1
|
Dumay-Odelot H, Durrieu-Gaillard S, El Ayoubi L, Parrot C, Teichmann M. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription. Transcription 2015; 5:e27526. [PMID: 25764111 DOI: 10.4161/trns.27526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- a INSERM U869; University of Bordeaux; Institut Européen de Chimie et Biologie (IECB); 33607 Pessac, France
| | | | | | | | | |
Collapse
|
2
|
Identification and characterization of buffalo 7SK and U6 pol III promoters and application for expression of short hairpin RNAs. Int J Mol Sci 2014; 15:2596-607. [PMID: 24534805 PMCID: PMC3958870 DOI: 10.3390/ijms15022596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 01/28/2014] [Accepted: 02/11/2014] [Indexed: 12/02/2022] Open
Abstract
RNA polymerase III (pol III) type 3 promoters, such as 7SK and U6, are routinely used to induce short hairpin RNAs (shRNAs) to knockdown gene expression by RNA interference (RNAi). To extend the application of RNAi to studies of buffalo, an shRNAs expressing system using the buffalo pol III promoters was developed. Buffalo 7SK promoter (bu7SK) and U6 promoter (buU6) sequences upstream of the full-length 7SK and U6 small nuclear RNA sequence in the buffalo genome were identified and characterized, respectively. To determine the functionality of these promoters in constructs driving shRNA expression, anti-EGFP shRNAs (shEGFP) cassettes under the direction of bu7SK and buU6 were constructed. We further compared the EGFP knockdown efficiency of constructs using bu7SK and buU6 with that of promoters of human and bovine origins in BFF cells and mouse PT67 cells by flow cytometry and quantitative real-time PCR assays. We found that the bu7SK and buU6 promoters induced the greatest level of suppression in homologous and heterologous cells relative to promoters derived from other species. Taken together, functional bu7SK and buU6 promoters were identified and characterized, thus laying the groundwork for future development of RNAi therapeutics and gene modification in buffalo species.
Collapse
|
3
|
Halbig KM, Lekven AC, Kunkel GR. The transcriptional activator ZNF143 is essential for normal development in zebrafish. BMC Mol Biol 2012; 13:3. [PMID: 22268977 PMCID: PMC3282657 DOI: 10.1186/1471-2199-13-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/23/2012] [Indexed: 12/25/2022] Open
Abstract
Background ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing Danio rerio (zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA. Results The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (gata1), cardiac myosin light chain 2 (cmlc2) and paired box gene 2a (pax2a). The zebrafish pax2a gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein. Conclusions Normal development of zebrafish embryos requires ZNF143. Furthermore, the pax2a gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development.
Collapse
Affiliation(s)
- Kari M Halbig
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | |
Collapse
|
4
|
Bannister SC, Wise TG, Cahill DM, Doran TJ. Comparison of chicken 7SK and U6 RNA polymerase III promoters for short hairpin RNA expression. BMC Biotechnol 2007; 7:79. [PMID: 18021456 PMCID: PMC2235858 DOI: 10.1186/1472-6750-7-79] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 11/19/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA polymerase III (pol III) type 3 promoters such as U6 or 7SK are commonly used to express short-hairpin RNA (shRNA) effectors for RNA interference (RNAi). To extend the use of RNAi for studies of development using the chicken as a model system, we have developed a system for expressing shRNAs using the chicken 7SK (ch7SK) promoter. RESULTS We identified and characterised the ch7SK promoter sequence upstream of the full-length 7SK small nuclear RNA (snRNA) sequence in the chicken genome and used this to construct vectors to express shRNAs targeting enhanced green fluorescent protein (EGFP). We transfected chicken DF-1 cells with these constructs and found that anti-EGFP-shRNAs (shEGFP) expressed from the ch7SK promoter could induce efficient knockdown of EGFP expression. We further compared the efficiency of ch7SK-directed knockdown to that of chicken U6 (cU6) promoters and found that the efficiency of the ch7SK promoter was not greater than, but comparable to the efficiency of cU6 promoters. CONCLUSION In this study we have demonstrated that the ch7SK promoter can express shRNAs capable of mediating efficient RNAi in a chicken cell line. However, our finding that RNAi driven by the ch7SK promoter is not more efficient than cU6 promoters contrasts previous comparisons of mammalian U6 and 7SK promoters. Since the ch7SK promoter is the first non-mammalian vertebrate 7SK promoter to be characterised, this finding may be helpful in understanding the divergence of pol III promoter activities between mammalian and non-mammalian vertebrates. This aside, our results clearly indicate that the ch7SK promoter is an efficient alternative to U6-based shRNA expression systems for inducing efficient RNAi activity in chicken cells.
