1
|
Nagpal N, Sharma S, Maji S, Durante G, Ferracin M, Thakur JK, Kulshreshtha R. Essential role of MED1 in the transcriptional regulation of ER-dependent oncogenic miRNAs in breast cancer. Sci Rep 2018; 8:11805. [PMID: 30087366 PMCID: PMC6081450 DOI: 10.1038/s41598-018-29546-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 07/12/2018] [Indexed: 01/24/2023] Open
Abstract
Mediator complex has been extensively shown to regulate the levels of several protein-coding genes; however, its role in the regulation of miRNAs in humans remains unstudied so far. Here we show that MED1, a Mediator subunit in the Middle module of Mediator complex, is overexpressed in breast cancer and is a negative prognostic factor. The levels of several miRNAs (miR-100-5p, -191-5p, -193b-3p, -205-5p, -326, -422a and -425-5p) were found to be regulated by MED1. MED1 induces miR-191/425 cluster in an estrogen receptor-alpha (ER-α) dependent manner. Occupancy of MED1 on estrogen response elements (EREs) upstream of miR-191/425 cluster is estrogen and ER-α-dependent and ER-α-induced expression of these miRNAs is MED1-dependent. MED1 mediates induction of cell proliferation and migration and the genes associated with it (JUN, FOS, EGFR, VEGF, MMP1, and ERBB4) in breast cancer, which is abrogated when used together with miR-191-inhibition. Additionally, we show that MED1 also regulates the levels of direct miR-191 target genes such as SATB1, CDK6 and BDNF. Overall, the results show that MED1/ER-α/miR-191 axis promotes breast cancer cell proliferation and migration and may serve as a novel target for therapy.
Collapse
Affiliation(s)
- Neha Nagpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.,Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shivani Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sourobh Maji
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Giorgio Durante
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126, Bologna, Italy
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
2
|
Salinero AC, Knoll ER, Zhu ZI, Landsman D, Curcio MJ, Morse RH. The Mediator co-activator complex regulates Ty1 retromobility by controlling the balance between Ty1i and Ty1 promoters. PLoS Genet 2018; 14:e1007232. [PMID: 29462141 PMCID: PMC5834202 DOI: 10.1371/journal.pgen.1007232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/02/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022] Open
Abstract
The Ty1 retrotransposons present in the genome of Saccharomyces cerevisiae belong to the large class of mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. The retromobility of Ty1 is regulated by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. In spite of its known function in the nucleus, previous studies have implicated Mediator in the regulation of post-translational steps in Ty1 retromobility. To resolve this paradox, we systematically examined the effects of deleting non-essential Mediator subunits on the frequency of Ty1 retromobility and levels of retromobility intermediates. Our findings reveal that loss of distinct Mediator subunits alters Ty1 retromobility positively or negatively over a >10,000-fold range by regulating the ratio of an internal transcript, Ty1i, to the genomic Ty1 transcript. Ty1i RNA encodes a dominant negative inhibitor of Ty1 retromobility that blocks virus-like particle maturation and cDNA synthesis. These results resolve the conundrum of Mediator exerting sweeping control of Ty1 retromobility with only minor effects on the levels of Ty1 genomic RNA and the capsid protein, Gag. Since the majority of characterized intrinsic and extrinsic regulators of Ty1 retromobility do not appear to effect genomic Ty1 RNA levels, Mediator could play a central role in integrating signals that influence Ty1i expression to modulate retromobility. Retrotransposons are mobile genetic elements that copy their RNA genomes into DNA and insert the DNA copies into the host genome. These elements contribute to genome instability, control of host gene expression and adaptation to changing environments. Retrotransposons depend on numerous host factors for their own propagation and control. The retrovirus-like retrotransposon, Ty1, in the yeast Saccharomyces cerevisiae has been an invaluable model for retrotransposon research, and hundreds of host factors that regulate Ty1 retrotransposition have been identified. Non-essential subunits of the Mediator transcriptional co-activator complex have been identified as one set of host factors implicated in Ty1 regulation. Here, we report a systematic investigation of the effects of loss of these non-essential subunits of Mediator on Ty1 retrotransposition. Our findings reveal a heretofore unknown mechanism by which Mediator influences the balance between transcription from two promoters in Ty1 to modulate expression of an autoinhibitory transcript known as Ty1i RNA. Our results provide new insights into host control of retrotransposon activity via promoter choice and elucidate a novel mechanism by which the Mediator co-activator governs this choice.
