Collapse
Affiliation(s)
- Giovanna Cesaro
- a Carlos Chagas Institute , Oswaldo Cruz Foundation, FIOCRUZ-PR , Curitiba , Brazil.,b Biochemsitry Postgraduate Program , Federal University of Parana , Curitiba , Brazil
| | - Flávia Raquel Gonçalves Carneiro
- a Carlos Chagas Institute , Oswaldo Cruz Foundation, FIOCRUZ-PR , Curitiba , Brazil.,c Center for Technology Development in Healthcare , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | | | | | | |
Collapse
|
4
|
Michaeli S, Doniger T, Gupta SK, Wurtzel O, Romano M, Visnovezky D, Sorek R, Unger R, Ullu E. RNA-seq analysis of small RNPs in Trypanosoma brucei reveals a rich repertoire of non-coding RNAs. Nucleic Acids Res 2011; 40:1282-98. [PMID: 21976736 PMCID: PMC3273796 DOI: 10.1093/nar/gkr786] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The discovery of a plethora of small non-coding RNAs (ncRNAs) has fundamentally changed our understanding of how genes are regulated. In this study, we employed the power of deep sequencing of RNA (RNA-seq) to examine the repertoire of ncRNAs present in small ribonucleoprotein particles (RNPs) of Trypanosoma brucei, an important protozoan parasite. We identified new C/D and H/ACA small nucleolar RNAs (snoRNAs), as well as tens of putative novel non-coding RNAs; several of these are processed from trans-spliced and polyadenylated transcripts. The RNA-seq analysis provided information on the relative abundance of the RNAs, and their 5'- and 3'-termini. The study demonstrated that three highly abundant snoRNAs are involved in rRNA processing and highlight the unique trypanosome-specific repertoire of these RNAs. Novel RNAs were studied using in situ hybridization, association in RNP complexes, and 'RNA walk' to detect interaction with their target RNAs. Finally, we showed that the abundance of certain ncRNAs varies between the two stages of the parasite, suggesting that ncRNAs may contribute to gene regulation during the complex parasite's life cycle. This is the first study to provide a whole-genome analysis of the large repertoire of small RNPs in trypanosomes.
Collapse
Affiliation(s)
- Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gupta SK, Hury A, Ziporen Y, Shi H, Ullu E, Michaeli S. Small nucleolar RNA interference in Trypanosoma brucei: mechanism and utilization for elucidating the function of snoRNAs. Nucleic Acids Res 2010; 38:7236-47. [PMID: 20601683 PMCID: PMC2978370 DOI: 10.1093/nar/gkq599] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of dsRNA complementary to small nucleolar RNAs (snoRNAs) in Trypanosoma brucei results in snoRNA silencing, termed snoRNAi. Here, we demonstrate that snoRNAi requires the nuclear TbDCL2 protein, but not TbDCL1, which is involved in RNA interference (RNAi) in the cytoplasm. snoRNAi depends on Argonaute1 (Slicer), and on TbDCL2, suggesting that snoRNA dicing and slicing takes place in the nucleus, and further suggesting that AGO1 is active in nuclear silencing. snoRNAi was next utilized to elucidate the function of an abundant snoRNA, TB11Cs2C2 (92 nt), present in a cluster together with the spliced leader associated RNA (SLA1) and snR30, which are both H/ACA RNAs with special nuclear functions. Using AMT-UV cross-linking and RNaseH cleavage, we provide evidence for the interaction of TB11Cs2C2 with the small rRNAs, srRNA-2 and srRNA-6, which are part of the large subunit (LSU) rRNA. snoRNAi of TB11Cs2C2 resulted in defects in generating srRNA-2 and LSUβ rRNA. This is the first snoRNA described so far to engage in trypanosome-specific processing events.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | | | | | | | | | | |
Collapse
|
6
|
Elucidating the role of C/D snoRNA in rRNA processing and modification in Trypanosoma brucei. EUKARYOTIC CELL 2007; 7:86-101. [PMID: 17981991 DOI: 10.1128/ec.00215-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most eukaryotic C/D small nucleolar RNAs (snoRNAs) guide 2'-O methylation (Nm) on rRNA and are also involved in rRNA processing. The four core proteins that bind C/D snoRNA in Trypanosoma brucei are fibrillarin (NOP1), NOP56, NOP58, and SNU13. Silencing of NOP1 by RNA interference identified rRNA-processing and modification defects that caused lethality. Systematic mapping of 2'-O-methyls on rRNA revealed the existence of hypermethylation at certain positions of the rRNA in the bloodstream form of the parasites, suggesting that this modification may assist the parasites in coping with the major temperature changes during cycling between their insect and mammalian hosts. The rRNA-processing defects of NOP1-depleted cells suggest the involvement of C/D snoRNA in trypanosome-specific rRNA-processing events to generate the small rRNA fragments. MRP RNA, which is involved in rRNA processing, was identified in this study in one of the snoRNA gene clusters, suggesting that trypanosomes utilize a combination of unique C/D snoRNAs and conserved snoRNAs for rRNA processing.