Collapse
Affiliation(s)
- Stephanie C Bannister
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong 3220, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong 3217, Australia
| | - Terry G Wise
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong 3220, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong 3217, Australia
| | - Timothy J Doran
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong 3220, Australia
| |
Collapse
|
5
|
Braun SE, Shi X, Qiu G, Wong F, Joshi PJ, Prasad VR, Johnson RP. Instability of retroviral vectors with HIV-1-specific RT aptamers due to cryptic splice sites in the U6 promoter. AIDS Res Ther 2007; 4:24. [PMID: 17941994 PMCID: PMC2211285 DOI: 10.1186/1742-6405-4-24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 10/17/2007] [Indexed: 11/10/2022] Open
Abstract
Background Internal polymerase III promoters in retroviral vectors have been used extensively to express short RNA sequences, such as ribozymes, RNA aptamers or short interfering RNA inhibitors, in various positions and orientations. However, the stability of these promoters in the reverse orientation has not been rigorously evaluated. Results A series of retroviral vectors was generated carrying the U6+1 promoter with 3 different HIV-1 RT-specific RNA aptamers and one control aptamer, all in the reverse orientation. After shuttle packaging, the CD4+ cell line CEMx174 was transduced with each vector, selected for expression of GFP, and challenged with HIV-1. We did not observe inhibition of HIV-1 replication in these transduced populations. PCR amplification of the U6+1 promoter-RNA aptamer inhibitor cassette from transduced CEMx174 cells and RT-PCR amplification from transfected Phoenix (amphotropic) packaging cells showed two distinct products: a full-length product of the expected size as well as a truncated product. The sequence of the full-length PCR product was identical to the predicted amplicon sequence. However, sequencing of the truncated product revealed a 139 bp deletion in the U6 promoter. This deletion decreased transcriptional activity of the U6 promoter. Analysis of the deleted sequences from the U6 promoter in the antisense direction indicated consensus splice donor, splice acceptor and branch point sequences. Conclusion The existence of a cryptic splice site in the U6 promoter when expressed in a retroviral vector in the reverse orientation generates deletions during packaging and may limit the utility of this promoter for expression of small RNA inhibitors.
Collapse
|
6
|
Kappel S, Matthess Y, Zimmer B, Kaufmann M, Strebhardt K. Tumor inhibition by genomically integrated inducible RNAi-cassettes. Nucleic Acids Res 2006; 34:4527-36. [PMID: 16945954 PMCID: PMC1636372 DOI: 10.1093/nar/gkl628] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 08/10/2006] [Indexed: 01/03/2023] Open
Abstract
RNA interference (RNAi) has emerged as a powerful tool to induce loss-of-function phenotypes by post-transcriptional silencing of gene expression. In this study we wondered whether inducible RNAi-cassettes integrated into cellular DNA possess the power to trigger neoplastic growth. For this purpose inducible RNAi vectors containing tetracycline (Tet)-responsive derivatives of the H1 promoter for the conditional expression of short hairpin RNA (shRNA) were used to target human polo-like kinase 1 (Plk1), which is overexpressed in a broad spectrum of human tumors. In the absence of doxycycline (Dox) HeLa clones expressing TetR, that carry the RNAi-cassette stably integrated, exhibited no significant alteration in Plk1 expression levels. In contrast, exposure to Dox led to marked downregulation of Plk1 mRNA to 3% and Plk1 protein to 14% in cell culture compared to mismatch shRNA/Plk1-expressing cells. As a result of Plk1 depletion cell proliferation decreased to 17%. Furthermore, for harnessing RNAi for silencing disease-related genes in vivo we transplanted inducible RNAi-HeLa cells onto nude mice. After administration of Dox knockdown of Plk1 expression was observed correlating to a significant inhibition of tumor growth. Taken together, our data revealed that genomically integrated RNAi-elements are suitable to hamper tumor growth by conditional expression of shRNA.