Collapse
Affiliation(s)
- Alicia C. Salinero
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Elisabeth R. Knoll
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Z. Iris Zhu
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States of America
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States of America
| | - M. Joan Curcio
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail: (MJC); (RHM)
| | - Randall H. Morse
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- * E-mail: (MJC); (RHM)
| |
Collapse
|
3
|
Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain. EUKARYOTIC CELL 2009; 8:768-78. [PMID: 19304952 DOI: 10.1128/ec.00021-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The bifunctional Saccharomyces cerevisiae Skn7 transcription factor regulates osmotic stress response genes as well as oxidative stress response genes; however, the mechanisms involved in these two types of regulation differ. Skn7 osmotic stress activity depends on the phosphorylation of the receiver domain aspartate, D427, by the Sln1 histidine kinase. In contrast, D427 and the SLN1-SKN7 phosphorelay are dispensable for the oxidative stress response, although the receiver domain is required. The majority of oxidative stress response genes regulated by Skn7 also are regulated by the redox-responsive transcription factor Yap1. It is therefore possible that the nuclearly localized Skn7 does not itself respond to the oxidant but simply cooperates with Yap1 when it translocates to the nucleus. We report here that oxidative stress leads to a phosphatase-sensitive, slow-mobility Skn7 variant. This suggests that Skn7 undergoes a posttranslational modification by phosphorylation following exposure to oxidant. Oxidant-dependent Skn7 phosphorylation was eliminated in strains lacking the Yap1 transcription factor. This suggests that the phosphorylation of Skn7 is regulated by Yap1. Mutations in the receiver domain of Skn7 were identified that affect its oxidative stress function. These mutations were found to compromise the association of Yap1 and Skn7 at oxidative stress response gene promoters. A working model is proposed in which the association of Yap1 with Skn7 in the nucleus is a prerequisite for Skn7 phosphorylation and the activation of oxidative stress response genes.
Collapse
|
4
|
Abraham DS, Vershon AK. N-terminal arm of Mcm1 is required for transcription of a subset of genes involved in maintenance of the cell wall. EUKARYOTIC CELL 2006; 4:1808-19. [PMID: 16278448 PMCID: PMC1287865 DOI: 10.1128/ec.4.11.1808-1819.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast Mcm1 protein is a member of the MADS box family of transcription factors that interacts with several cofactors to differentially regulate genes involved in cell-type determination, mating, cell cycle control and arginine metabolism. Residues 18 to 96 of the protein, which form the core DNA-binding domain of Mcm1, are sufficient to carry out many Mcm1-dependent functions. However, deletion of residues 2 to 17, which form the nonessential N-terminal (NT) arm, confers a salt-sensitive phenotype, suggesting that the NT arm is required for the activation of salt response genes. We used a strategy that combined information from the mutational analysis of the Mcm1-binding site with microarray expression data under salt stress conditions to identify a new subset of Mcm1-regulated genes. Northern blot analysis showed that the transcript levels of several genes encoding associated with the cell wall, especially YGP1, decrease significantly upon deletion of the Mcm1 NT arm. Deletion of the Mcm1 NT arm results in a calcofluor white-sensitive phenotype, which is often associated with defects in transcription of cell wall genes. In addition, the deletion makes cells sensitive to CaCl2 and alkaline pH. We found that the defect caused by removal of the NT arm is not due to changes in Mcm1 protein level, stability, DNA-binding affinity, or DNA bending. This suggests that residues 2 to 17 of Mcm1 may be involved in recruiting a cofactor to the promoters of these genes to activate transcription.
