1
|
Eiman MN, Kumar S, Serrano Negron YL, Tansey TR, Harbison ST. Genome-wide association in Drosophila identifies a role for Piezo and Proc-R in sleep latency. Sci Rep 2024; 14:260. [PMID: 38168575 PMCID: PMC10761942 DOI: 10.1038/s41598-023-50552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Sleep latency, the amount of time that it takes an individual to fall asleep, is a key indicator of sleep need. Sleep latency varies considerably both among and within species and is heritable, but lacks a comprehensive description of its underlying genetic network. Here we conduct a genome-wide association study of sleep latency. Using previously collected sleep and activity data on a wild-derived population of flies, we calculate sleep latency, confirming significant, heritable genetic variation for this complex trait. We identify 520 polymorphisms in 248 genes contributing to variability in sleep latency. Tests of mutations in 23 candidate genes and additional putative pan-neuronal knockdown of 9 of them implicated CG44153, Piezo, Proc-R and Rbp6 in sleep latency. Two large-effect mutations in the genes Proc-R and Piezo were further confirmed via genetic rescue. This work greatly enhances our understanding of the genetic factors that influence variation in sleep latency.
Collapse
Affiliation(s)
- Matthew N Eiman
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shailesh Kumar
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Neuroscience and Behavior, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yazmin L Serrano Negron
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terry R Tansey
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Kuroiwa A, Ishiguchi Y, Yamada F, Shintaro A, Matsuda Y. The process of a Y-loss event in an XO/XO mammal, the Ryukyu spiny rat. Chromosoma 2010; 119:519-26. [PMID: 20443119 DOI: 10.1007/s00412-010-0275-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/22/2010] [Accepted: 04/02/2010] [Indexed: 10/19/2022]
Abstract
The Ryukyu spiny rat, Tokudaia osimensis, has an XO/XO sex chromosome constitution, lacking a Y chromosome and the mammalian sex-determining gene SRY. To investigate the Y-loss event, we traced three proto-Y-linked genes, RBMY1A1, EIF2S3Y, and KDM5D, in the genome. The original Y-linked RBMY1A1 was lost as well as SRY, and the remaining RBMY1A1 was a processed pseudogene on autosome. In contrast, EIF2S3Y and KDM5D were conserved in genomes of both sexes as a result of their translocation from the Y chromosome to the X chromosome and/or autosomes. Furthermore, these genes were expressed in gonads and brains of both sexes. Our study indicated a loss of Y-linked genes with important male functions to be necessary for the Y chromosome to disappear. These functions might have been retained through the acquisition of new genes, and therefore, the Y-loss has had no harmful effect on the maintenance of this species.
Collapse
Affiliation(s)
- Asato Kuroiwa
- Laboratory of Animal Cytogenetics, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
3
|
Delaunay J, Le Mée G, Ezzeddine N, Labesse G, Terzian C, Capri M, Aït-Ahmed O. The Drosophila Bruno paralogue Bru-3 specifically binds the EDEN translational repression element. Nucleic Acids Res 2004; 32:3070-82. [PMID: 15181172 PMCID: PMC434433 DOI: 10.1093/nar/gkh627] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 04/26/2004] [Accepted: 05/10/2004] [Indexed: 11/14/2022] Open
Abstract
We reported in our previous work that the EDEN-dependent translational repression of maternal mRNAs was conserved between Drosophila and Xenopus. In Xenopus, this repression is achieved through the binding of EDEN to the Bruno-like factor, EDEN-BP. We show in the present work that the Drosophila Bruno paralogue, the 45 kDa Bru-3 protein (p45), binds specifically to the EDEN element and acts as a homodimer. We describe for the first time a previously undetected 67 amino acid domain, found in the divergent linker region, the lsm domain (lsm stands for linker-specific motif). We propose that the presence of this domain in a subset of the Bruno-like proteins, including Bru-3, EDEN-BP and CUG-BP but not Bruno nor its other paralogue Bru-2, might be responsible for specific RNA recognition. Interestingly, comparative structural analyses using threaders and molecular modelling suggest that the new domain might be distantly related to the first RNA recognition motif of the Drosophila sex-lethal protein (sxl). The phylogenetic analyses and the experimental data based on its specific binding to the EDEN element support the conclusion that Bru-3 is an EDEN-BP/CUG-BP orthologue.
