1
|
Abstract
There are multiple intrinsic mechanisms for diastolic dysfunction ranging from molecular to structural derangements in ventricular myocardium. The molecular mechanisms regulating the progression from normal diastolic function to severe dysfunction still remain poorly understood. Recent studies suggest a potentially important role of core cardio-enriched transcription factors (TFs) in the control of cardiac diastolic function in health and disease through their ability to regulate the expression of target genes involved in the process of adaptive and maladaptive cardiac remodeling. The current relevant findings on the role of a variety of such TFs (TBX5, GATA-4/6, SRF, MYOCD, NRF2, and PITX2) in cardiac diastolic dysfunction and failure are updated, emphasizing their potential as promising targets for novel treatment strategies. In turn, the new animal models described here will be key tools in determining the underlying molecular mechanisms of disease. Since diastolic dysfunction is regulated by various TFs, which are also involved in cross talk with each other, there is a need for more in-depth research from a biomedical perspective in order to establish efficient therapeutic strategies.
Collapse
|
2
|
Direct Cardiac Reprogramming: Advances in Cardiac Regeneration. BIOMED RESEARCH INTERNATIONAL 2015; 2015:580406. [PMID: 26176012 PMCID: PMC4484844 DOI: 10.1155/2015/580406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/29/2015] [Indexed: 12/23/2022]
Abstract
Heart disease is one of the lead causes of death worldwide. Many forms of heart disease, including myocardial infarction and pressure-loading cardiomyopathies, result in irreversible cardiomyocyte death. Activated fibroblasts respond to cardiac injury by forming scar tissue, but ultimately this response fails to restore cardiac function. Unfortunately, the human heart has little regenerative ability and long-term outcomes following acute coronary events often include chronic and end-stage heart failure. Building upon years of research aimed at restoring functional cardiomyocytes, recent advances have been made in the direct reprogramming of fibroblasts toward a cardiomyocyte cell fate both in vitro and in vivo. Several experiments show functional improvements in mouse models of myocardial infarction following in situ generation of cardiomyocyte-like cells from endogenous fibroblasts. Though many of these studies are in an early stage, this nascent technology holds promise for future applications in regenerative medicine. In this review, we discuss the history, progress, methods, challenges, and future directions of direct cardiac reprogramming.
Collapse
|
3
|
Torrado M, Franco D, Hernández-Torres F, Crespo-Leiro MG, Iglesias-Gil C, Castro-Beiras A, Mikhailov AT. Pitx2c is reactivated in the failing myocardium and stimulates myf5 expression in cultured cardiomyocytes. PLoS One 2014; 9:e90561. [PMID: 24595098 PMCID: PMC3942452 DOI: 10.1371/journal.pone.0090561] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/01/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pitx2 (paired-like homeodomain 2 transcription factor) is crucial for heart development, but its role in heart failure (HF) remains uncertain. The present study lays the groundwork implicating Pitx2 signalling in different modalities of HF. METHODOLOGY/PRINCIPAL FINDINGS A variety of molecular, cell-based, biochemical, and immunochemical assays were used to evaluate: (1) Pitx2c expression in the porcine model of diastolic HF (DHF) and in patients with systolic HF (SHF) due to dilated and ischemic cardiomyopathy, and (2) molecular consequences of Pitx2c expression manipulation in cardiomyocytes in vitro. In pigs, the expression of Pitx2c, physiologically downregulated in the postnatal heart, is significantly re-activated in left ventricular (LV) failing myocardium which, in turn, is associated with increased expression of a restrictive set of Pitx2 target genes. Among these, Myf5 was identified as the top upregulated gene. In vitro, forced expression of Pitx2c in cardiomyocytes, but not in skeletal myoblasts, activates Myf5 in dose-dependent manner. In addition, we demonstrate that the level of Pitx2c is upregulated in the LV-myocardium of SHF patients. CONCLUSIONS/SIGNIFICANCE The results provide previously unrecognized evidence that Pitx2c is similarly reactivated in postnatal/adult heart at distinct HF phenotypes and suggest that Pitx2c is involved, directly or indirectly, in the regulation of Myf5 expression in cardiomyocytes.
Collapse
Affiliation(s)
- Mario Torrado
- Institute of Health Sciences, University of La Coruña, La Coruña, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, Jaen, Spain
| | | | | | | | - Alfonso Castro-Beiras
- Institute of Health Sciences, University of La Coruña, La Coruña, Spain
- University Hospital Center of La Coruña, La Coruña, Spain
| | | |
Collapse
|
4
|
Güth R, Pinch M, Unguez GA. Mechanisms of muscle gene regulation in the electric organ of Sternopygus macrurus. ACTA ACUST UNITED AC 2014; 216:2469-77. [PMID: 23761472 DOI: 10.1242/jeb.082404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Animals perform a remarkable diversity of movements through the coordinated mechanical contraction of skeletal muscle. This capacity for a wide range of movements is due to the presence of muscle cells with a very plastic phenotype that display many different biochemical, physiological and morphological properties. What factors influence the maintenance and plasticity of differentiated muscle fibers is a fundamental question in muscle biology. We have exploited the remarkable potential of skeletal muscle cells of the gymnotiform electric fish Sternopygus macrurus to trans-differentiate into electrocytes, the non-contractile electrogenic cells of the electric organ (EO), to investigate the mechanisms that regulate the skeletal muscle phenotype. In S. macrurus, mature electrocytes possess a phenotype that is intermediate between muscle and non-muscle cells. How some genes coding for muscle-specific proteins are downregulated while others are maintained, and novel genes are upregulated, is an intriguing problem in the control of skeletal muscle and EO phenotype. To date, the intracellular and extracellular factors that generate and maintain distinct patterns of gene expression in muscle and EO have not been defined. Expression studies in S. macrurus have started to shed light on the role that transcriptional and post-transcriptional events play in regulating specific muscle protein systems and the muscle phenotype of the EO. In addition, these findings also represent an important step toward identifying mechanisms that affect the maintenance and plasticity of the muscle cell phenotype for the evolution of highly specialized non-contractile tissues.