Collapse
Affiliation(s)
- Deepu S Abraham
- Waksman Institute of Microbiology and Department of Molecular Biology and Biochemistry, Rutgers University, 190 Frelinghuysen Rd., Piscataway, NJ 08854-8020, USA
| | | |
Collapse
|
5
|
He XJ, Fassler JS. Identification of novel Yap1p and Skn7p binding sites involved in the oxidative stress response of Saccharomyces cerevisiae. Mol Microbiol 2006; 58:1454-67. [PMID: 16313629 PMCID: PMC2916641 DOI: 10.1111/j.1365-2958.2005.04917.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Saccharomyces cerevisiae Yap1p and Skn7p transcription factors collaborate in the activation of oxidative stress response (OSR) genes. Although Yap1p and Skn7p oxidative stress response elements (YRE, OSRE) have been characterized and identified in some OSR genes, many OSR genes lack such elements. In this study, the complex, oxidative responsive, CCP1 promoter was used as a model to investigate the cis-acting elements responsible for activation by oxidative stress. In addition to consensus YRE and OSRE sequences, novel Yap1p and Skn7p binding sites were identified in the CCP1 promoter. These new sites were found to mediate Yap1p- and Skn7p-dependent activation of OSR genes including TSA1 and CTT1 previously thought to lack Yap1p and Skn7p binding sites. The novel YREs and OSREs were found to be enriched in the promoter regions of a set of 179 OSR genes. The widespread existence of novel Yap1p and Skn7p binding sites strongly suggest that direct binding of Yap1p and Skn7p is responsible for activation of many more OSR genes than previously believed.
Collapse
Affiliation(s)
| | - Jan S. Fassler
- For correspondence. ; Tel. (+1) 319 335 1542; Fax (+1) 319 335 1069
| |
Collapse
|
6
|
Wang X, Michels CA. Mutations in SIN4 and RGR1 cause constitutive expression of MAL structural genes in Saccharomyces cerevisiae. Genetics 2005; 168:747-57. [PMID: 15514050 PMCID: PMC1448850 DOI: 10.1534/genetics.104.029611] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription of the Saccharomyces MAL structural genes is induced 40-fold by maltose and requires the MAL-activator and maltose permease. To identify additional players involved in regulating MAL gene expression, we carried out a genetic selection for MAL constitutive mutants. Strain CMY4000 containing MAL1 and integrated copies of MAL61promoter-HIS3 and MAL61promoter-lacZ reporter genes was used to select constitutive mutants. The 29 recessive mutants fall into at least three complementation groups. Group 1 and group 2 mutants exhibit pleiotropic phenotypes and represent alleles of Mediator component genes RGR1 and SIN4, respectively. The rgr1 and sin4 constitutive phenotype does not require either the MAL-activator or maltose permease, indicating that Mediator represses MAL basal expression. Further genetic analysis demonstrates that RGR1 and SIN4 work in a common pathway and each component of the Mediator Sin4 module plays a distinct role in regulating MAL gene expression. Additionally, the Swi/Snf chromatin-remodeling complex is required for full induction, suggesting a role for chromatin remodeling in the regulation of MAL gene expression. A sin4Delta mutation is unable to suppress the defects in MAL gene expression resulting from loss of the Swi/Snf complex component Snf2p. The role of the Mediator in MAL gene regulation is discussed.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biology, Queens College and the Graduate School of City University of New York, Flushing, New York 11367, USA
| | | |
Collapse
|
7
|
Lim FL, Hayes A, West AG, Pic-Taylor A, Darieva Z, Morgan BA, Oliver SG, Sharrocks AD. Mcm1p-induced DNA bending regulates the formation of ternary transcription factor complexes. Mol Cell Biol 2003; 23:450-61. [PMID: 12509445 PMCID: PMC151545 DOI: 10.1128/mcb.23.2.450-461.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast MADS-box transcription factor Mcm1p plays an important regulatory role in several diverse cellular processes. In common with a subset of other MADS-box transcription factors, Mcm1p elicits substantial DNA bending. However, the role of protein-induced bending by MADS-box proteins in eukaryotic gene regulation is not understood. Here, we demonstrate an important role for Mcm1p-mediated DNA bending in determining local promoter architecture and permitting the formation of ternary transcription factor complexes. We constructed mutant mcm1 alleles that are defective in protein-induced bending. Defects in nuclear division, cell growth or viability, transcription, and gene expression were observed in these mutants. We identified one likely cause of the cell growth defects as the aberrant formation of the cell cycle-regulatory Fkh2p-Mcm1p complex. Microarray analysis confirmed the importance of Mcm1p-mediated DNA bending in maintaining correct gene expression profiles and revealed defects in Mcm1p-mediated repression of Ty elements and in the expression of the cell cycle-regulated YFR and CHS1 genes. Thus, we discovered an important role for DNA bending by MADS-box proteins in the formation and function of eukaryotic transcription factor complexes.