Collapse
Affiliation(s)
- Jérôme Delaunay
- Institut de Génétique Humaine, UPR 1142 CNRS, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Li W, Li Y, Kedersha N, Anderson P, Emara M, Swiderek KM, Moreno GT, Brinton MA. Cell proteins TIA-1 and TIAR interact with the 3' stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication. J Virol 2002; 76:11989-2000. [PMID: 12414941 PMCID: PMC136884 DOI: 10.1128/jvi.76.23.11989-12000.2002] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was reported previously that four baby hamster kidney (BHK) proteins with molecular masses of 108, 60, 50, and 42 kDa bind specifically to the 3'-terminal stem-loop of the West Nile virus minus-stand RNA [WNV 3'(-) SL RNA] (P. Y. Shi, W. Li, and M. A. Brinton, J. Virol. 70:6278-6287, 1996). In this study, p42 was purified using an RNA affinity column and identified as TIAR by peptide sequencing. A 42-kDa UV-cross-linked viral RNA-cell protein complex formed in BHK cytoplasmic extracts incubated with the WNV 3'(-) SL RNA was immunoprecipitated by anti-TIAR antibody. Both TIAR and the closely related protein TIA-1 are members of the RNA recognition motif (RRM) family of RNA binding proteins. TIA-1 also binds to the WNV 3'(-) SL RNA. The specificity of these viral RNA-cell protein interactions was demonstrated using recombinant proteins in competition gel mobility shift assays. The binding site for the WNV 3'(-) SL RNA was mapped to RRM2 on both TIAR and TIA-1. However, the dissociation constant (K(d)) for the interaction between TIAR RRM2 and the WNV 3'(-) SL RNA was 1.5 x 10(-8), while that for TIA-1 RRM2 was 1.12 x 10(-7). WNV growth was less efficient in murine TIAR knockout cell lines than in control cells. This effect was not observed for two other types of RNA viruses or two types of DNA viruses. Reconstitution of the TIAR knockout cells with TIAR increased the efficiency of WNV growth, but neither the level of TIAR nor WNV replication was as high as in control cells. These data suggest a functional role for TIAR and possibly also for TIA-1 during WNV replication.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites
- Cell Line
- Conserved Sequence
- Cricetinae
- DNA, Complementary/genetics
- Evolution, Molecular
- Gene Deletion
- Kinetics
- Membrane Proteins/genetics
- Membrane Proteins/isolation & purification
- Membrane Proteins/metabolism
- Mice
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Structure, Tertiary
- Proteins
- RNA, Complementary/chemistry
- RNA, Complementary/genetics
- RNA, Complementary/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/isolation & purification
- RNA-Binding Proteins/metabolism
- Sequence Homology, Amino Acid
- T-Cell Intracellular Antigen-1
- Virus Replication
- West Nile virus/genetics
- West Nile virus/pathogenicity
- West Nile virus/physiology
Collapse
Affiliation(s)
- W Li
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Björk P, Baurén G, Jin S, Tong YG, Bürglin TR, Hellman U, Wieslander L. A novel conserved RNA-binding domain protein, RBD-1, is essential for ribosome biogenesis. Mol Biol Cell 2002; 13:3683-95. [PMID: 12388766 PMCID: PMC129975 DOI: 10.1091/mbc.e02-03-0138] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2002] [Revised: 06/18/2002] [Accepted: 07/22/2002] [Indexed: 11/11/2022] Open
Abstract
Synthesis of the ribosomal subunits from pre-rRNA requires a large number of trans-acting proteins and small nucleolar ribonucleoprotein particles to execute base modifications, RNA cleavages, and structural rearrangements. We have characterized a novel protein, RNA-binding domain-1 (RBD-1), that is involved in ribosome biogenesis. This protein contains six consensus RNA-binding domains and is conserved as to sequence, domain organization, and cellular location from yeast to human. RBD-1 is essential in Caenorhabditis elegans. In the dipteran Chironomus tentans, RBD-1 (Ct-RBD-1) binds pre-rRNA in vitro and anti-Ct-RBD-1 antibodies repress pre-rRNA processing in vivo. Ct-RBD-1 is mainly located in the nucleolus in an RNA polymerase I transcription-dependent manner, but it is also present in discrete foci in the interchromatin and in the cytoplasm. In cytoplasmic extracts, 20-30% of Ct-RBD-1 is associated with ribosomes and, preferentially, with the 40S ribosomal subunit. Our data suggest that RBD-1 plays a role in structurally coordinating pre-rRNA during ribosome biogenesis and that this function is conserved in all eukaryotes.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
6
|
Yamaguchi Y, Inukai N, Narita T, Wada T, Handa H. Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase II complex and RNA. Mol Cell Biol 2002; 22:2918-27. [PMID: 11940650 PMCID: PMC133766 DOI: 10.1128/mcb.22.9.2918-2927.2002] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2001] [Revised: 01/07/2002] [Accepted: 01/28/2002] [Indexed: 11/20/2022] Open
Abstract
Negative elongation factor (NELF) is a human transcription factor complex that cooperates with DRB sensitivity-inducing factor (DSIF)/hSpt4-hSpt5 to repress elongation by RNA polymerase II (RNAPII). NELF activity is associated with five polypeptides, including NELF-A, a candidate gene product for Wolf-Hirschhorn syndrome, and NELF-E, a putative RNA-binding protein with arginine-aspartic acid (RD) dipeptide repeats. Here we report several important findings regarding the DSIF/NELF-dependent elongation control. First, we have established an effective method for purifying the active NELF complex using an epitope-tagging technique. Second, the five polypeptides each are important and together are sufficient for its function in vitro. Third, NELF does not bind to either DSIF or RNAPII alone but does bind to the preformed DSIF/RNAPII complex. Fourth, NELF-E has a functional RNA-binding domain, whose mutations impair transcription repression without affecting known protein-protein interactions. Taken together, we propose that NELF causes RNAPII pausing through binding to the DSIF/RNAPII complex and to nascent transcripts. These results also have implications for how DSIF and NELF are regulated in a gene-specific manner in vivo.