Collapse
Affiliation(s)
- Robert Güth
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | |
Collapse
|
5
|
Abstract
Since the seminal discovery of the cell-fate regulator Myod, studies in skeletal myogenesis have inspired the search for cell-fate regulators of similar potential in other tissues and organs. It was perplexing that a similar transcription factor for other tissues was not found; however, it was later discovered that combinations of molecular regulators can divert somatic cell fates to other cell types. With the new era of reprogramming to induce pluripotent cells, the myogenesis paradigm can now be viewed under a different light. Here, we provide a short historical perspective and focus on how the regulation of skeletal myogenesis occurs distinctly in different scenarios and anatomical locations. In addition, some interesting features of this tissue underscore the importance of reconsidering the simple-minded view that a single stem cell population emerges after gastrulation to assure tissuegenesis. Notably, a self-renewing long-term Pax7+ myogenic stem cell population emerges during development only after a first wave of terminal differentiation occurs to establish a tissue anlagen in the mouse. How the future stem cell population is selected in this unusual scenario will be discussed. Recently, a wealth of information has emerged from epigenetic and genome-wide studies in myogenic cells. Although key transcription factors such as Pax3, Pax7, and Myod regulate only a small subset of genes, in some cases their genomic distribution and binding are considerably more promiscuous. This apparent nonspecificity can be reconciled in part by the permissivity of the cell for myogenic commitment, and also by new roles for some of these regulators as pioneer transcription factors acting on chromatin state.
Collapse
Affiliation(s)
- Glenda Comai
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France.
| |
Collapse
|
6
|
Lee EJ, Kamli MR, Pokharel S, Malik A, Tareq KMA, Roouf Bhat A, Park HB, Lee YS, Kim S, Yang B, Young Chung K, Choi I. Expressed sequence tags for bovine muscle satellite cells, myotube formed-cells and adipocyte-like cells. PLoS One 2013; 8:e79780. [PMID: 24224006 PMCID: PMC3818215 DOI: 10.1371/journal.pone.0079780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/25/2013] [Indexed: 12/25/2022] Open
Abstract
Background Muscle satellite cells (MSCs) represent a devoted stem cell population that is responsible for postnatal muscle growth and skeletal muscle regeneration. An important characteristic of MSCs is that they encompass multi potential mesenchymal stem cell activity and are able to differentiate into myocytes and adipocytes. To achieve a global view of the genes differentially expressed in MSCs, myotube formed-cells (MFCs) and adipocyte-like cells (ALCs), we performed large-scale EST sequencing of normalized cDNA libraries developed from bovine MSCs. Results A total of 24,192 clones were assembled into 3,333 clusters, 5,517 singletons and 3,842contigs. Functional annotation of these unigenes revealed that a large portion of the differentially expressed genes are involved in cellular and signaling processes. Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis of three subsets of highly expressed gene lists (MSC233, MFC258, and ALC248) highlighted some common and unique biological processes among MSC, MFC and ALC. Additionally, genes that may be specific to MSC, MFC and ALC are reported here, and the role of dimethylargininedimethylaminohydrolase2 (DDAH2) during myogenesis and hemoglobinsubunitalpha2 (HBA2) during transdifferentiation in C2C12 were assayed as a case study. DDAH2 was up-regulated during myognesis and knockdown of DDAH2 by siRNA significantly decreased myogenin (MYOG) expression corresponding with the slight change in cell morphology. In contrast, HBA2 was up-regulated during ALC formation and resulted in decreased intracellular lipid accumulation and CD36 mRNA expression upon knockdown assay. Conclusion In this study, a large number of EST sequences were generated from the MSC, MFC and ALC. Overall, the collection of ESTs generated in this study provides a starting point for the identification of novel genes involved in MFC and ALC formation, which in turn offers a fundamental resource to enable better understanding of the mechanism of muscle differentiation and transdifferentiation.