Collapse
Affiliation(s)
- Sven Kappel
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Yves Matthess
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Brigitte Zimmer
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Manfred Kaufmann
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology and Obstetrics, School of Medicine, J.W. Goethe-UniversityTheodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
7
|
Amar L, Desclaux M, Faucon-Biguet N, Mallet J, Vogel R. Control of small inhibitory RNA levels and RNA interference by doxycycline induced activation of a minimal RNA polymerase III promoter. Nucleic Acids Res 2006; 34:e37. [PMID: 16522642 PMCID: PMC1390691 DOI: 10.1093/nar/gkl034] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RNA interference (RNAi) mediated by expression of short hairpin RNAs (shRNAs) is a powerful tool for efficiently suppressing target genes. The approach allows studies of the function of individual genes and may also be applied to human therapy. However, in many instances regulation of RNAi by administration of a small inducer molecule will be required. To date, the development of appropriate regulatory systems has been hampered by the few possibilities for modification within RNA polymerase III promoters capable of driving efficient expression of shRNAs. We have developed an inducible minimal RNA polymerase III promoter that is activated by a novel recombinant transactivator in the presence of doxycycline (Dox). The recombinant transactivator and the engineered promoter together form a system permitting regulation of RNAi by Dox-induced expression of shRNAs. Regulated RNAi was mediated by one single lentiviral vector, blocked the expression of green fluorescent protein (GFP) in a GFP-expressing HEK 293T derived cell line and suppressed endogenous p53 in wild-type HEK 293T, MCF-7 and A549 cells. RNA interference was induced in a dose- and time-dependent manner by administration of Dox, silenced the expression of both target genes by 90% and was in particular reversible after withdrawal of Dox.
Collapse
Affiliation(s)
| | | | | | - Jacques Mallet
- To whom correspondence should be addressed. Tel: +33 1 42 17 75 32; Fax: +33 1 42 17 75 33;
| | | |
Collapse
|
8
|
Matthess Y, Kappel S, Spänkuch B, Zimmer B, Kaufmann M, Strebhardt K. Conditional inhibition of cancer cell proliferation by tetracycline-responsive, H1 promoter-driven silencing of PLK1. Oncogene 2005; 24:2973-80. [PMID: 15735719 DOI: 10.1038/sj.onc.1208472] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 11/15/2004] [Accepted: 12/13/2004] [Indexed: 11/08/2022]
Abstract
RNA interference (RNAi) is a powerful tool for studying gene function. We developed an inducible genetic element for short interfering RNA-mediated gene silencing. This system uses a tetracycline (Tet)-responsive derivative of the H1 promoter and the Tet repressor (TetR) for conditional expression of short hairpin RNA (shRNA) in HeLa cells. Promoter constructs were generated, which contain the Tet operator (TetO) derived from a prokaryotic Tet resistance transposon upstream and/or downstream of the TATA box. To quantify the response of controllable transcription units for shRNA expression, we examined the functional activity of polo-like kinase 1 (PLK1), a key component of mitotic progression, that is overexpressed in many human tumors. Cotransfection of plasmids for the expression of TetR and shRNA/PLK1 under the control of an H1 promoter-variant carrying TetO upstream of the TATA box did not alter PLK1 expression and proliferation properties of HeLa cells in the absence of doxycycline. Addition of the antibiotic led to marked downregulation of endogenous PLK1 accompanied by strong inhibition of cellular proliferation. Our data indicate that an inducible transcription system for shRNAs based on the human H1 promoter could be a versatile tool for controlled gene silencing in vitro.
Collapse
Affiliation(s)
- Yves Matthess
- Department of Gynecology and Obstetrics, School of Medicine, JW Goethe-University, Theodor-Stern-Kai 7, Haus 15, Frankfurt 60590, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Huang Y, Maraia RJ. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 2001; 29:2675-90. [PMID: 11433012 PMCID: PMC55761 DOI: 10.1093/nar/29.13.2675] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-subunit transcription factors (TF) direct RNA polymerase (pol) III to synthesize a variety of essential small transcripts such as tRNAs, 5S rRNA and U6 snRNA. Use by pol III of both TATA-less and TATA-containing promoters, together with progress in the Saccharomyces cerevisiae and human systems towards elucidating the mechanisms of actions of the pol III TFs, provides a paradigm for eukaryotic gene transcription. Human and S.cerevisiae pol III components reveal good general agreement in the arrangement of orthologous TFs that are distributed along tRNA gene control elements, beginning upstream of the transcription initiation site and extending through the 3' terminator element, although some TF subunits have diverged beyond recognition. For this review we have surveyed the Schizosaccharomyces pombe database and identified 26 subunits of pol III and associated TFs that would appear to represent the complete core set of the pol III machinery. We also compile data that indicate in vivo expression and/or function of 18 of the fission yeast proteins. A high degree of homology occurs in pol III, TFIIIB, TFIIIA and the three initiation-related subunits of TFIIIC that are associated with the proximal promoter element, while markedly less homology is apparent in the downstream TFIIIC subunits. The idea that the divergence in downstream TFIIIC subunits is associated with differences in pol III termination-related mechanisms that have been noted in the yeast and human systems but not reviewed previously is also considered.