Collapse
Affiliation(s)
- Yuki Yamaguchi
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | |
Collapse
|
7
|
Drabkin HA, West JD, Hotfilder M, Heng YM, Erickson P, Calvo R, Dalmau J, Gemmill RM, Sablitzky F. DEF-3(g16/NY-LU-12), an RNA binding protein from the 3p21.3 homozygous deletion region in SCLC. Oncogene 1999; 18:2589-97. [PMID: 10353602 DOI: 10.1038/sj.onc.1202601] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DEF-3(g16/NY-LU-12) encodes a novel RNA binding protein isolated by positional cloning from an SCLC homozygous deletion region in 3p21.3 and, in parallel, as a differentially expressed gene during myelopoiesis from FDCPmix-A4 cells. DEF-3(g16/NY-LU-12) is ubiquitously expressed during mouse embryogenesis and in adult organs while human hematopoietic tissues showed differential expression. The mouse and human proteins are highly conserved containing two RNA recognition motifs (RRMs) and other domains associated with RNA binding and protein-protein interactions. A database search identified related proteins in human, rat, C. elegans and S. pombe including the 3p21.3 co-deleted gene, LUCA15. Recombinant proteins containing the RRMs of DEF-3(g16/NY-LU-12) and LUCA15 specifically bound poly(G) RNA homopolymers in vitro. These RRMs also show similarity to those of the Hu protein family. Since anti-Hu RRM domain antibodies are associated with an anti-tumor effect and paraneoplastic encephalomyelitis, we tested sera from Hu syndrome patients with the RRMs of DEF-3(g16/NY-LU-12) and LUCA15. These were non-reactive. Thus, DEF-3(g16/NY-LU-12) and LUCA15 represent members of a novel family of RNA binding proteins with similar expression patterns and in vitro RNA binding characteristics. They are co-deleted in some lung cancers and immunologically distinct from the Hu proteins.
Collapse
Affiliation(s)
- H A Drabkin
- Division of Medical Oncology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yanowitz JL, Deshpande G, Calhoun G, Schedl PD. An N-terminal truncation uncouples the sex-transforming and dosage compensation functions of sex-lethal. Mol Cell Biol 1999; 19:3018-28. [PMID: 10082569 PMCID: PMC84096 DOI: 10.1128/mcb.19.4.3018] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Drosophila melanogaster, Sex-lethal (Sxl) controls autoregulation and sexual differentiation by alternative splicing but regulates dosage compensation by translational repression. To elucidate how Sxl functions in splicing and translational regulation, we have ectopically expressed a full-length Sxl protein (Sx.FL) and a protein lacking the N-terminal 40 amino acids (Sx-N). The Sx.FL protein recapitulates the activity of Sxl gain-of-function mutations, as it is both sex transforming and lethal in males. In contrast, the Sx-N protein unlinks the sex-transforming and male-lethal effects of Sxl. The Sx-N proteins are compromised in splicing functions required for sexual differentiation, displaying only partial autoregulatory activity and almost no sex-transforming activity. On the other hand, the Sx-N protein does retain substantial dosage compensation function and kills males almost as effectively as the Sx.FL protein. In the course of our analysis of the Sx.FL and Sx-N transgenes, we have also uncovered a novel, negative autoregulatory activity, in which Sxl proteins bind to the 3' untranslated region of Sxl mRNAs and decrease Sxl protein expression. This negative autoregulatory activity may be a homeostasis mechanism.
Collapse
Affiliation(s)
- J L Yanowitz
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | |
Collapse
|
9
|
Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res 1998; 26:1628-35. [PMID: 9512532 PMCID: PMC147464 DOI: 10.1093/nar/26.7.1628] [Citation(s) in RCA: 513] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We describe a new primer design strategy for PCR amplification of unknown targets that are related to multiply-aligned protein sequences. Each primer consists of a short 3' degenerate core region and a longer 5' consensus clamp region. Only 3-4 highly conserved amino acid residues are necessary for design of the core, which is stabilized by the clamp during annealing to template molecules. During later rounds of amplification, the non-degenerate clamp permits stable annealing to product molecules. We demonstrate the practical utility of this hybrid primer method by detection of diverse reverse transcriptase-like genes in a human genome, and by detection of C5DNA methyltransferase homologs in various plant DNAs. In each case, amplified products were sufficiently pure to be cloned without gel fractionation. This COnsensus-DEgenerate Hybrid Oligonucleotide Primer (CODEHOP) strategy has been implemented as a computer program that is accessible over the World Wide Web (http://blocks.fhcrc.org/codehop.html) and is directly linked from the BlockMaker multiple sequence alignment site for hybrid primer prediction beginning with a set of related protein sequences.