Collapse
Affiliation(s)
- Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
| | - Majid Rasool Kamli
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Smritee Pokharel
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Adeel Malik
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - K. M. A. Tareq
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Abdul Roouf Bhat
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hee-Bok Park
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Yong Seok Lee
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan, Korea
| | - SangHoon Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Bohsuk Yang
- Hanwoo Experiment Station, National Institute of Animal Science, RDA, Pyeongchang, Seoul, Republic of Korea
| | - Ki Young Chung
- Hanwoo Experiment Station, National Institute of Animal Science, RDA, Pyeongchang, Seoul, Republic of Korea
- * E-mail: (IC); (KYC)
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Republic of Korea
- * E-mail: (IC); (KYC)
| |
Collapse
|
7
|
Nie YW, Ding XB, Ge XG, Fan HL, Liu ZW, Guo H. Enhanced expression of MYF5 and MYOD1 in fibroblast cells via the forced expression of bos taurus MYF5. Cell Biol Int 2013; 37:972-6. [DOI: 10.1002/cbin.10124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/11/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Yong Wei Nie
- Laboratory of Animal Genetics and Breeding, Department of Animal Science; Tianjin Agricultural University; Tianjin; 300384; P. R. China
| | - Xiang Bin Ding
- Laboratory of Animal Genetics and Breeding, Department of Animal Science; Tianjin Agricultural University; Tianjin; 300384; P. R. China
| | - Xiu Guo Ge
- Laboratory of Animal Genetics and Breeding, Department of Animal Science; Tianjin Agricultural University; Tianjin; 300384; P. R. China
| | - Han Lu Fan
- Laboratory of Animal Genetics and Breeding, Department of Animal Science; Tianjin Agricultural University; Tianjin; 300384; P. R. China
| | - Zhong Wei Liu
- Laboratory of Animal Genetics and Breeding, Department of Animal Science; Tianjin Agricultural University; Tianjin; 300384; P. R. China
| | - Hong Guo
- Laboratory of Animal Genetics and Breeding, Department of Animal Science; Tianjin Agricultural University; Tianjin; 300384; P. R. China
| |
Collapse
|
8
|
Efficient in vitro myogenic reprogramming of human primary mesenchymal stem cells and endothelial cells by Myf5. Biol Cell 2012; 103:531-42. [DOI: 10.1042/bc20100112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Crippa S, Cassano M, Messina G, Galli D, Galvez BG, Curk T, Altomare C, Ronzoni F, Toelen J, Gijsbers R, Debyser Z, Janssens S, Zupan B, Zaza A, Cossu G, Sampaolesi M. miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. ACTA ACUST UNITED AC 2011; 193:1197-212. [PMID: 21708977 PMCID: PMC3216340 DOI: 10.1083/jcb.201011099] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Postnatal heart stem and progenitor cells are a potential therapeutic tool for cardiomyopathies, but little is known about the mechanisms that control cardiac differentiation. Recent work has highlighted an important role for microribonucleic acids (miRNAs) as regulators of cardiac and skeletal myogenesis. In this paper, we isolated cardiac progenitors from neonatal β-sarcoglycan (Sgcb)-null mouse hearts affected by dilated cardiomyopathy. Unexpectedly, Sgcb-null cardiac progenitors spontaneously differentiated into skeletal muscle fibers both in vitro and when transplanted into regenerating muscles or infarcted hearts. Differentiation potential correlated with the absence of expression of a novel miRNA, miR669q, and with down-regulation of miR669a. Other miRNAs are known to promote myogenesis, but only miR669a and miR669q act upstream of myogenic regulatory factors to prevent myogenesis by directly targeting the MyoD 3' untranslated region. This finding reveals an added level of complexity in the mechanism of the fate choice of mesoderm progenitors and suggests that using endogenous cardiac stem cells therapeutically will require specially tailored procedures for certain genetic diseases.
Collapse
Affiliation(s)
- Stefania Crippa
- Translational Cardiomyology Laboratory, Interdepartmental Stem Cell Institute, Catholic University of Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Delfini MC, Duprez D. Ectopic Myf5 or MyoD prevents the neuronal differentiation program in addition to inducing skeletal muscle differentiation, in the chick neural tube. Development 2004; 131:713-23. [PMID: 14724123 DOI: 10.1242/dev.00967] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Forced expression of the bHLH myogenic factors, Myf5 and MyoD, in various mammalian cell lines induces the full program of myogenic differentiation. However, this property has not been extensively explored in vivo. We have taken advantage of the chick model to investigate the effect of electroporation of the mouse Myf5 and MyoD genes in the embryonic neural tube. We found that misexpression of either mouse Myf5 or MyoD in the chick neural tube leads to ectopic skeletal muscle differentiation, assayed by the expression of the myosin heavy chains in the neural tube and neural crest derivatives. We also showed that the endogenous neuronal differentiation program is inhibited under the influence of either ectopic mouse Myf5 or MyoD. We used this new system to analyse, in vivo, the transcriptional regulation between the myogenic factors. We found that MyoD and Myogenin expression can be activated by ectopic mouse Myf5 or MyoD, while Myf5 expression cannot be activated either by mouse MyoD or by itself. We also analysed the transcriptional regulation between the myogenic factors and the different genes involved in myogenesis, such as Mef2c, Pax3, Paraxis, Six1, Mox1, Mox2 and FgfR4. We established the existence of an unexpected regulatory loop between MyoD and FgfR4. The consequences for myogenesis are discussed.