Collapse
|
7
|
Zeiner GM, Sturm NR, Campbell DA. Exportin 1 mediates nuclear export of the kinetoplastid spliced leader RNA. EUKARYOTIC CELL 2003; 2:222-30. [PMID: 12684371 PMCID: PMC154853 DOI: 10.1128/ec.2.2.222-230.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 01/28/2003] [Indexed: 01/06/2023]
Abstract
The kinetoplastid protozoan spliced leader (SL) RNA is the common substrate pre-mRNA utilized in all trans-splicing reactions. Here we show by fluorescence in situ hybridization that the SL RNA is present in the cytoplasm of Leishmania tarentolae and Trypanosoma brucei. Treatment with the karyopherin-specific inhibitor leptomycin B was toxic to T. brucei and eliminated the cytoplasmic SL RNA, suggesting that cytoplasmic SL RNA was dependent on the nuclear exporter exportin 1 (XPO1). Ectopic expression of xpo1 with a C506S mutation in T. brucei conferred resistance to leptomycin B. A reduction in SL RNA 3' extension removal and 5' methylation of nucleotide U(4) was observed in wild-type T. brucei treated with leptomycin B, suggesting that the cytoplasmic stage is necessary for SL RNA biogenesis. This study demonstrates spatial and mechanistic similarities between the posttranscriptional trafficking of the kinetoplastid protozoan SL RNA and the metazoan cis-spliceosomal small nuclear RNAs.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/physiology
- Animals
- Cytoplasm/genetics
- Cytoplasm/metabolism
- DNA, Kinetoplast/genetics
- DNA, Kinetoplast/metabolism
- Drug Resistance/genetics
- Fatty Acids, Unsaturated/pharmacology
- Karyopherins/genetics
- Karyopherins/metabolism
- Leishmania/drug effects
- Leishmania/genetics
- Leishmania/metabolism
- Methylation/drug effects
- Mutation/genetics
- RNA Processing, Post-Transcriptional/drug effects
- RNA Processing, Post-Transcriptional/genetics
- RNA, Spliced Leader/genetics
- RNA, Spliced Leader/metabolism
- Receptors, Cytoplasmic and Nuclear
- Trans-Splicing/drug effects
- Trans-Splicing/physiology
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- Gusti M Zeiner
- Department of Microbiology, University of California at Los Angeles, Los Angeles, California 90095-1489, USA
| | | | | |
Collapse
|
8
|
Schnare MN, Collings JC, Spencer DF, Gray MW. The 28S-18S rDNA intergenic spacer from Crithidia fasciculata: repeated sequences, length heterogeneity, putative processing sites and potential interactions between U3 small nucleolar RNA and the ribosomal RNA precursor. Nucleic Acids Res 2000; 28:3452-61. [PMID: 10982863 PMCID: PMC110749 DOI: 10.1093/nar/28.18.3452] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2000] [Revised: 07/17/2000] [Accepted: 07/28/2000] [Indexed: 11/12/2022] Open
Abstract
In Crithidia fasciculata, the ribosomal RNA (rRNA) gene repeats range in size from approximately 11 to 12 kb. This length heterogeneity is localized to a region of the intergenic spacer (IGS) that contains tandemly repeated copies of a 19mer sequence. The IGS also contains four copies of an approximately 55 nt repeat that has an internal inverted repeat and is also present in the IGS of Leishmania species. We have mapped the C.fasciculata transcription initiation site as well as two other reverse transcriptase stop sites that may be analogous to the A0 and A' pre-rRNA processing sites within the 5' external transcribed spacer (ETS) of other eukaryotes. Features that could influence processing at these sites include two stretches of conserved primary sequence and three secondary structure elements present in the 5' ETS. We also characterized the C.fasciculata U3 snoRNA, which has the potential for base-pairing with pre-rRNA sequences. Finally, we demonstrate that biosynthesis of large subunit rRNA in both C. fasciculata and Trypanosoma brucei involves 3'-terminal addition of three A residues that are not present in the corresponding DNA sequences.