Collapse
Affiliation(s)
- T M Rose
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
10
|
Haynes SR, Cooper MT, Pype S, Stolow DT. Involvement of a tissue-specific RNA recognition motif protein in Drosophila spermatogenesis. Mol Cell Biol 1997; 17:2708-15. [PMID: 9111341 PMCID: PMC232121 DOI: 10.1128/mcb.17.5.2708] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
RNA binding proteins mediate posttranscriptional regulation of gene expression via their roles in nuclear and cytoplasmic mRNA metabolism. Many of the proteins involved in these processes have a common RNA binding domain, the RNA recognition motif (RRM). We have characterized the Testis-specific RRM protein gene (Tsr), which plays an important role in spermatogenesis in Drosophila melanogaster. Disruption of Tsr led to a dramatic reduction in male fertility due to the production of spermatids with abnormalities in mitochondrial morphogenesis. Tsr is located on the third chromosome at 87F, adjacent to the nuclear pre-mRNA binding protein gene Hrb87F. A 1.7-kb Tsr transcript was expressed exclusively in the male germ line. It encoded a protein containing two RRMs similar to those found in HRB87F as well as a unique C-terminal domain. TSR protein was located in the cytoplasm of spermatocytes and young spermatids but was absent from mature sperm. The cellular proteins expressed in premeiotic primary spermatocytes from Tsr mutant and wild-type males were assessed by two-dimensional gel electrophoresis. Lack of TSR resulted in the premature expression of a few proteins prior to meiosis; this was abolished by a transgenic copy of Tsr. These data demonstrate that TSR negatively regulated the expression of some testis proteins and, in combination with its expression pattern and subcellular localization, suggest that TSR regulates the stability or translatability of some mRNAs during spermatogenesis.
Collapse
Affiliation(s)
- S R Haynes
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2785, USA.
| | | | | | | |
Collapse
|
11
|
VanHoy RW, Wise JA. Molecular analysis of a novel schizosaccharomyces pombe gene containing two RNP consensus-sequence RNA-binding domains. Curr Genet 1996; 29:307-15. [PMID: 8598051 DOI: 10.1007/bf02208611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteins containing RNP consensus-sequence RNA-binding domains (CS-RBDs) play diverse roles in many aspects of RNA metabolism. Using a PCR strategy, we cloned portions of six new Schizosaccharomyces pombe genes encoding RBD proteins, including a putative homolog of the mammalian splicing factor SAP49. The genomic locus corresponding to a second PCR product, designated rnp24a, was cloned and characterized in detail. Sequence analysis revealed that the Rnp24 protein is highly charged and contains a second RBD with an unusually long Loop-3 sequence. Strains containing a disrupted copy of the rnp24 gene display neither loss of viability nor any discernible growth defects under a variety of conditions, suggesting that the function of Rnp24p overlaps with that of another fission yeast protein. Although database searches did not identify proteins that share extensive amino-acid identity with Rnp24p, phylogenetic analysis suggests that its closest relatives are metazoan hnRNP proteins. The lack of an observable phenotype in S. pombe cells lacking Rnp24p is consistent with this classification, since hnRNP proteins in higher cells include several distinct subfamilies with similar sequences and RNA-binding specificities.
Collapse
Affiliation(s)
- R W VanHoy
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4960, USA
| | | |
Collapse
|
12
|
Abstract
A large family of genes encodes proteins with RNA recognition motifs that are presumed to bind RNA and to function in posttranscriptional regulation. Neural-specific members of this family include elav, a gene required for correct differentiation and maintenance of neurons in Drosophila melanogaster, and a related gene, HuD, which is expressed in human neuronal cells. I have identified genes related to elav and HuD in Xenopus laevis, zebrafish, and mouse that define a family of four closely related vertebrate elav-like genes (elrA, elrB, elrC, and elrD) in fish, frogs, and mammals. In addition to protein sequence conservation, a segment of the 3'-untranslated sequence of elrD is also conserved, implying a functional role in elrD expression. In adult frogs, elrC and elrD are exclusively expressed in the brain, whereas elrB is expressed in brain, testis, and ovary. During Xenopus development, elrC and elrD RNAs are detected by late gastrula and late neurula stages, respectively, whereas a nervous system-specific elrB RNA species is expressed by early tadpole stage. Additional elrB transcripts are detected in the ovary and early embryo, demonstrating a maternal supply of mRNA and possibly of protein. These expression patterns suggest a role for different elav-like genes in early development and neuronal differentiation. Surprisingly, elrA is expressed in all adult tissues tested and at all times during development. Thus, the widely expressed elrA is expected to have a related function in all cells.