Collapse
Affiliation(s)
- Marie-Claire Delfini
- Biologie du Développement, UMR 7622, Université P. et M. Curie, 9 Quai Saint-Bernard, Bât. C, 6(e)E, Case 24, 75252 Paris Cedex 05, France.
| | | |
Collapse
|
11
|
Ali MM, Farooqui FA, Sohal GS. Ventrally emigrating neural tube cells contribute to the normal development of heart and great vessels. Vascul Pharmacol 2003; 40:133-40. [PMID: 12646402 DOI: 10.1016/s1537-1891(03)00003-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the contributions of a recently described population of neural tube cells, which participates in the development of a variety of tissues, to the development of the heart and great vessels. These cells, termed as the ventrally emigrating neural tube (VENT) cells, originate in the ventral part of the hindbrain neural tube, emigrate at the site of attachment of the cranial nerves, and populate their respective target tissues. VENT cells of the caudal hindbrain neural tube at the level of the vagus nerve, which were previously reported to migrate into the heart, were tagged with replication-deficient retroviruses containing the LacZ gene in chick embryos, after the emigration of neural crest from this region. In older embryos, VENT cells were detected in a variety of locations including the ventricles, atria, their septa, aorticopulmonary septum, and great vessels of the heart. Immunostaining with a specific marker revealed that VENT cells differentiated into smooth muscle cells of great vessels. Differentiation of VENT cells into cardiac muscle cells was reported previously. Extirpation of the VENT cells prior to their departure from the neural tube resulted in some common cardiovascular malformations: thin-walled ventricles and atria, ventricular and atrial septal defects, persistent truncus arteriosus, and stenosis of the great vessels. These results suggest that a novel population of neural tube cells also contributes to the normal development of the heart and great vessels. Thus, the heart and great vessels develop from three sources of cells: mesoderm, neural crest, and VENT cells.
Collapse
Affiliation(s)
- M M Ali
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta 30912, USA
| | | | | |
Collapse
|
12
|
Yang J, Mei W, Otto A, Xiao L, Tao Q, Geng X, Rupp RAW, Ding X. Repression through a distal TCF-3 binding site restricts Xenopus myf-5 expression in gastrula mesoderm. Mech Dev 2002; 115:79-89. [PMID: 12049769 DOI: 10.1016/s0925-4773(02)00121-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of skeletal muscle in the vertebrate embryo is controlled by a transcriptional cascade that includes the four myogenic regulatory factors Myf-5, MyoD, Myogenin, and MRF4. The dynamic expression pattern of myf-5 during myogenesis is thought to be consistent with its role during early determination of the myogenic lineage. To study the factors and mechanisms, which regulate myf-5 transcription in Xenopus, we isolated a genomic DNA clone containing 4858 bp of Xmyf-5 5' flanking region. Using a transgenic reporter assay, we show here that this genomic contig is sufficient to recapitulate the dynamic stage- and tissue-specific expression pattern of Xmyf-5 from the gastrula to tail bud stages. For the primary induction of myf-5 transcription, we identify three main regulatory elements, which are responsible for (i) activation in dorsal mesoderm, (ii) activation in ventral mesoderm, and (iii) repression in midline mesoderm, respectively. Their combined activities define the two-winged expression domain of myf-5 in the preinvoluted mesoderm. Repression in midline mesoderm is mediated by a single TCF binding site located in the 5' end of the -4.8 kbp sequence, which binds XTcf-3 protein in vitro. Endogenous Wnt signaling in the lateral mesoderm is required to overcome the long-range repression through this distal TCF site, and to stimulate myf-5 transcription independently from it. The element for ventral mesoderm activation responds to Activin. Together, these results describe a regulatory mosaic of repression and activation, which defines the myf-5 expression profile in the frog gastrula.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, PR China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Okabe S. Gene expression in transgenic mice using neural promoters. CURRENT PROTOCOLS IN NEUROSCIENCE 2001; Chapter 3:Unit 3.16. [PMID: 18428465 DOI: 10.1002/0471142301.ns0316s07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In the first part of this unit, major considerations for the analysis of neural promoters in transgenic mice are discussed. Detailed protocols on the production of transgenic mice are not described in this unit. Advantages and disadvantages of the transgenic approach for analysis of neural cis-acting elements are also presented. The concept of transient transgenic mice is then introduced; this method compensates for some disadvantages associated with the conventional transgenic approach. Finally, major factors influencing the efficiency of transgenic mouse production are discussed. The second part of the unit presents detailed information on a variety of neural-specific cis-acting elements that have been characterized by a transgenic approach. This information is useful both as a guide for carrying out the analysis of cis-acting elements and as a reference for selection of promoter/enhancer elements for designing an appropriate transgenic construct.
Collapse
Affiliation(s)
- S Okabe
- Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Delfini MC, Hirsinger E, Pourquié O, Duprez D. Delta 1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development 2000; 127:5213-24. [PMID: 11060246 DOI: 10.1242/dev.127.23.5213] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The myogenic basic helix-loop-helix (bHLH) transcription factors, Myf5, MyoD, myogenin and MRF4, are unique in their ability to direct a program of specific gene transcription leading to skeletal muscle phenotype. The observation that Myf5 and MyoD can force myogenic conversion in non-muscle cells in vitro does not imply that they are equivalent. In this paper, we show that Myf5 transcripts are detected before those of MyoD during chick limb development. The Myf5 expression domain resembles that of Pax3 and is larger than that of MyoD. Moreover, Myf5 and Pax3 expression is correlated with myoblast proliferation, while MyoD is detected in post-mitotic myoblasts. These data indicate that Myf5 and MyoD are involved in different steps during chick limb bud myogenesis, Myf5 acting upstream of MyoD. The progression of myoblasts through the differentiation steps must be carefully controlled to ensure myogenesis at the right place and time during wing development. Because Notch signalling is known to prevent differentiation in different systems and species, we sought to determine whether these molecules regulate the steps occurring during chick limb myogenesis. Notch1 transcripts are associated with immature myoblasts, while cells expressing the ligands Delta1 and Serrate2 are more advanced in myogenesis. Misexpression of Delta1 using a replication-competent retrovirus activates the Notch pathway. After activation of this pathway, myoblasts still express Myf5 and Pax3 but have downregulated MyoD, resulting in inhibition of terminal muscle differentiation. We conclude that activation of Notch signalling during chick limb myogenesis prevents Myf5-expressing myoblasts from progressing to the MyoD-expressing stage.