Collapse
Affiliation(s)
- Fei-Ling Lim
- Department of Biochemistry and Genetics, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Li S, Dean S, Li Z, Horecka J, Deschenes RJ, Fassler JS. The eukaryotic two-component histidine kinase Sln1p regulates OCH1 via the transcription factor, Skn7p. Mol Biol Cell 2002; 13:412-24. [PMID: 11854400 PMCID: PMC65637 DOI: 10.1091/mbc.01-09-0434] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The yeast "two-component" osmotic stress phosphorelay consists of the histidine kinase, Sln1p, the phosphorelay intermediate, Ypd1p and two response regulators, Ssk1p and Skn7p, whose activities are regulated by phosphorylation of a conserved aspartyl residue in the receiver domain. Dephospho-Ssk1p leads to activation of the hyper-osmotic response (HOG) pathway, whereas phospho-Skn7p presumably leads to activation of hypo-osmotic response genes. The multifunctional Skn7 protein is important in oxidative as well as osmotic stress; however, the Skn7p receiver domain aspartate that is the phosphoacceptor in the SLN1 pathway is dispensable for oxidative stress. Like many well-characterized bacterial response regulators, Skn7p is a transcription factor. In this report we investigate the role of Skn7p in osmotic response gene activation. Our studies reveal that the Skn7p HSF-like DNA binding domain interacts with a cis-acting element identified upstream of OCH1 that is distinct from the previously defined HSE-like Skn7p binding site. Our data support a model in which Skn7p receiver domain phosphorylation affects transcriptional activation rather than DNA binding to this class of DNA binding site.
Collapse
Affiliation(s)
- Sheng Li
- Department of Biological Sciences, University of Iowa, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
9
|
Tao W, Malone CL, Ault AD, Deschenes RJ, Fassler JS. A cytoplasmic coiled-coil domain is required for histidine kinase activity of the yeast osmosensor, SLN1. Mol Microbiol 2002; 43:459-73. [PMID: 11985722 PMCID: PMC2892222 DOI: 10.1046/j.1365-2958.2002.02757.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast histidine kinase, Sln1p, is a plasma membrane-associated osmosensor that regulates the activity of the osmotic stress MAP kinase pathway. Changes in the osmotic environment of the cell influence the autokinase activity of the cytoplasmic kinase domain of Sln1p. Neither the nature of the stimulus, the mechanism by which the osmotic signal is transduced nor the manner in which the kinase is regulated is currently clear. We have identified several mutations located in the linker region of the Sln1 kinase (just upstream of the kinase domain) that cause hyperactivity of the Sln1 kinase. This region of histidine kinases is largely uncharacterized, but its location between the transmembrane domains and the cytoplasmic kinase domain suggests that it may have a potential role in signal transduction. In this study, we have investigated the Sln1 linker region in order to understand its function in signal transduction and regulation of Sln1 kinase activity. Our results indicate that the linker region forms a coiled-coil structure and suggest a mechanism by which alterations induced by osmotic stress influence kinase activity by altering the alignment of the phospho-accepting histidine with respect to the catalytic domain of the kinase.
Collapse
Affiliation(s)
- Wei Tao
- Department of Biological Sciences, 138 Biology Building, University of Iowa, Iowa City, IA 52242, USA
| | - Cheryl L. Malone
- Department of Biochemistry, 138 Biology Building, University of Iowa, Iowa City, IA 52242, USA
| | - Addison D. Ault
- Department of Biochemistry, 138 Biology Building, University of Iowa, Iowa City, IA 52242, USA
| | - Robert J. Deschenes
- Department of Biochemistry, 138 Biology Building, University of Iowa, Iowa City, IA 52242, USA
| | - Jan S. Fassler
- Department of Biological Sciences, 138 Biology Building, University of Iowa, Iowa City, IA 52242, USA
- For correspondence. ; Tel. (+1) 319 335 1542; Fax (+1) 319 335 1069
| |
Collapse
|
10
|
Mai B, Miles S, Breeden LL. Characterization of the ECB binding complex responsible for the M/G(1)-specific transcription of CLN3 and SWI4. Mol Cell Biol 2002; 22:430-41. [PMID: 11756540 PMCID: PMC139728 DOI: 10.1128/mcb.22.2.430-441.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor Mcm1 is regulated by adjacent binding of a variety of different factors regulating the expression of cell-type-specific, cell cycle-specific, and metabolic genes. In this work, we investigate a new class of Mcm1-regulated promoters that are cell cycle regulated and peak in late M-early G(1) phase of the cell cycle via a promoter element referred to as an early cell cycle box (ECB). Gel filtration experiments indicate that the ECB-specific DNA binding complex is over 200 kDa in size and includes Mcm1 and at least one additional protein. Using DNase I footprinting in vitro, we have observed protection of the ECB elements from the CLN3, SWI4, CDC6, and CDC47 promoters, which includes protection of the 16-bp palindrome to which Mcm1 dimers are known to bind as well as protection of extended flanking sequences. These flanking sequences influence the stability and the variety of complexes that form on the ECB elements, and base substitutions in the protected flank affect transcriptional activity of the element. Chromatin immunoprecipitations show that Mcm1 binds in vivo to ECB elements throughout the cell cycle and that binding is sensitive to carbon source changes.