Collapse
MESH Headings
- Animals
- Base Pairing
- Base Sequence
- Conserved Sequence
- Crithidia fasciculata/genetics
- Crithidia fasciculata/metabolism
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Genetic Heterogeneity
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Repetitive Sequences, Nucleic Acid
- Restriction Mapping
- Sequence Alignment
- Sequence Analysis, DNA
- Trypanosoma brucei brucei/genetics
Collapse
Affiliation(s)
- M N Schnare
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | |
Collapse
|
9
|
Dunbar DA, Chen AA, Wormsley S, Baserga SJ. The genes for small nucleolar RNAs in Trypanosoma brucei are organized in clusters and are transcribed as a polycistronic RNA. Nucleic Acids Res 2000; 28:2855-61. [PMID: 10908346 PMCID: PMC102681 DOI: 10.1093/nar/28.15.2855] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2000] [Accepted: 06/13/2000] [Indexed: 11/14/2022] Open
Abstract
Because the organization of snoRNA genes in vertebrates, plants and yeast is diverse, we investigated the organization of snoRNA genes in a distantly related organism, Trypanosoma brucei. We have characterized the second example of a snoRNA gene cluster that is tandemly repeated in the T.BRUCEI: genome. The genes encoding the box C/D snoRNAs TBR12, TBR6, TBR4 and TBR2 make up the cluster. In a genomic organization unique to trypanosomes, there are at least four clusters of these four snoRNA genes tandemly repeated in the T. BRUCEI: genome. We show for the first time that the genes encoding snoRNAs in both this cluster and the SLA cluster are transcribed in an unusual way as a polycistronic RNA.
Collapse
Affiliation(s)
- D A Dunbar
- Department of Therapeutic Radiology and Department of Genetics, Yale School of Medicine, 333 Cedar Street, PO Box 208040, New Haven, CT 06520-8040, USA
| | | | | | | |
Collapse
|
10
|
Lee SJ, Baserga SJ. Imp3p and Imp4p, two specific components of the U3 small nucleolar ribonucleoprotein that are essential for pre-18S rRNA processing. Mol Cell Biol 1999; 19:5441-52. [PMID: 10409734 PMCID: PMC84386 DOI: 10.1128/mcb.19.8.5441] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of the U3 small nucleolar ribonucleoprotein (snoRNP) is central to the events surrounding pre-rRNA processing, as evidenced by the severe defects in cleavage of pre-18S rRNA precursors observed upon depletion of the U3 RNA and its unique protein components. Although the precise function of each component remains unclear, since U3 snoRNA levels remain unchanged upon genetic depletion of these proteins, it is likely that the proteins themselves have significant roles in the cleavage reactions. Here we report the identification of two previously undescribed protein components of the U3 snoRNP, representing the first snoRNP components identified by using the two-hybrid methodology. By screening for proteins that physically associate with the U3 snoRNP-specific protein, Mpp10p, we have identified Imp3p (22 kDa) and Imp4p (34 kDa) (named for interacting with Mpp10p). The genes encoding both proteins are essential in yeast. Genetic depletion reveals that both proteins are critical for U3 snoRNP function in pre-18S rRNA processing at the A0, A1, and A2 sites in the pre-rRNA. Both Imp proteins associate with Mpp10p in vivo, and both are complexed only with the U3 snoRNA. Conservation of RNA binding domains between Imp3p and the S4 family of ribosomal proteins suggests that it might associate with RNA directly. However, as with other U3 snoRNP-specific proteins, neither Imp3p nor Imp4p is required for maintenance of U3 snoRNA integrity. Imp3p and Imp4p are therefore novel protein components specific to the U3 snoRNP with critical roles in pre-rRNA cleavage events.