Collapse
Affiliation(s)
- Y Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Drive MSC 2753, Bethesda, MD 20892-2753, USA
| | | |
Collapse
|
10
|
Myslinski E, Amé JC, Krol A, Carbon P. An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. Nucleic Acids Res 2001; 29:2502-9. [PMID: 11410657 PMCID: PMC55750 DOI: 10.1093/nar/29.12.2502] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
H1 RNA, the RNA component of the human nuclear RNase P, is encoded by a unique gene transcribed by RNA polymerase III (Pol III). In this work, cis-acting elements and trans-acting factors involved in human H1 gene transcription were characterized by transcription assays of mutant templates and DNA binding assays of recombinant proteins. Four elements, lying within 100 bp of 5'-flanking sequences, were defined to be essential for maximal in vitro and in vivo expression, consisting of the octamer, Staf, proximal sequence element (PSE) and TATA motifs. These are also encountered in the promoter elements of vertebrate snRNA genes, where the first two constitute the distal sequence element (DSE). In all the genes examined so far, the DSE is distant from the PSE and TATA box that compose the basal promoter. However, we observed a fundamental difference in the organization of the H1 RNA and snRNA gene promoters with respect to the relative spacing of the DSE and PSE. Indeed, the H1 promoter is unusually compact, with the octamer motif and Staf binding site adjacent to the PSE and TATA motifs. It thus appears that the human RNase P RNA gene has adopted a unique promoter strategy placing the DSE immediately adjacent to the basal promoter.
Collapse
Affiliation(s)
- E Myslinski
- UPR 9002 du CNRS 'Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance', Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
11
|
Kunkel GR, Hixson JD. The distal elements, OCT and SPH, stimulate the formation of preinitiation complexes on a human U6 snRNA gene promoter in vitro. Nucleic Acids Res 1998; 26:1536-43. [PMID: 9490803 PMCID: PMC147430 DOI: 10.1093/nar/26.6.1536] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The distal control region of a human U6 small nuclear RNA (snRNA) gene promoter contains two separable elements, octamer (OCT) and SPH, found in many vertebrate snRNA genes. Complete distal regions generally account for a 4- to 100-fold stimulation of snRNA gene promoters. We examined the mechanism of transcriptional stimulation by each element when linked to the proximal U6 promoter. Multimers of either OCT or SPH did not increase transcriptional levels above that with a single copy, either in transfected human cells or after in vitro transcription in a HeLa S100 extract. The orientation of a single SPH element differentially stimulated transcription in transfected cells, whereas the orientation of an octamer element was not important. Using Sarkosyl to limit transcription to a single-round, we concluded that promoters containing either OCT or SPH elements supported an increased number of preinitiation complexes in vitro. Furthermore, the rate of formation of U6 promoter preinitiation complexes resistant to low (0.015%) concentrations of Sarkosyl was accelerated on templates containing either OCT or SPH. However, neither element had a significant effect on the number of rounds of reinitiation in the S100 extract.
Collapse
Affiliation(s)
- G R Kunkel
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX 77843-2128, USA.
| | | |
Collapse
|
12
|
Veenstra GJ, van der Vliet PC, Destrée OH. POU domain transcription factors in embryonic development. Mol Biol Rep 1997; 24:139-55. [PMID: 9291088 DOI: 10.1023/a:1006855632268] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- G J Veenstra
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | | | |
Collapse
|
13
|
Schaub M, Myslinski E, Schuster C, Krol A, Carbon P. Staf, a promiscuous activator for enhanced transcription by RNA polymerases II and III. EMBO J 1997; 16:173-81. [PMID: 9009278 PMCID: PMC1169624 DOI: 10.1093/emboj/16.1.173] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Staf is a zinc finger protein that we recently identified as the transcriptional activator of the RNA polymerase III-transcribed selenocysteine tRNA gene. In this work we demonstrate that enhanced transcription of the majority of vertebrate snRNA and snRNA-type genes, transcribed by RNA polymerases II and III, also requires Staf. DNA binding assays and microinjection of mutant genes into Xenopus oocytes showed the presence of Staf-responsive elements in the genes for human U4C, U6, Y4 and 7SK, Xenopus U1b1, U2, U5 and MRP and mouse U6 RNAs. Using recombinant Staf, we established that it mediates the activating properties of Staf-responsive elements on RNA polymerase II and III snRNA promoters in vivo. Lastly a 19 bp consensus sequence for the Staf binding site, YY(A/T)CCC(A/G)N(A/C)AT(G/C)C(A/C)YY-RCR, was derived by binding site selection. It enabled us to identify 23 other snRNA and snRNA-type genes carrying potential Staf binding sites. Altogether, our results emphasize the prime importance of Staf as a novel activator for enhanced transcription of snRNA and snRNA-type genes.
Collapse
Affiliation(s)
- M Schaub
- UPR 9002 du CNRS Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, IBMC, Strasbourg, France
| | | | | | | | | |
Collapse
|