Collapse
Affiliation(s)
- Bernard Mai
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, Washington 98109-1024, USA
| | | | | |
Collapse
|
11
|
Tao W, Deschenes RJ, Fassler JS. Intracellular glycerol levels modulate the activity of Sln1p, a Saccharomyces cerevisiae two-component regulator. J Biol Chem 1999; 274:360-7. [PMID: 9867851 PMCID: PMC2909977 DOI: 10.1074/jbc.274.1.360] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HOG mitogen-activated protein kinase pathway mediates the osmotic stress response in Saccharomyces cerevisiae, activating genes like GPD1 (glycerol phosphate dehydrogenase), required for survival under hyperosmotic conditions. Activity of this pathway is regulated by Sln1p, a homolog of the "two-component" histidine kinase family of signal transduction molecules prominent in bacteria. Sln1p also regulates the activity of a Hog1p-independent pathway whose transcriptional output can be monitored using an Mcm1p-dependent lacZ reporter gene. The relationship between the two Sln1p branches is unclear, however, the requirement for unphosphorylated pathway intermediates in Hog1p pathway activation and for phosphorylated intermediates in the activation of the Mcm1p reporter suggests that the two Sln1p branches are reciprocally regulated. To further investigate the signals and molecules involved in modulating Sln1p activity, we have screened for new mutations that elevate the activity of the Mcm1p-dependent lacZ reporter gene. We find that loss of function mutations in FPS1, a gene encoding the major glycerol transporter in yeast activates the reporter in a SLN1-dependent fashion. We propose that elevated intracellular glycerol levels in the fps1 mutant shift Sln1p to the phosphorylated state and trigger the Sln1-dependent activity of the Mcm1 reporter. These observations are consistent with a model in which Sln1p autophosphorylation is triggered by a hypo-osmotic stimulus and indicate that the Sln1p osmosensor is tied generally to osmotic balance, and may not specifically sense an external osmolyte.
Collapse
Affiliation(s)
- Wei Tao
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242
| | | | - Jan S. Fassler
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
12
|
Mendenhall MD, Hodge AE. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1191-243. [PMID: 9841670 PMCID: PMC98944 DOI: 10.1128/mmbr.62.4.1191-1243.1998] [Citation(s) in RCA: 300] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part, remain to be delineated, Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following an introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity-cyclin-CKI binding and phosphorylation-dephosphorylation events-are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized.
Collapse
Affiliation(s)
- M D Mendenhall
- L. P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536-0096, USA.