Collapse
Affiliation(s)
- M C Delfini
- Institut d'Embryologie Cellulaire et Moléculaire du CNRS (FRE2160) et du Collège de France, 94736 Nogent sur Marne Cedex, France
| | | | | | | |
Collapse
|
15
|
Abstract
The muscle-specific helix-loop-helix (HLH) transcription factors myoD, myogenin, MRF4, and myf-5 are called the muscle regulatory factor family (MRF). Levels of MRFs are strongly regulated by muscle electrical activity and are thought to control downstream genes that are important for muscle phenotype such as the acetylcholine receptor (AChR) and possibly genes connected to muscle metabolic properties. The MRFs interact with ubiquitously expressed HLH factors such as E-proteins and Id-proteins to form heterodimers. In the present paper, we report the effects of paralysis obtained by nerve impulse block with tetrodotoxin (TTX) and denervation on messenger ribonucleic acid (mRNA) levels for Id-1, E47, myogenin, AChR alpha-subunit and beta-actin. Both Id-1 and E47 showed twofold increases in absence of nerve evoked electrical activity. These changes in the ubiquitously expressed HLH factors might have important functional implications for downstream gene expression, but in comparison, myogenin mRNA was increased 10-fold. We conclude that myogenin and the other muscle-specific MRFs remain the transcription factors with the strongest activity dependence that has so far been described in muscle.
Collapse
Affiliation(s)
- H Carlsen
- Department of Neurophysiology, University of Oslo, Norway
| | | |
Collapse
|
16
|
Ali AA, Ali MM, Dai D, Sohal GS. Ventrally emigrating neural tube cells differentiate into vascular smooth muscle cells. GENERAL PHARMACOLOGY 1999; 33:401-5. [PMID: 10553881 DOI: 10.1016/s0306-3623(99)00034-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A multipotential cell population originating in the ventral part of the hindbrain neural tube, the ventrally emigrating neural tube cells (VENT cells), has recently been shown to migrate into the craniofacial mesenchyme. Because vascular smooth muscle cells develop from this mesenchyme, we sought to determine if the VENT cells contributed to their differentiation. VENT cells were tagged with replication-deficient retroviral vector with LacZ by microinjection into the lumen of the rostral hindbrain of chick embryos on day 2. Embryos were processed for the detection of LacZ positive cells on day 7. LacZ-positive cells were present in the wall of craniofacial arteries and veins. Immunostaining with the smooth muscle alpha-actin confirmed the labeled cells to be smooth muscle cells. It is concluded that some vascular smooth muscle cells differentiate from neural tube cells. the developmental and functional significance of which remains to be established.
Collapse
Affiliation(s)
- A A Ali
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta 30912, USA
| | | | | | | |
Collapse
|
17
|
Sohal GS, Ali MM, Ali AA, Dai D. Ventrally emigrating neural tube cells differentiate into heart muscle. Biochem Biophys Res Commun 1999; 254:601-4. [PMID: 9920785 DOI: 10.1006/bbrc.1998.0109] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A population of ventrally emigrating neural tube cells has been shown to migrate along the vagus nerve and contribute to the development of the gastrointestinal tract. Since the vagus also goes to the heart, we sought to determine if these cells migrated into the heart. Neural tube cells were tagged with replication-deficient retroviral vectors containing the LacZ gene, to permanently label their progeny. The virus was microinjected into the lumen of the caudal hindbrain of chick embryos on day 2. Embryos were later processed for the detection of LacZ positive cells. Labeled cells were initially confined to the neural tube. Later, they migrated in association with the vagus nerve into the heart, where they were located in the myocardium. Labeled cells were identified as cardiac muscle cells of non-neural crest origin, with specific markers. It is concluded that some cardiac muscle cells differentiate from the neural tube cells.
Collapse
Affiliation(s)
- G S Sohal
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, 30912, USA
| | | | | | | |
Collapse
|
18
|
Sohal GS, Ali AA, Ali MM. Ventral neural tube cells differentiate into craniofacial skeletal muscles. Biochem Biophys Res Commun 1998; 252:675-8. [PMID: 9837765 DOI: 10.1006/bbrc.1998.9715] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Craniofacial skeletal muscle cells are believed to develop from mesoderm. A population of ventral neural tube cells has recently been shown to migrate out of the hindbrain and populate the craniofacial mesenchyme in chick embryos. Since skeletal muscle cells develop from this mesenchyme, we sought to determine if the emigrated neural tube cells contributed to their development. Ventral neural tube cells in the hindbrain of chick embryos were labeled on embryonic day 2 with replication-deficient retroviral vectors containing the gene LacZ, which provides a permanent marker for the progeny. On day 7 embryos were processed for the detection of labeled cells. Labeled cells were seen in craniofacial skeletal muscles. By using muscle-specific markers, the labeled cells were confirmed to be skeletal muscle cells. Thus, some muscle cells are derived from the ventral neural tube cells of the hindbrain.