Collapse
Affiliation(s)
- P J Good
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Chang YN, Kenan DJ, Keene JD, Gatignol A, Jeang KT. Direct interactions between autoantigen La and human immunodeficiency virus leader RNA. J Virol 1994; 68:7008-20. [PMID: 7933083 PMCID: PMC237138 DOI: 10.1128/jvi.68.11.7008-7020.1994] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have characterized the in vivo and in vitro binding of human La protein to the human immunodeficiency virus type 1 (HIV-1) leader RNA, the trans-activation response element (TAR). In immunoprecipitation studies using anti-La serum, La-TAR ribonucleoproteins were recovered from HIV-1-infected lymphocytes. Further characterization of this interaction revealed that La has preference for the TAR stem. However, TAR RNA recognition tolerated changes in the primary sequence of the stem as long as the secondary structure was conserved. This structural aspect of La-TAR recognition was confirmed in competition studies in which certain homopolymers influenced complex formation while other single-stranded and double-stranded RNAs had no effect. Deletion mutants of recombinant La protein were used to demonstrate that the residues responsible for binding to polymerase III precursor transcripts overlapped the binding domain for the TAR leader RNA. This finding of a direct interaction between La and TAR has functional implications for translational regulation of HIV-1 mRNAs as demonstrated in the accompanying report (Y. V. Svitkin, A. Pause, and N. Sonenberg, J. Virol. 68:7001-7007, 1994).
Collapse
Affiliation(s)
- Y N Chang
- Molecular Virology Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
14
|
Qian Z, Wilusz J. GRSF-1: a poly(A)+ mRNA binding protein which interacts with a conserved G-rich element. Nucleic Acids Res 1994; 22:2334-43. [PMID: 8036161 PMCID: PMC523692 DOI: 10.1093/nar/22.12.2334] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Computer predictions identified similarities to a 14-base G-rich element in numerous mRNAs at a variety of locations. A Northwestern screening strategy was used to obtain a cDNA clone from a HeLa cell library using the G-rich RNA element as a probe. A cellular protein (called GRSF-1), which was encoded by this cDNA, binds RNAs containing the G-rich element. GRSF-1 was distinct from DSEF-1, a nuclear protein we have previously identified that interacts with the G-rich element, based on differences in molecular weight and partial peptide maps, as well as the lack of cross-reactivity with GRSF-1 specific monoclonal antibodies. Using indirect immunofluorescence microscopy, we localized GRSF-1 to the cytoplasm. In vivo UV cross-linking further demonstrated that GRSF-1 was bound to poly(A)+ mRNA in living human cells. Western blot analysis revealed four cytoplasmic proteins which expressed GRSF-1 specific epitopes. GRSF-1 contains three potential RNA recognition motifs and two auxiliary domains. Curiously, the domain organization of GRSF-1 is similar to the RNA binding proteins PUB1, ELAV, HuD, Hel-N1, mcs94-1 and RBP9.
Collapse
Affiliation(s)
- Z Qian
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School and Graduate School of Biomedical Sciences, Newark 07103
| | | |
Collapse
|
15
|
Cobianchi F, Biamonti G, Maconi M, Riva S. Human hnRNP protein A1: a model polypeptide for a structural and genetic investigation of a broad family of RNA binding proteins. Genetica 1994; 94:101-14. [PMID: 7896132 DOI: 10.1007/bf01443425] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The hnRNP fiber is the substrate on which pre-mRNA processing occurs. The protein moiety of the fiber (hnRNP proteins) constitutes a broad family of RNA binding proteins that revealed, upon molecular analysis, a number of interesting features. Heterogeneous nuclear ribonucleoprotein A1 is a major component of the human hnRNP complex. In recent years this protein has attracted great attention because of several emerging evidences of its direct involvement in pre-mRNA processing and it has become one of the best characterized RNA binding proteins. Detailed knowledge of the structure of protein A1 has laid the basis for the understanding of its function, and for this reason A1 can be considered as a model polypeptide for the investigation of a large number of RNA binding proteins. In this work we report recent findings regarding the binding properties of protein A1 as well as new data on the gene structure of A1 and of its closely related hnRNP protein A2. Our results show that a single A1 molecule contains the determinants for simultaneous binding of two single-stranded nucleic acid molecules and we demonstrate that the glycine-rich domain of A1, isolated from the rest of the molecule, is capable of sustaining protein-protein interactions. These features probably account for the reannealing activity of the protein and for its capacity to modulate the binding of snRNPs to intron sequences in vitro. Comparison of A1 and A2 gene sequences revealed a remarkable conservation of the overall structural organization, suggesting important functions for the different structural elements.