| | | |
Collapse
|
13
|
Kuo MH, Nadeau ET, Grayhack EJ. Multiple phosphorylated forms of the Saccharomyces cerevisiae Mcm1 protein include an isoform induced in response to high salt concentrations. Mol Cell Biol 1997; 17:819-32. [PMID: 9001236 PMCID: PMC231808 DOI: 10.1128/mcb.17.2.819] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Saccharomyces cerevisiae Mcm1 protein is an essential multifunctional transcription factor which is highly homologous to human serum response factor. Mcm1 protein acts on a large number of distinctly regulated genes: haploid cell-type-specific genes, G2-cell-cycle-regulated genes, pheromone-induced genes, arginine metabolic genes, and genes important for cell wall and cell membrane function. We show here that Mcm1 protein is phosphorylated in vivo. Several (more than eight) isoforms of Mcm1 protein, resolved by isoelectric focusing, are present in vivo; two major phosphorylation sites lie in the N-terminal 17 amino acids immediately adjacent to the conserved MADS box DNA-binding domain. The implications of multiple species of Mcm1, particularly the notion that a unique Mcm1 isoform could be required for regulation of a specific set of Mcm1's target genes, are discussed. We also show here that Mcm1 plays an important role in the response to stress caused by NaCl. G. Yu, R. J. Deschenes, and J. S. Fassler (J. Biol. Chem. 270:8739-8743, 1995) showed that Mcm1 function is affected by mutations in the SLN1 gene, a signal transduction component implicated in the response to osmotic stress. We find that mcm1 mutations can confer either reduced or enhanced survival on high-salt medium; deletion of the N terminus or mutation in the primary phosphorylation site results in impaired growth on high-salt medium. Furthermore, Mcm1 protein is a target of a signal transduction system responsive to osmotic stress: a new isoform of Mcm1 is induced by NaCl or KCl; this result establishes that Mcm1 itself is regulated.
Collapse
Affiliation(s)
- M H Kuo
- Department of Biochemistry and Biophysics, School of Medicine, University of Rochester, New York 14642, USA
| | | | | |
Collapse
|
14
|
Gray WM, Fassler JS. Isolation and analysis of the yeast TEA1 gene, which encodes a zinc cluster Ty enhancer-binding protein. Mol Cell Biol 1996; 16:347-58. [PMID: 8524314 PMCID: PMC231009 DOI: 10.1128/mcb.16.1.347] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A genetic screen for mutants that affect the activity of internal regulatory sequences of Ty retrotransposons led to the identification of a new gene encoding a DNA-binding protein that interacts with the downstream enhancer-like region of Ty1 elements. The TEA1 (Ty enhancer activator) gene sequence predicts a protein of 86.9 kDa whose N terminus contains a zinc cluster and dimerization motif typical of the Gal4-type family of DNA-binding proteins. The C terminus encodes an acidic domain with a net negative charge of -10 and the ability to mediate transcriptional activation. Like other zinc cluster proteins, purified Tea1 was found to bind to a partially palindromic CGGNxCCG repeat motif located in the Ty1 enhancer region. The Ty1 Tea1 binding site has a spacing of 10 and is located near binding sites for the DNA-binding proteins Rap1 and Mcm1. Analysis of the phenotype of tea1 deletion mutants confirmed that the TEA1 gene is required for activation from the internal Ty1 enhancer characterized in this study and makes a modest contribution to normal Ty1 levels in the cell. Hence, Tea1, like Rap1, is a member of a small family of downstream activators in Saccharomyces cerevisiae. Further analysis of the Tea1 protein and its interactions may provide insight into the mechanism of downstream activation in yeast cells.
Collapse
Affiliation(s)
- W M Gray
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
15
|
Nishizawa M, Taga S, Matsubara A. Positive and negative transcriptional regulation by the yeast GAL11 protein depends on the structure of the promoter and a combination of cis elements. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:301-12. [PMID: 7816040 DOI: 10.1007/bf00290110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
GAL11 was first identified as a gene required for full expression of some galactose-inducible genes that are activated by GAL4, and it was subsequently shown to be necessary for full expression of another set of genes activated by RAP1/GRF1/TUF. Genetic analysis suggests that GAL11 functions as a coactivator, mediating the interaction of sequence-specific activators with basal transcription factors. To test this hypothesis, we first tried to identify functional domains by deletion analysis and found that the 866-910 region is indispensable for function. Using reporters bearing various upstream activating sequences (UAS) and different core promoter structures, we show that the involvement of GAL11 in transcriptional activation varies with the target promoter and the particular combination of cis elements. Gel electrophoresis in the presence of chloroquine shows that GAL11 affects the chromatin structure of a circular plasmid. Based on these findings, the role of GAL11 in regulation of transcription, including an alteration in chromatin structure, is discussed.