Collapse
Affiliation(s)
- G S Sohal
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
19
|
Steinbach OC, Ulshöfer A, Authaler A, Rupp RA. Temporal restriction of MyoD induction and autocatalysis during Xenopus mesoderm formation. Dev Biol 1998; 202:280-92. [PMID: 9769179 DOI: 10.1006/dbio.1998.8993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Xenopus, the activation of the myogenic determination factors MyoD and Myf-5 in the muscle-forming region of the embryo occurs in response to mesoderm-inducing factors (MIFs). Different members of the FGF, TGF-beta, and Wnt protein families have been implicated in this process, but how MIFs induce the myogenic regulators is not known. For MyoD, the induction process may serve to locally stabilize a transient burst of ubiquitous transcription at the midblastula transition, possibly by triggering MyoD's autocatalytic loop. Here we have sought to distinguish separate activating functions during MyoD induction by analyzing when MyoD responds to different MIF signaling or to MyoD autoactivation. We show that MyoD induction depends on the developmental age of the induced cells, rather than on the type or time point of inducer application. At the permissive time, de novo MyoD induction by Activin requires less than 90 min, arguing for an immediate response, rather than a series of inductive events. MyoD autoactivation is direct, but subject to the same temporal restriction as MyoD induction by MIF signaling. Further evidence implicating MyoD autocatalysis as an essential component of the induction process comes from the observation that both autocatalysis and induction of MyoD are selectively repressed by a dominant-negative MyoD mutant. In summary, our observations let us conclude that MyoD's expression domain in the embryo results from an interplay of timed changes in cellular competence, pleiotropic signaling pathways, and autocatalysis.
Collapse
Affiliation(s)
- O C Steinbach
- Friedrich Miescher Laboratorium, Max Planck-Gesellschaft, Spemannstrasse 37-39, Tübingen, 72076, Germany
| | | | | | | |
Collapse
|
20
|
Barth JL, Morris J, Ivarie R. An Oct-like binding factor regulates Myf-5 expression in primary avian cells. Exp Cell Res 1998; 238:430-8. [PMID: 9473352 DOI: 10.1006/excr.1997.3859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myogenic regulatory factors (MRFs) are hierarchical regulators of skeletal myogenesis. Many MRF promoters have been well characterized with respect to flanking sequences that control their expression. Yet the promoter elements that regulate Myf-5, the first MRF expressed during mammalian embryogenesis, are still largely unknown. Comparison of Myf-5 5' flanking regions from bovine, mouse, and chicken genes revealed three evolutionarily conserved elements proximal to the transcription start site: the TATA box, an octamer motif, termed OLS, and a 6-bp C-rich element. Mobility shift assays and DNase I footprinting analysis demonstrated that a nuclear factor(s) present in both bovine and avian muscle and nonmuscle tissues specifically recognized OLS. Furthermore, this binding activity reacted with a polyclonal Oct-1 antibody. In avian primary myoblast and fibroblast cultures, CAT reporter constructs under regulation of the proximal Myf-5 5' flanking sequence were expressed preferentially in myoblasts with CAT levels approximately 12-fold higher than in fibroblasts. The TATA box and octamer motif were important for expression in both myoblasts and fibroblasts: loss of the TATA box abolished activity, and disruption of the OLS resulted in 50-75% loss of promoter activity.
Collapse
Affiliation(s)
- J L Barth
- Department of Genetics, University of Georgia, Athens, Georgia 30602-7223, USA
| | | | | |
Collapse
|
21
|
Abstract
Several aspects of muscle development appear to be conserved between Drosophila and vertebrate organisms. Among these is the conservation of genes that are critical to the myogenic process, including transcription factors such as nautilus. From a simplistic point of view, Drosophila therefore seems to be a useful organism for the identification of molecules that are essential for myogenesis in both Drosophila and in other species. nautilus, the focal point of this review, appears to be involved in the specification and/or differentiation of a specific subset of muscle founder cells. As with several of its vertebrate and invertebrate counterparts, it is capable of inducing a myogenic program of differentiation reminiscent of that of somatic muscle precursors when expressed in other cell types. We therefore favor the model that nautilus implements the specific differentiation program of these founder cells, rather than their specification. Further analyses are necessary to establish the validity of this working hypothesis. Studies have revealed a critical role for Pax-3 in specifying a particular subset of myogenic cells, the progenitors of the limb muscles. These myogenic cells migrate from the somite into the periphery of the organism, where they differentiate. These myoblasts do not express MyoD or myf5 until they have arrived at their destination and begin the morphologic process of myogenesis (Bober et al., 1994; Goulding et al., 1994; Williams and Ordahl, 1994). They then begin to express these genes, possibly to put the myogenic plan into action. Thus, as with nautilus, MyoD and myf5 may be necessary for the manifestation of a muscle-specific commitment that has already occurred. By comparison with vertebrates, it was anticipated that the single Drosophila gene would serve the purpose of all four vertebrate genes. However, its restricted pattern of expression and apparent loss-of-function phenotype are inconsistent with this expectation. It remains to be determined whether nautilus functions in a manner similar to just one of the vertebrate genes. Since the myf5- and MyoD-expressing myoblasts are proliferative, the loss of one cell type appears to be compensated by proliferation of the remaining cell type. This apparent plasticity may obscure differences in mutant phenotype resulting from the loss of particular cells that express each of these genes. In Drosophila, by comparison, nautilus-expressing cells committed to the myogenic program undergo few, if any, additional cell divisions, and thus no other cells are available to compensate for the loss of nautilus. Therefore, the apparent differences between the Drosophila nautilus gene and its vertebrate counterparts may reflect, at least in part, differences in the developmental systems rather than differences in the function of the genes themselves.