Collapse
Affiliation(s)
- S J Lee
- Department of Therapeutic Radiology and Genetics, Yale School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | |
Collapse
|
11
|
Sturm NR, Yu MC, Campbell DA. Transcription termination and 3'-End processing of the spliced leader RNA in kinetoplastids. Mol Cell Biol 1999; 19:1595-604. [PMID: 9891092 PMCID: PMC116087 DOI: 10.1128/mcb.19.2.1595] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/1998] [Accepted: 11/06/1998] [Indexed: 12/18/2022] Open
Abstract
Addition of a 39-nucleotide (nt) spliced leader (SL) by trans splicing is a basic requirement for all trypanosome nuclear mRNAs. The SL RNA in Leishmania tarentolae is a 96-nt precursor transcript synthesized by a polymerase that resembles polymerase II most closely. To analyze SL RNA genesis, we mutated SL RNA intron structures and sequence elements: stem-loops II and III, the Sm-binding site, and the downstream T tract. Using an exon-tagged SL RNA gene, we examined the phenotypes produced by a second-site 10-bp linker scan mutagenic series and directed mutagenesis. Here we report that transcription is terminated by the T tract, which is common to the 3' end of all kinetoplastid SL RNA genes, and that more than six T's are required for efficient termination in vivo. We describe mutants whose SL RNAs end in the T tract or appear to lack efficient termination but can generate wild-type 3' ends. Transcriptionally active nuclear extracts show staggered products in the T tract, directed by eight or more T's. The in vivo and in vitro data suggest that SL RNA transcription termination is staggered in the T tract and is followed by nucleolytic processing to generate the mature 3' end. We show that the Sm-binding site and stem-loop III structures are necessary for correct 3'-end formation. Thus, we have defined the transcription termination element for the SL RNA gene. The termination mechanism differs from that of vertebrate small nuclear RNA genes and the SL RNA homologue in Ascaris.
Collapse
Affiliation(s)
- N R Sturm
- Department of Microbiology and Immunology, University of California Los Angeles School of Medicine, Los Angeles, California 90095-1747, USA
| | | | | |
Collapse
|
12
|
Roberts TG, Sturm NR, Yee BK, Yu MC, Hartshorne T, Agabian N, Campbell DA. Three small nucleolar RNAs identified from the spliced leader-associated RNA locus in kinetoplastid protozoans. Mol Cell Biol 1998; 18:4409-17. [PMID: 9671450 PMCID: PMC109026 DOI: 10.1128/mcb.18.8.4409] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/1998] [Accepted: 05/01/1998] [Indexed: 02/08/2023] Open
Abstract
First characterized in Trypanosoma brucei, the spliced leader-associated (SLA) RNA gene locus has now been isolated from the kinetoplastids Leishmania tarentolae and Trypanosoma cruzi. In addition to the T. brucei SLA RNA, both L. tarentolae and T. cruzi SLA RNA repeat units also yield RNAs of 75 or 76 nucleotides (nt), 92 or 94 nt, and approximately 450 or approximately 350 nt, respectively, each with significant sequence identity to transcripts previously described from the T. brucei SLA RNA locus. Cell fractionation studies localize the three additional RNAs to the nucleolus; the presence of box C/D-like elements in two of the transcripts suggests that they are members of a class of small nucleolar RNAs (snoRNAs) that guide modification and cleavage of rRNAs. Candidate rRNA-snoRNA interactions can be found for one domain in each of the C/D element-containing RNAs. The putative target site for the 75/76-nt RNA is a highly conserved portion of the small subunit rRNA that contains 2'-O-ribose methylation at a conserved position (Gm1830) in L. tarentolae and in vertebrates. The 92/94-nt RNA has the potential to form base pairs near a conserved methylation site in the large subunit rRNA, which corresponds to position Gm4141 of small rRNA 2 in T. brucei. These data suggest that trypanosomatids do not obey the general 5-bp rule for snoRNA-mediated methylation.
Collapse
Affiliation(s)
- T G Roberts
- Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, California 90095-1747, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Samarsky DA, Fournier MJ. Functional mapping of the U3 small nucleolar RNA from the yeast Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:3431-44. [PMID: 9584183 PMCID: PMC108924 DOI: 10.1128/mcb.18.6.3431] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1997] [Accepted: 03/05/1998] [Indexed: 02/07/2023] Open
Abstract
The U3 small nucleolar RNA participates in early events of eukaryotic pre-rRNA cleavage and is essential for formation of 18S rRNA. Using an in vivo system, we have developed a functional map of the U3 small nucleolar RNA from Saccharomyces cerevisiae. The test strain features a galactose-dependent U3 gene in the chromosome and a plasmid-encoded allele with a unique hybridization tag. Effects of mutations on U3 production were analyzed by evaluating RNA levels in cells grown on galactose medium, and effects on U3 function were assessed by growing cells on glucose medium. The major findings are as follows: (i) boxes C' and D and flanking helices are critical for U3 accumulation; (ii) boxes B and C are not essential for U3 production but are important for function, most likely due to binding of a trans-acting factor(s); (iii) the 5' portion of U3 is required for function but not stability; and, (iv) strikingly, the nonconserved hairpins 2, 3, and 4, which account for 50% of the molecule, are not required for accumulation or function.