Collapse
Affiliation(s)
- F Cobianchi
- Istituto di Genetica Biochimica ed Evoluzionistica, CNR, Pavia, Italy
| | | | | | | |
Collapse
|
16
|
Cusick ME. RNP1, a new ribonucleoprotein gene of the yeast Saccharomyces cerevisiae. Nucleic Acids Res 1994; 22:869-77. [PMID: 8139928 PMCID: PMC307894 DOI: 10.1093/nar/22.5.869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A previously unidentified ribonucleoprotein (RNP) gene of yeast has been cloned and sequenced. The gene, named RNP1, was found adjacent to a previously sequenced gene encoding the second gene for ribosomal protein L4. RNP1 contains two RNA Recognition Motifs (RRM), [alternatively known as RNA binding Domains (RBD)], but unlike most RNP genes does not contain any auxiliary simple sequence domains. The first RRM (RRM1) most resembles RRM domains found in the hnRNP A/B class of RNP proteins. The second RRM (RRM2) most resembles a RRM so far seen only in the single RRM of the yeast SSB1 gene. Two null mutants of RNP1 that were created, a frameshift disruption and a complete deletion of the gene, were viable, demonstrating that the gene is not essential for cell growth. Two double null mutants of yeast RNP genes that were created (delta RNP1/delta SSB1 and delta SSB1/delta NPL3) were also viable. A fragment identical in size to the RRM1 domain could be amplified by PCR from the DNA of fungi, plants, and animals, using primers matching the ends of this domain, indicating that the structure of RRM1 is conserved. Another potential open reading frame on the same cloned fragment of DNA encodes a gene product whose structure resembles that of a seven-transmembrane-segment membrane receptor protein.
Collapse
Affiliation(s)
- M E Cusick
- Department of Medical Biochemistry and Genetics, Texas A&M College of Medicine, College Station 77843-1114
| |
Collapse
|
17
|
Cockell M, Frutiger S, Hughes GJ, Gasser SM. The yeast protein encoded by PUB1 binds T-rich single stranded DNA. Nucleic Acids Res 1994; 22:32-40. [PMID: 8127652 PMCID: PMC307742 DOI: 10.1093/nar/22.1.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have characterized binding activities in yeast which recognise the T-rich strand of the yeast ARS consensus element and have purified two of these to homogeneity. One (ACBP-60) is detectable in both nuclear and whole cell extracts, while the other (ACBP-67) is apparent only after fractionation of extracts by heparin-sepharose chromatography. The major binding activity detected in nuclear extracts was purified on a sequence-specific DNA affinity column as a single polypeptide with apparent mobility of 60kDa (ACBP-60). This protein co-fractionates with nuclei, is present at several thousand copies per cell and has a Kd for the T-rich single strand of the ARS consensus between 10(-9) and 10(-10) M. Competition studies with simple nucleic acid polymers show that ACBP-60 has marginally higher affinity for poly dT30 than for a 30 nt oligomer containing the T-rich strand of ARS 307, and approximately 10 fold higher affinity for poly rU. Internal sequence information of purified p60 reveals identity with the open reading frames of genes PUB1 and RNP1 which encode polyuridylate binding protein(s). The second binding activity, ACBP-67, also binds specifically to the T-rich single strand of the ARS consensus, but with considerably lower affinity than ACBP-60. Peptide sequence reveals that the 67kDa protein is identical to the major polyA binding protein in yeast, PAB1.
Collapse
Affiliation(s)
- M Cockell
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges Lausanne
| | | | | | | |
Collapse
|
18
|
Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol Cell Biol 1994. [PMID: 8246982 DOI: 10.1128/mcb.13.12.7652] [Citation(s) in RCA: 313] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The degradation of some proto-oncogene and lymphokine mRNAs is controlled in part by an AU-rich element (ARE) in the 3' untranslated region. It was shown previously (G. Brewer, Mol. Cell. Biol. 11:2460-2466, 1991) that two polypeptides (37 and 40 kDa) copurified with fractions of a 130,000 x g postribosomal supernatant (S130) from K562 cells that selectively accelerated degradation of c-myc mRNA in a cell-free decay system. These polypeptides bound specifically to the c-myc and granulocyte-macrophage colony-stimulating factor 3' UTRs, suggesting they are in part responsible for selective mRNA degradation. In the present work, we have purified the RNA-binding component of this mRNA degradation activity, which we refer to as AUF1. Using antisera specific for these polypeptides, we demonstrate that the 37- and 40-kDa polypeptides are immunologically cross-reactive and that both polypeptides are phosphorylated and can be found in a complex(s) with other polypeptides. Immunologically related polypeptides are found in both the nucleus and the cytoplasm. The antibodies were also used to clone a cDNA for the 37-kDa polypeptide. This cDNA contains an open reading frame predicted to produce a protein with several features, including two RNA recognition motifs and domains that potentially mediate protein-protein interactions. These results provide further support for a role of this protein in mediating ARE-directed mRNA degradation.
Collapse
|
19
|
Birney E, Kumar S, Krainer AR. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res 1993; 21:5803-16. [PMID: 8290338 PMCID: PMC310458 DOI: 10.1093/nar/21.25.5803] [Citation(s) in RCA: 545] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We present a systematic analysis of sequence motifs found in metazoan protein factors involved in constitutive pre-mRNA splicing and in alternative splicing regulation. Using profile analysis we constructed a database enriched in protein sequences containing one or more presumptive copies of the RNA-recognition motif (RRM). We provide an accurate alignment of RRMs and structure-based criteria for identifying new RRMs, including many that lack the prototype RNP-1 submotif. We present a comprehensive table of 125 sequences containing 252 RRMs, including 22 previously unreported RRMs in 17 proteins. The presence of a putative RRM in these proteins, which are implicated in a variety of cellular processes, strongly suggests that their function involves binding to RNA. Unreported homologies in the RRM-enriched database to the metazoan SR family of splicing factors are described for an Arg-rich human nuclear protein and two yeast proteins (S. pombe mei2 and S. cerevisiae Npl3). We have rigorously tested the phylogenetic relationships of a large sample of RRMs. This analysis indicates that the RRM is an ancient conserved region (ACR) that has diversified by duplication of genes and intragenic domains. Statistical analyses and classification of repeated Arg-Ser (RS) and RGG domains in various protein splicing factors are presented.