Collapse
Affiliation(s)
- S M Abmayr
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802, USA
| | | |
Collapse
|
22
|
Affiliation(s)
- A Faerman
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | | |
Collapse
|
23
|
Block NE, Zhu Z, Kachinsky AM, Dominov JA, Miller JB. Acceleration of somitic myogenesis in embryos of myogenin promoter-MRF4 transgenic mice. Dev Dyn 1996; 207:382-94. [PMID: 8950513 DOI: 10.1002/(sici)1097-0177(199612)207:4<382::aid-aja3>3.0.co;2-d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The four muscle regulatory factors (MRFs) of the MyoD family are expressed in distinct temporal and spatial patterns in developing somites. To examine MRF function and regulation in somites, we generated myogenin promoter-MRF4 transgenic mice in which MRF4 was expressed in rostral somites about a half day earlier than normal. We found that the transgene, which was expressed at about the same level as endogenous MRFs, did not noticeably alter developing or adult mice, whereas the rostral somites of transgenic embryos showed accelerated myocyte formation, as well as precocious expression of the endogenous MRF4 gene. In an individual transgenic somite, MRF4 was expressed in both presumptive myotomal (mesenchymal) and dermatomal (epithelial) cells. Transgenic dermatomal cells also contained myogenin, which is expressed early in myogenesis, but did not contain myosin, which is expressed late in myogenesis. In transgenic myotomal cells, in contrast, precocious expression of MRF4 accelerated late events in myogenesis, including myosin expression and striated myofibril formation. MRF function, therefore, appears to be differentially regulated in dermatomal and myotomal cells.
Collapse
Affiliation(s)
- N E Block
- Neuromuscular Laboratory, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | | | | | |
Collapse
|
24
|
Becker KD, Gottshall KR, Chien KR. Strategies for studying cardiovascular phenotypes in genetically manipulated mice. Hypertension 1996; 27:495-501. [PMID: 8613192 DOI: 10.1161/01.hyp.27.3.495] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Unraveling the pathogenesis of complex cardiovascular diseases, such as hypertension, requires the development of in vivo animal model systems. Although large-animal models have long served as the gold standard, recent advances in transgenic and gene-targeting approaches, mouse genetics, and microsurgical technology are initiating a revolution that has led to the unexpected coupling of in vivo molecular physiology with genetically engineered mice. This article discusses the design of strategies to study complex cardiovascular phenotypes in genetically modified mice, including both transgenic and gene-targeted animals. At this time, a number of strategies are used to address specific molecular or physiological questions, and examples are briefly highlighted. In addition, a number of potential problems in the generation and use of transgenic mice in the study of cardiovascular biology are presented.
Collapse
Affiliation(s)
- K D Becker
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | | | | |
Collapse
|
25
|
Abstract
To explore the compatibility of skeletal and cardiac programs of gene expression, transgenic mice that express a skeletal muscle myogenic regulator, bmyf5, in the heart were analyzed. These mice develop a severe cardiomyopathy and exhibit a significantly shorter life span than do their nontransgenic littermates. The transgene was expressed from day 7.5 post coitum forward, resulting in activation of skeletal muscle genes not normally seen in the myocardium. Cardiac pathology was not apparent at midgestation but was evident by day 2 of postnatal life, and by 42 days, hearts exhibited multifocal interstitial inflammation, fibrosis, cellular hypertrophy, and occasional myocyte degeneration. All four chambers of the heart were enlarged to varying degrees, with the atria demonstrating the most significant hypertrophy (>100% in 42-day-old mice). The transgene and several skeletal muscle-specific genes were expressed only in patchy areas of the heart in heterozygous mice. However, molecular markers of hypertrophy (such as alpha-skeletal actin and atrial myosin light chain- 1) were expressed with a wider distribution, suggesting that their induction was secondary to the expression of the transgene, In older (28-week-old) mice, lung weights were also significantly increased, consistent with congestive heart failure. The life span of bmyf5 mice was significantly shortened, with an average life span of 109 days, compared with at least a twofold longer life expectancy for nontransgenic littermates. Expression of the transgene was associated with an increase in Ca2+-stimulated myofibrillar ATPase in myofibrils obtained from the left ventricles of 42-day-old bmyf5 mice. Myocardial bmyf5 expression therefore induces a program of skeletal muscle gene expression that results in progressive cardiomyopathy that may be due to incompatibility of heart and skeletal muscle structural proteins.
Collapse
Affiliation(s)
- J G Edwards
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | |
Collapse
|
26
|
Tajbakhsh S, Buckingham ME. Lineage restriction of the myogenic conversion factor myf-5 in the brain. Development 1995; 121:4077-83. [PMID: 8575308 DOI: 10.1242/dev.121.12.4077] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
myf-5 is one of four transcription factors belonging to the MyoD family that play key roles in skeletal muscle determination and differentiation. We have shown earlier by gene targeting nlacZ into the murine myf-5 locus that myf-5 expression in the developing mouse embryo is closely associated with the restriction of precursor muscle cells to the myogenic lineage. We now identify unexpected expression of this myogenic factor in subdomains of the brain. myf-5 expression begins to be detected at embryonic day 8 (E8) in the mesencephalon and coincides with the appearance of the first differentiated neurons; expression in the secondary prosencephalon initiates at E10 and is confined to the ventral domain of prosomere p4, later becoming restricted to the posterior hypothalamus. This expression is observed throughout embryogenesis. No other member of the MyoD family is detected in these regions, consistent with the lack of myogenic conversion. Furthermore, embryonic stem cells expressing the myf-5/nlacZ allele yield both skeletal muscle and neuronal cells when differentiated in vitro. These observations raise questions about the role of myf-5 in neurogenesis as well as myogenesis, and introduce a new lineage marker for the developing brain.