Collapse
Affiliation(s)
- D A Samarsky
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
14
|
Levitan A, Xu YX, Ben-Dov C, Ben-Shlomo H, Zhang Y, Michaeli S. Characterization of a novel trypanosomatid small nucleolar RNA. Nucleic Acids Res 1998; 26:1775-83. [PMID: 9512552 PMCID: PMC147474 DOI: 10.1093/nar/26.7.1775] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trypanosomes possess unique RNA processing mechanisms including trans- splicing of pre-mRNA and RNA editing of mitochondrial transcripts. The previous finding of a trimethylguanosine (TMG) capped U3 homologue in trypanosomes suggests that rRNA processing may be related to the processing in other eukaryotes. In this study, we describe the first trypanosomatid snoRNA that belongs to the snoRNAs that were shown to guide ribose methylation of rRNA. The RNA, identified in the monogenetic trypanosomatid Leptomonas collosoma, was termed snoRNA-2 and is encoded by a multi-copy gene. SnoRNA-2 is 85 nt long, it lacks a 5' cap and possesses the C and D boxes characteristic to all snoRNAs that bind fibrillarin. Computer analysis indicates a potential for base-pairing between snoRNA-2 and 5.8S rRNA, and 18S rRNA. The putative interaction domains obey the rules suggested for the interaction of guide snoRNA with its rRNA target for directing ribose methylation on the rRNA. However, mapping the methylated sites on the 5.8S rRNA and 18S rRNA indicates that the expected site on the 5.8S is methylated, whereas the site on the 18S is not. The proposed interaction with 5.8S rRNA is further supported by the presence of psoralen cross-link sites on snoRNA-2. GenBank search suggests that snoRNA-2 is not related to any published snoRNAs. Because of the early divergence of the Trypanosomatidae from the eukaryotic lineage, the presence of a methylating snoRNA that is encoded by a multi-copy gene suggests that methylating snoRNAs may have evolved in evolution from self-transcribed genes.
Collapse
MESH Headings
- Animals
- Base Composition
- Base Sequence
- DNA Primers
- DNA, Protozoan/chemistry
- DNA, Protozoan/metabolism
- Genes, Protozoan
- Molecular Sequence Data
- Multigene Family
- RNA Precursors/metabolism
- RNA, Protozoan/biosynthesis
- RNA, Protozoan/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 5.8S/metabolism
- RNA, Small Nuclear/biosynthesis
- RNA, Small Nuclear/chemistry
- Trypanosomatina/genetics
- Trypanosomatina/metabolism
Collapse
Affiliation(s)
- A Levitan
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
15
|
Pellizzoni L, Crosio C, Campioni N, Loreni F, Pierandrei-Amaldi P. Different forms of U15 snoRNA are encoded in the introns of the ribosomal protein S1 gene of Xenopus laevis. Nucleic Acids Res 1994; 22:4607-13. [PMID: 7984408 PMCID: PMC308507 DOI: 10.1093/nar/22.22.4607] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recent cloning and sequencing of one of the two Xenopus gene copies (S1b) coding for the ribosomal protein S1 has revealed that its introns III, V and VI carry a region of about 150 nt that shares an identity of 60%. We show here the presence in Xenopus oocytes and cultured cells of a 143-147 nt long RNA species encoded by these three repeated sequences on the same strand as the S1 mRNA and by at least one repeat present in the S1 a copy of the r-protein gene. We identify these RNAs as forms of the small nucleolar RNA U15 (U15 snoRNA) because of their sequence homology with an already described human U15 RNA encoded in the first intron of the human r-protein S3 gene, which is homologous to Xenopus S1. Comparison of the various Xenopus and human U15 RNA forms shows a very high conservation in some regions, but considerable divergence in others. In particular the most conserved sequences include two box C and two box D motifs, typical of most snoRNAs interacting with the nucleolar protein fibrillarin. Adjacent to the two D boxes there are two sequences, 9 and 10 nt in length, which are perfectly complementary to an evolutionary conserved sequence of the 28S rRNA. Modeling the possible secondary structure of Xenopus and human U15 RNAs reveals that, in spite of the noticeable sequence diversity, a high structural conservation in some cases may be maintained by compensatory mutations. We show also that the different Xenopus U15 RNA forms are expressed at comparable levels, localized in the nucleoli and produced by processing of the intronic sequences, as recently described for other snoRNAs.