Collapse
Affiliation(s)
- M Nishizawa
- Department of Microbiology, Keio University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Stanway CA, Gibbs JM, Kearsey SE, López MC, Baker HV. The yeast co-activator GAL11 positively influences transcription of the phosphoglycerate kinase gene, but only when RAP1 is bound to its upstream activation sequence. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:207-14. [PMID: 8177217 DOI: 10.1007/bf00280318] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transcription of the yeast phosphoglycerate kinase gene (PGK) is activated by an array of nuclear factors including the multifunctional protein RAP1. We have demonstrated that the transcriptional co-activator GAL11, which was identified as an auxiliary factor to GAL4 and which is believed to interact with the zinc finger of the trans-activator, positively influences the level of PGK transcription on both fermentable and non-fermentable carbon sources. This positive effect is only observed when the RAP1 site in the upstream activation sequence (UAS) is present, implying that GAL11 acts through RAP1. Expression of the RAP1 gene is not reduced in the gal11 background, and in vivo footprinting shows that GAL11 does not influence RAP1 DNA-binding activity. Therefore the effect of GAL11 on PGK transcription must be mediated at the PGK UAS, presumably as part of the activation complex. It has been proposed that RAP1 may act as a facilitator of GCR1 binding at the PGK UAS and therefore it is conceivable that the target for GAL11 may in fact be GCR1. A further implication of this study is that GAL11 can interact with proteins such as RAP1 or GCR1 that are apparently structurally dissimilar from GAL4 and other zinc finger DNA-binding proteins.
Collapse
Affiliation(s)
- C A Stanway
- Department of Plant Sciences, University of Oxford, UK
| | | | | | | | | |
Collapse
|
17
|
Laloux I, Jacobs E, Dubois E. Involvement of SRE element of Ty1 transposon in TEC1-dependent transcriptional activation. Nucleic Acids Res 1994; 22:999-1005. [PMID: 8152932 PMCID: PMC307921 DOI: 10.1093/nar/22.6.999] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Some Ty1 transposable element insertion mutations of Saccharomyces cerevisiae activate transcription of adjacent genes in a cell-type dependent manner. This activation requires at least STE12 and TEC1 gene products. The binding site for the STE12 protein is located in the sterile responsive element (SRE), which is just downstream the 5' LTR of Ty1 and contains one copy of the pheromone response element (PRE). This report defines the sequences in Ty1 required for TEC1-dependent activation using a TDH3::lacZ reporter gene in which the UAS was replaced by different portions of a Ty1 or Ty2 element. The Ty1 SRE seems to be sufficient to ensure the TEC1 and STE12-mediated activation whereas Ty2 SRE can activate the expression of the adjacent genes in the absence of both proteins. Adjacent to the PRE element, there is a region (PAE) with extensive sequence divergence in Ty1 and Ty2 SREs. Swapping experiments between Ty1 and Ty2 sequences show that Ty1 PAE is required for the activation of adjacent gene expression in a TEC1 and STE12-dependent manner. The use of a LexA::TEC1 construct indicates that the chimeric protein has no activation ability suggesting that TEC1 could act in conjunction with another factor.
Collapse
Affiliation(s)
- I Laloux
- Laboratoire de Microbiologie, Université Libre de Bruxelles, Belgium
| | | | | |
Collapse
|
18
|
A library of yeast genomic MCM1 binding sites contains genes involved in cell cycle control, cell wall and membrane structure, and metabolism. Mol Cell Biol 1994. [PMID: 8264602 DOI: 10.1128/mcb.14.1.348] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae MCM1 protein, which is essential for viability, participates in both transcription activation and repression as well as DNA replication. However, neither the full network of genes at which MCM1 acts nor whether MCM1 itself mediates a regulatory response is known. Thus far, sites of MCM1 action have been identified by chance during analysis of particular genes. To identify a more complete set of genes on which MCM1 acts, we isolated a library of yeast genomic sequences to which MCM1 binds and then identified known genes within this library. Fragments of genomic DNA, bound to bacterially expressed MCM1 protein, were collected on a nitrocellulose filter, cloned, and analyzed. This selected library contains a large number of genes. As expected, it is enriched for strong MCM1 binding sites and contains cell-type-specific genes known to require MCM1. In addition, it also includes sequences upstream (or near the 5' end) of a number of identified yeast genes that have not yet been shown to be controlled by MCM1. These include genes whose products are involved in (i) the control of cell cycle progression (CLN3, CLB2, and FAR1), (ii) synthesis and maintenance of cell wall or cell membrane structures (PMA1, PIS1, DIT1,2, and GFA1), (iii) cellular metabolism (PCK1, MET2, and CCP1), and (iv) production of a secreted glycoprotein which is heat shock inducible (HSP150). The previously unidentified MCM1 binding site in the essential PMA1 gene is required for expression of a PMA1:lacZ fusion gene, providing evidence that one site is functionally important. We speculate that MCM1 coordinates decisions about cell cycle progression with changes in cell wall integrity and metabolic activity. The presence in the library of three genes involved in cell cycle progression reinforces the idea that one of the functions of MCM1 is indeed analogous to that of the mammalian serum response factor.