Collapse
Affiliation(s)
- S Tajbakhsh
- Department of Molecular Biology, CNRS URA1947, Pasteur Institute, Paris, France
| | | |
Collapse
|
27
|
Gardin JM, Siri FM, Kitsis RN, Edwards JG, Leinwand LA. Echocardiographic assessment of left ventricular mass and systolic function in mice. Circ Res 1995; 76:907-14. [PMID: 7729009 DOI: 10.1161/01.res.76.5.907] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The increasing use of transgenic mouse models for investigating the mechanisms of cardiac growth and function has made it important to develop noninvasive methods for assessing murine cardiac anatomy, size, and function. At present, murine cardiac mass can be determined only at necropsy. Left ventricular (LV) function can be assessed by use of various catheterization techniques, but these approaches are usually terminal procedures and provide no information about chamber anatomy and dimensions. Although transthoracic echocardiography has been used to study the LVs of rats and larger animals, the considerably smaller LV masses and somewhat faster heart rates of mice pose significant challenges to obtaining good-quality echocardiograms. In this study we tested the hypothesis that transthoracic echocardiography can image the murine LV as well as provide assessments of LV mass and function. Our results in a series of 33 mice, including normal, transgenic, and aortic-banded subgroups, demonstrate the capability of transthoracic two-dimensionally directed M-mode echocardiography in mice to (1) obtain good-quality images, (2) produce estimates of LV mass having good correlations with directly determined LV mass in normal mice, (3) detect LV hypertrophy noninvasively in different experimental models, and (4) identify impaired LV systolic function. Thus, echocardiography appears to be a promising approach for noninvasively assessing LV mass and function in mice.
Collapse
Affiliation(s)
- J M Gardin
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | |
Collapse
|
28
|
Lyons GE, Micales BK, Herr MJ, Horrigan SK, Namciu S, Shardy D, Stavnezer E. Protooncogene c-ski is expressed in both proliferating and postmitotic neuronal populations. Dev Dyn 1994; 201:354-65. [PMID: 7894074 DOI: 10.1002/aja.1002010407] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cellular protooncogene, c-ski, is expressed in all cells of the developing mouse at low but detectable levels. In situ hybridization and Northern blot analyses reveal that some cells and tissues express this gene at higher levels at certain stages of embryonic and postnatal development. RT-PCR results indicate that alternative splicing of exon 2, known to occur in chickens (Sutrave and Hughes [1989] Mol. Cell. Biol. 9:4046-4051; Grimes et al. [1993] Oncogene 8:2863-2868) does not occur in adult mouse tissues. In the embryo, neural crest cells express the c-ski gene during migration at 8.5 to 9.5 days post coitum (p.c.). Neural crest derivatives such as dorsal root ganglia and melanocytes stain positively with an antibody to the ski protein. At 9 days p.c., the entire neural tube has high levels of c-ski gene expression. By 12-13.5 days only the ependymal layer expresses c-ski above background levels. At 14-16 days p.c., c-ski mRNAs are detected at high levels in the cortical layers of the brain and in the olfactory bulb. In 2 week and 6 week postnatal brains, c-ski gene transcripts are also detected in the hippocampus and in the granule cell layer of the cerebellum. The allantois and placenta exhibit high levels of c-ski mRNAs. Neonatal lung tissue increases c-ski gene expression approximately two-fold compared to prenatal levels. These results suggest that ski plays a role in both the proliferation and differentiation of specific cell populations of the central and peripheral nervous systems and of other tissues.
Collapse
Affiliation(s)
- G E Lyons
- Department of Anatomy, University of Wisconsin Medical School, Madison 53706
| | | | | | | | | | | | | |
Collapse
|
29
|
Lassar AB, Skapek SX, Novitch B. Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr Opin Cell Biol 1994; 6:788-94. [PMID: 7880524 DOI: 10.1016/0955-0674(94)90046-9] [Citation(s) in RCA: 280] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Skeletal muscle differentiation entails the coupling of muscle-specific gene expression to terminal withdrawal from the cell cycle. Several models have recently been proposed which attempt to explain how regulated expression and function of myogenic transcription factors ensures that proliferation and differentiation of skeletal muscle cells are mutually exclusive processes.
Collapse
Affiliation(s)
- A B Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
30
|
Lassar A, Münsterberg A. Wiring diagrams: regulatory circuits and the control of skeletal myogenesis. Curr Opin Cell Biol 1994; 6:432-42. [PMID: 7917336 DOI: 10.1016/0955-0674(94)90037-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During the past year, targeted mutagenesis in mice has begun to clarify the roles of individual members of the MyoD family of myogenic regulators in vertebrate development. In this review, we discuss these studies both in the context of tissue interactions necessary to induce skeletal muscle precursor cells during embryogenesis and the molecular circuitry that regulates the terminal differentiation of these cells.
Collapse
Affiliation(s)
- A Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|