Collapse
Affiliation(s)
- L Pellizzoni
- Istituto di Biologia Cellulare, CNR, Rome, Italy
| | | | | | | | | |
Collapse
|
16
|
Upstream tRNA genes are essential for expression of small nuclear and cytoplasmic RNA genes in trypanosomes. Mol Cell Biol 1994. [PMID: 7523857 DOI: 10.1128/mcb.14.10.6736] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An interesting feature of trypanosome genome organization involves genes transcribed by RNA polymerase III. The U6 small nuclear RNA (snRNA), U-snRNA B (the U3 snRNA homolog), and 7SL RNA genes are closely linked with different, divergently oriented tRNA genes. To test the hypothesis that this association is of functional significance, we generated deletion and block substitution mutants of all three small RNA genes and monitored their effects by transient expression in cultured insect-form cells of Trypanosoma brucei. In each case, two extragenic regulatory elements were mapped to the A and B boxes of the respective companion tRNA gene. In addition, the tRNA(Thr) gene, which is upstream of the U6 snRNA gene, was shown by two different tests to be expressed in T. brucei cells, thus confirming its identity as a gene. This association between tRNA and small RNA genes appears to be a general phenomenon in the family Trypanosomatidae, since it is also observed at the U6 snRNA loci in Leishmania pifanoi and Crithidia fasciculata and at the 7SL RNA locus in L. pifanoi. We propose that the A- and B-box elements of small RNA-associated tRNA genes serve a dual role as intragenic promoter elements for the respective tRNA genes and as extragenic regulatory elements for the linked small RNA genes. The possible role of tRNA genes in regulating small RNA gene transcription is discussed.
Collapse
|
17
|
Nakaar V, Dare AO, Hong D, Ullu E, Tschudi C. Upstream tRNA genes are essential for expression of small nuclear and cytoplasmic RNA genes in trypanosomes. Mol Cell Biol 1994; 14:6736-42. [PMID: 7523857 PMCID: PMC359204 DOI: 10.1128/mcb.14.10.6736-6742.1994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An interesting feature of trypanosome genome organization involves genes transcribed by RNA polymerase III. The U6 small nuclear RNA (snRNA), U-snRNA B (the U3 snRNA homolog), and 7SL RNA genes are closely linked with different, divergently oriented tRNA genes. To test the hypothesis that this association is of functional significance, we generated deletion and block substitution mutants of all three small RNA genes and monitored their effects by transient expression in cultured insect-form cells of Trypanosoma brucei. In each case, two extragenic regulatory elements were mapped to the A and B boxes of the respective companion tRNA gene. In addition, the tRNA(Thr) gene, which is upstream of the U6 snRNA gene, was shown by two different tests to be expressed in T. brucei cells, thus confirming its identity as a gene. This association between tRNA and small RNA genes appears to be a general phenomenon in the family Trypanosomatidae, since it is also observed at the U6 snRNA loci in Leishmania pifanoi and Crithidia fasciculata and at the 7SL RNA locus in L. pifanoi. We propose that the A- and B-box elements of small RNA-associated tRNA genes serve a dual role as intragenic promoter elements for the respective tRNA genes and as extragenic regulatory elements for the linked small RNA genes. The possible role of tRNA genes in regulating small RNA gene transcription is discussed.