Collapse
|
19
|
Kuo MH, Grayhack E. A library of yeast genomic MCM1 binding sites contains genes involved in cell cycle control, cell wall and membrane structure, and metabolism. Mol Cell Biol 1994; 14:348-59. [PMID: 8264602 PMCID: PMC358384 DOI: 10.1128/mcb.14.1.348-359.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Saccharomyces cerevisiae MCM1 protein, which is essential for viability, participates in both transcription activation and repression as well as DNA replication. However, neither the full network of genes at which MCM1 acts nor whether MCM1 itself mediates a regulatory response is known. Thus far, sites of MCM1 action have been identified by chance during analysis of particular genes. To identify a more complete set of genes on which MCM1 acts, we isolated a library of yeast genomic sequences to which MCM1 binds and then identified known genes within this library. Fragments of genomic DNA, bound to bacterially expressed MCM1 protein, were collected on a nitrocellulose filter, cloned, and analyzed. This selected library contains a large number of genes. As expected, it is enriched for strong MCM1 binding sites and contains cell-type-specific genes known to require MCM1. In addition, it also includes sequences upstream (or near the 5' end) of a number of identified yeast genes that have not yet been shown to be controlled by MCM1. These include genes whose products are involved in (i) the control of cell cycle progression (CLN3, CLB2, and FAR1), (ii) synthesis and maintenance of cell wall or cell membrane structures (PMA1, PIS1, DIT1,2, and GFA1), (iii) cellular metabolism (PCK1, MET2, and CCP1), and (iv) production of a secreted glycoprotein which is heat shock inducible (HSP150). The previously unidentified MCM1 binding site in the essential PMA1 gene is required for expression of a PMA1:lacZ fusion gene, providing evidence that one site is functionally important. We speculate that MCM1 coordinates decisions about cell cycle progression with changes in cell wall integrity and metabolic activity. The presence in the library of three genes involved in cell cycle progression reinforces the idea that one of the functions of MCM1 is indeed analogous to that of the mammalian serum response factor.
Collapse
Affiliation(s)
- M H Kuo
- Department of Biology, University of Rochester, New York 14627
| | | |
Collapse
|
20
|
Abstract
Some Ty1 transposable-element insertion mutations of Saccharomyces cerevisiae activate adjacent-gene expression. These Ty1-activated genes are regulated similarly to certain mating genes. This report shows that the MCM1 protein, which binds to several mating genes, also binds to a transcriptional regulatory sequence in Ty1. The binding of MCM1 to Ty1 correlates with the ability of its binding site to function as a component of the Ty1 transcriptional activator. This correlation supports the idea that MCM1 is important for Ty1-activated gene expression. At mating-gene promoters, MCM1 binds with coactivators or repressors such as STE12, alpha 1, or alpha 2. In contrast, MCM1 binds without these associated DNA-binding proteins at its site in Ty1. This finding suggests that its role in Ty1-mediated transcription is different from that at mating genes.
Collapse
|
21
|
Abstract
Some Ty1 transposable-element insertion mutations of Saccharomyces cerevisiae activate adjacent-gene expression. These Ty1-activated genes are regulated similarly to certain mating genes. This report shows that the MCM1 protein, which binds to several mating genes, also binds to a transcriptional regulatory sequence in Ty1. The binding of MCM1 to Ty1 correlates with the ability of its binding site to function as a component of the Ty1 transcriptional activator. This correlation supports the idea that MCM1 is important for Ty1-activated gene expression. At mating-gene promoters, MCM1 binds with coactivators or repressors such as STE12, alpha 1, or alpha 2. In contrast, MCM1 binds without these associated DNA-binding proteins at its site in Ty1. This finding suggests that its role in Ty1-mediated transcription is different from that at mating genes.
Collapse
Affiliation(s)
- B Errede
- Department of Chemistry, University of North Carolina, Chapel Hill 27599
| |
Collapse
|