Collapse
Affiliation(s)
- E Birney
- Cold Spring Harbor Laboratory, NY 11724-2208
| | | | | |
Collapse
|
20
|
Zhang W, Wagner BJ, Ehrenman K, Schaefer AW, DeMaria CT, Crater D, DeHaven K, Long L, Brewer G. Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol Cell Biol 1993; 13:7652-65. [PMID: 8246982 PMCID: PMC364837 DOI: 10.1128/mcb.13.12.7652-7665.1993] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The degradation of some proto-oncogene and lymphokine mRNAs is controlled in part by an AU-rich element (ARE) in the 3' untranslated region. It was shown previously (G. Brewer, Mol. Cell. Biol. 11:2460-2466, 1991) that two polypeptides (37 and 40 kDa) copurified with fractions of a 130,000 x g postribosomal supernatant (S130) from K562 cells that selectively accelerated degradation of c-myc mRNA in a cell-free decay system. These polypeptides bound specifically to the c-myc and granulocyte-macrophage colony-stimulating factor 3' UTRs, suggesting they are in part responsible for selective mRNA degradation. In the present work, we have purified the RNA-binding component of this mRNA degradation activity, which we refer to as AUF1. Using antisera specific for these polypeptides, we demonstrate that the 37- and 40-kDa polypeptides are immunologically cross-reactive and that both polypeptides are phosphorylated and can be found in a complex(s) with other polypeptides. Immunologically related polypeptides are found in both the nucleus and the cytoplasm. The antibodies were also used to clone a cDNA for the 37-kDa polypeptide. This cDNA contains an open reading frame predicted to produce a protein with several features, including two RNA recognition motifs and domains that potentially mediate protein-protein interactions. These results provide further support for a role of this protein in mediating ARE-directed mRNA degradation.
Collapse
Affiliation(s)
- W Zhang
- Department of Microbiology and Immunology, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27157-1064
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Brand S, Bourbon HM. The developmentally-regulated Drosophila gene rox8 encodes an RRM-type RNA binding protein structurally related to human TIA-1-type nucleolysins. Nucleic Acids Res 1993; 21:3699-704. [PMID: 8396236 PMCID: PMC309868 DOI: 10.1093/nar/21.16.3699] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We report the molecular analysis of a novel Drosophila melanogaster gene, rox8, isolated in a PCR-based screen for sequences encoding RRM-type RNA-binding polypeptides. The rox8 gene is predicted to encode a 50-kilodalton protein displaying extensive amino acid sequence similarities (46% overall identity; 57 to 60% similarity) to the two recently described human TIA-1-type nucleolysins. These cytolytic granule associated proteins, which bind polyadenylated sequences in vitro and trigger DNA fragmentation in permeabilized target cells, are suspected to participate in the apoptotic cell death pathway induced by T-lymphocytes and natural killer cells. The structural relatedness of the three proteins includes three tandemly-repeated consensus RNA-recognition motifs at the N-terminal end and a putative membrane targeting signal at the C-terminal end. rox8 cytologically maps to 95D5-9 on the right arm of the third chromosome. Two rox8 transcripts of 3 and 3.3 kb in length, respectively, result from a developmentally-modulated alternative usage of different polyadenylation sites and are differentially accumulated throughout the fly life cycle. Molecular characterization of rox8 represents the first step in a genetic analysis of the potential roles of a TIA-1-related protein in RNA metabolism and/or programmed cell death in Drosophila.
Collapse
Affiliation(s)
- S Brand
- Centre de Biologie du Développement, UMR 9925 CNRS/UPS, Université Paul Sabatier, Toulouse, France
| | | |
Collapse
|
22
|
Ripmaster TL, Woolford JL. A protein containing conserved RNA-recognition motifs is associated with ribosomal subunits in Saccharomyces cerevisiae. Nucleic Acids Res 1993; 21:3211-6. [PMID: 8341595 PMCID: PMC309757 DOI: 10.1093/nar/21.14.3211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Using PCR cloning techniques, we have isolated a Saccharomyces cerevisiae gene encoding a protein that contains two highly conserved RNA-recognition motifs. This gene, designated RNP1, encodes an acidic protein that is similar in sequence to a variety of previously isolated RNA binding proteins, including nucleolin, poly (A) binding protein, and small nuclear ribonucleoproteins. The RNP1 gene maps to the left arm of chromosome XIV centromere distal to SUF10. Haploid yeast containing a null allele of RNP1 are viable, indicating that RNP1 is dispensible for mitotic growth. However genomic Southern blot analysis indicated that several other loci in the S. cerevisiae genome appear to contain sequences similar to those in the RNP1 gene. The majority of the Rnp1 protein is cytoplasmic. Extra copies of RNP1 cause a decrease in levels of 80S monoribosomes. A fraction of Rnp1 protein cosediments on sucrose gradients with 40S and 60S ribosomal subunits and 80S monosomes, but not with polyribosomes.