Collapse
MESH Headings
- Animals
- Base Sequence
- Crithidia fasciculata/genetics
- Genes, Protozoan/genetics
- Leishmania/genetics
- Molecular Sequence Data
- RNA/biosynthesis
- RNA/genetics
- RNA, Small Cytoplasmic
- RNA, Small Nuclear/biosynthesis
- RNA, Small Nuclear/genetics
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer, Arg/biosynthesis
- RNA, Transfer, Arg/genetics
- RNA, Transfer, Thr/biosynthesis
- RNA, Transfer, Thr/genetics
- Transcription, Genetic
- Trypanosoma brucei brucei/genetics
Collapse
Affiliation(s)
- V Nakaar
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022
| | | | | | | | | |
Collapse
|
18
|
Abstract
U3 nucleolar small RNA (snRNA) is involved in early processing of the primary rRNA transcript. A secondary structure model for the unusually small Trypanosoma brucei U3 snRNA was deduced by chemical modification and enzymatic cleavage of U3 snRNA in deproteinized and ribonucleoprotein (RNP) forms. Comprehensive alignment of U3 snRNAs from vertebrate, plant, fungal and protozoan species clearly delineated conserved and divergent features. The 5' domain of the T. brucei U3 snRNA appears to form one small, flexible 5' stem loop structure followed by a long single-stranded region; this model is a variation on 5' domain structures proposed for other U3 snRNAs which do not conform to a single model. The 3' domain of T. brucei U3 snRNA contains four single-stranded sequences conserved between U3 snRNAs. Of these, structural probing determined that the configurations of GAU region and box B and C sequences are altered by protein interactions in U3 snRNP. Conspicuously, the 3' domains of trypanosomal U3 snRNAs lack stem loops II and III, indicating that these structures are not required for conserved U3 snRNA functions.
Collapse
Affiliation(s)
- T Hartshorne
- Intercampus Program in Molecular Parasitology, School of Pharmacy, University of California, San Francisco 94143-1204
| | | |
Collapse
|
19
|
RNA polymerase III-mediated transcription of the trypanosome U2 small nuclear RNA gene is controlled by both intragenic and extragenic regulatory elements. Mol Cell Biol 1994. [PMID: 8114733 DOI: 10.1128/mcb.14.3.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of U2 small nuclear RNA (snRNA) genes in eukaryotes is executed by RNA polymerase II and is dependent on extragenic cis-acting regulatory sequences which are not found in other genes. Here we have mapped promoter elements of the Trypanosoma brucei U2 snRNA gene by transient DNA expression of mutant constructs in insect form trypanosomes. Unlike other eukaryotic U2 snRNA genes, the T. brucei homolog is transcribed by an RNA polymerase III-like enzyme on the basis of its sensitivity to the inhibitors alpha-amanitin and tagetitoxin. Thus, the trypanosome U2 snRNA provides a unique example of an RNA polymerase III transcript carrying a trimethylated cap structure. The promoter of this gene consists of three distinct elements: an intragenic sequence close to the 5' end of the coding region, which is probably required to position the polymerase at the correct transcription start site; and two extragenic elements, located 110 and 160 nucleotides upstream, which are essential for U2 snRNA gene expression. These two elements closely resemble both in sequence and in distance from each other the A and B box consensus sequences of the internal control regions of tRNA genes.
Collapse
|
20
|
Fantoni A, Dare AO, Tschudi C. RNA polymerase III-mediated transcription of the trypanosome U2 small nuclear RNA gene is controlled by both intragenic and extragenic regulatory elements. Mol Cell Biol 1994; 14:2021-8. [PMID: 8114733 PMCID: PMC358562 DOI: 10.1128/mcb.14.3.2021-2028.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transcription of U2 small nuclear RNA (snRNA) genes in eukaryotes is executed by RNA polymerase II and is dependent on extragenic cis-acting regulatory sequences which are not found in other genes. Here we have mapped promoter elements of the Trypanosoma brucei U2 snRNA gene by transient DNA expression of mutant constructs in insect form trypanosomes. Unlike other eukaryotic U2 snRNA genes, the T. brucei homolog is transcribed by an RNA polymerase III-like enzyme on the basis of its sensitivity to the inhibitors alpha-amanitin and tagetitoxin. Thus, the trypanosome U2 snRNA provides a unique example of an RNA polymerase III transcript carrying a trimethylated cap structure. The promoter of this gene consists of three distinct elements: an intragenic sequence close to the 5' end of the coding region, which is probably required to position the polymerase at the correct transcription start site; and two extragenic elements, located 110 and 160 nucleotides upstream, which are essential for U2 snRNA gene expression. These two elements closely resemble both in sequence and in distance from each other the A and B box consensus sequences of the internal control regions of tRNA genes.
Collapse
Affiliation(s)
- A Fantoni
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022
| | | | | |
Collapse
|