Collapse
Affiliation(s)
- T L Ripmaster
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | | |
Collapse
|
23
|
Hel-N1: an autoimmune RNA-binding protein with specificity for 3' uridylate-rich untranslated regions of growth factor mRNAs. Mol Cell Biol 1993. [PMID: 8497264 DOI: 10.1128/mcb.13.6.3494] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the RNA binding specificity of Hel-N1, a human neuron-specific RNA-binding protein, which contains three RNA recognition motifs. Hel-N1 is a human homolog of Drosophila melanogaster elav, which plays a vital role in the development of neurons. A random RNA selection procedure revealed that Hel-N1 prefers to bind RNAs containing short stretches of uridylates similar to those found in the 3' untranslated regions (3' UTRs) of oncoprotein and cytokine mRNAs such as c-myc, c-fos, and granulocyte macrophage colony-stimulating factor. Direct binding studies demonstrated that Hel-N1 bound and formed multimers with c-myc 3' UTR mRNA and required, as a minimum, a specific 29-nucleotide stretch containing AUUUG, AUUUA, and GUUUUU. Deletion analysis demonstrated that a fragment of Hel-N1 containing 87 amino acids, encompassing the third RNA recognition motif, forms an RNA binding domain for the c-myc 3' UTR. In addition, Hel-N1 was shown to be reactive with autoantibodies from patients with paraneoplastic encephalomyelitis both before and after binding to c-myc mRNA.
Collapse
|
24
|
Levine TD, Gao F, King PH, Andrews LG, Keene JD. Hel-N1: an autoimmune RNA-binding protein with specificity for 3' uridylate-rich untranslated regions of growth factor mRNAs. Mol Cell Biol 1993; 13:3494-504. [PMID: 8497264 PMCID: PMC359819 DOI: 10.1128/mcb.13.6.3494-3504.1993] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have investigated the RNA binding specificity of Hel-N1, a human neuron-specific RNA-binding protein, which contains three RNA recognition motifs. Hel-N1 is a human homolog of Drosophila melanogaster elav, which plays a vital role in the development of neurons. A random RNA selection procedure revealed that Hel-N1 prefers to bind RNAs containing short stretches of uridylates similar to those found in the 3' untranslated regions (3' UTRs) of oncoprotein and cytokine mRNAs such as c-myc, c-fos, and granulocyte macrophage colony-stimulating factor. Direct binding studies demonstrated that Hel-N1 bound and formed multimers with c-myc 3' UTR mRNA and required, as a minimum, a specific 29-nucleotide stretch containing AUUUG, AUUUA, and GUUUUU. Deletion analysis demonstrated that a fragment of Hel-N1 containing 87 amino acids, encompassing the third RNA recognition motif, forms an RNA binding domain for the c-myc 3' UTR. In addition, Hel-N1 was shown to be reactive with autoantibodies from patients with paraneoplastic encephalomyelitis both before and after binding to c-myc mRNA.
Collapse
Affiliation(s)
- T D Levine
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | |
Collapse
|
25
|
Good PJ, Rebbert ML, Dawid IB. Three new members of the RNP protein family in Xenopus. Nucleic Acids Res 1993; 21:999-1006. [PMID: 8451200 PMCID: PMC309235 DOI: 10.1093/nar/21.4.999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Many RNP proteins contain one or more copies of the RNA recognition motif (RRM) and are thought to be involved in cellular RNA metabolism. We have previously characterized in Xenopus a nervous system specific gene, nrp1, that is more similar to the hnRNP A/B proteins than to other known proteins (K. Richter, P. J. Good, and I. B. Dawid (1990), New Biol. 2, 556-565). PCR amplification with degenerate primers was used to identify additional cDNAs encoding two RRMs in Xenopus. Three previously uncharacterized genes were identified. Two genes encode hnRNP A/B proteins with two RRMs and a glycine-rich domain. One of these is the Xenopus homolog of the human A2/B1 gene; the other, named hnRNP A3, is similar to both the A1 and A2 hnRNP genes. The Xenopus hnRNP A1, A2 and A3 genes are expressed throughout development and in all adult tissues. Multiple protein isoforms for the hnRNP A2 gene are predicted that differ by the insertion of short peptide sequences in the glycine-rich domain. The third newly isolated gene, named xrp1, encodes a protein that is related by sequence to the nrp1 protein but is expressed ubiquitously. Despite the similarity to nuclear RNP proteins, both the nrp1 and xrp1 proteins are localized to the cytoplasm in the Xenopus oocyte. The xrp1 gene may have a function in all cells that is similar to that executed by nrp1 specifically within the nervous system.
Collapse
Affiliation(s)
- P J Good
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|