1
|
Lepore Signorile M, Grossi V, Fasano C, Forte G, Disciglio V, Sanese P, De Marco K, La Rocca F, Armentano R, Valentini AM, Giannelli G, Simone C. c-MYC Protein Stability Is Sustained by MAPKs in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14194840. [PMID: 36230763 PMCID: PMC9562641 DOI: 10.3390/cancers14194840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the most common gastrointestinal tract malignancy. Previous reports have shown that cancerous phenotypes in the intestine are dependent on c-MYC target gene expression. Unfortunately, finding c-MYC inhibitors has proven difficult because c-MYC does not have a deep surface-binding pocket. Considering that c-MYC is maintained upregulated through β-catenin-mediated transcriptional activation and ERK-mediated post-translational stabilization, and since we have previously demonstrated that c-MYC transcriptional activation is affected by p38α as a β-catenin chromatin-associated kinase, here, we investigated p38α’s involvement in c-MYC protein stabilization in CRC. Interestingly, we found that p38α sustains c-MYC’s stability by preventing its ubiquitination and proteasomal degradation. Moreover, we showed that p38α inhibitors exhibit a synthetic lethality effect when used in combination with MEK inhibitors in CRC cells. Our findings identify p38α as a promising therapeutic target that acts on the pharmacologically “undruggable” c-MYC protein, with implications for countering c-MYC-mediated CRC proliferation, metastasization, and chemoresistance. Abstract c-MYC is one of the most important factors involved in colorectal cancer (CRC) initiation and progression; indeed, it is found to be upregulated in up to 80% of sporadic cases. During colorectal carcinogenesis, c-MYC is maintained upregulated through β-catenin-mediated transcriptional activation and ERK-mediated post-translational stabilization. Our data demonstrate that p38α, a kinase involved in CRC metabolism and survival, contributes to c-Myc protein stability. Moreover, we show that p38α, like ERK, stabilizes c-MYC protein levels by preventing its ubiquitination. Of note, we found that p38α phosphorylates c-MYC and interacts with it both in vitro and in cellulo. Extensive molecular analyses in the cellular and in vivo models revealed that the p38α kinase inhibitors, SB202190 and ralimetinib, affect c-MYC protein levels. Ralimetinib also exhibited a synthetic lethality effect when used in combination with the MEK1 inhibitor trametinib. Overall, our findings identify p38α as a promising therapeutic target, acting directly on c-MYC, with potential implications for countering c-MYC-mediated CRC proliferation, metastatic dissemination, and chemoresistance.
Collapse
Affiliation(s)
- Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.); (G.F.); (V.D.); (P.S.); (K.D.M.); (F.L.R.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.); (G.F.); (V.D.); (P.S.); (K.D.M.); (F.L.R.)
- Correspondence: (V.G.); (C.S.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.); (G.F.); (V.D.); (P.S.); (K.D.M.); (F.L.R.)
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.); (G.F.); (V.D.); (P.S.); (K.D.M.); (F.L.R.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.); (G.F.); (V.D.); (P.S.); (K.D.M.); (F.L.R.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.); (G.F.); (V.D.); (P.S.); (K.D.M.); (F.L.R.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.); (G.F.); (V.D.); (P.S.); (K.D.M.); (F.L.R.)
| | - Francesca La Rocca
- Medical Genetics, National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.); (G.F.); (V.D.); (P.S.); (K.D.M.); (F.L.R.)
| | - Raffaele Armentano
- Department of Pathology, National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (R.A.); (A.M.V.)
| | - Anna Maria Valentini
- Department of Pathology, National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (R.A.); (A.M.V.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy;
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (M.L.S.); (C.F.); (G.F.); (V.D.); (P.S.); (K.D.M.); (F.L.R.)
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, 70124 Bari, Italy
- Correspondence: (V.G.); (C.S.)
| |
Collapse
|
2
|
Al-Khreisat MJ, Hussain FA, Abdelfattah AM, Almotiri A, Al-Sanabra OM, Johan MF. The Role of NOTCH1, GATA3, and c-MYC in T Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2022; 14:cancers14112799. [PMID: 35681778 PMCID: PMC9179380 DOI: 10.3390/cancers14112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Lymphomas are heterogeneous malignant tumours of white blood cells characterised by the aberrant proliferation of mature lymphoid cells or their precursors. Lymphomas are classified into main types depending on the histopathologic evidence of biopsy taken from an enlarged lymph node, progress stages, treatment strategies, and outcomes: Hodgkin and non-Hodgkin lymphoma (NHL). Moreover, lymphomas can be further divided into subtypes depending on the cell origin, and immunophenotypic and genetic aberrations. Many factors play vital roles in the progression, pathogenicity, incidence, and mortality rate of lymphomas. Among NHLs, peripheral T cell lymphomas (PTCLs) are rare lymphoid malignancies, that have various cellular morphology and genetic mutations. The clinical presentations are usually observed at the advanced stage of the disease. Many recent studies have reported that the expressions of NOTCH1, GATA3, and c-MYC are associated with poorer prognosis in PTCL and are involved in downstream activities. However, questions have been raised about the pathological relationship between these factors in PTCLs. Therefore, in this review, we investigate the role and relationship of the NOTCH1 pathway, transcriptional factor GATA3 and proto-oncogene c-MYC in normal T cell development and malignant PTCL subtypes.
Collapse
Affiliation(s)
- Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Ali Mahmoud Abdelfattah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Alhomidi Almotiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences—Dawadmi, Shaqra University, Dawadmi 17464, Saudi Arabia;
| | - Ola Mohammed Al-Sanabra
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan;
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Correspondence: ; Tel.: +60-97-67-62-00
| |
Collapse
|
3
|
Erdem M, Ozgul İ, Dioken DN, Gurcuoglu I, Guntekin Ergun S, Cetin-Atalay R, Can T, Erson-Bensan AE. Identification of an mRNA isoform switch for HNRNPA1 in breast cancers. Sci Rep 2021; 11:24444. [PMID: 34961772 PMCID: PMC8712528 DOI: 10.1038/s41598-021-04007-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Roles of HNRNPA1 are beginning to emerge in cancers; however, mechanisms causing deregulation of HNRNPA1 function remain elusive. Here, we describe an isoform switch between the 3'-UTR isoforms of HNRNPA1 in breast cancers. We show that the dominantly expressed isoform in mammary tissue has a short half-life. In breast cancers, this isoform is downregulated in favor of a stable isoform. The stable isoform is expressed more in breast cancers, and more HNRNPA1 protein is synthesized from this isoform. High HNRNPA1 protein levels correlate with poor survival in patients. In support of this, silencing of HNRNPA1 causes a reversal in neoplastic phenotypes, including proliferation, clonogenic potential, migration, and invasion. In addition, silencing of HNRNPA1 results in the downregulation of microRNAs that map to intragenic regions. Among these miRNAs, miR-21 is known for its transcriptional upregulation in breast and numerous other cancers. Altogether, the cancer-specific isoform switch we describe here for HNRNPA1 emphasizes the need to study gene expression at the isoform level in cancers to identify novel cases of oncogene activation.
Collapse
Affiliation(s)
- Murat Erdem
- Department of Biological Sciences, Middle East Technical University (METU), Dumlupinar Blv No: 1 Universiteler Mah., Cankaya, Ankara, 06800, Turkey
| | - İbrahim Ozgul
- Department of Biological Sciences, Middle East Technical University (METU), Dumlupinar Blv No: 1 Universiteler Mah., Cankaya, Ankara, 06800, Turkey
| | - Didem Naz Dioken
- Department of Biological Sciences, Middle East Technical University (METU), Dumlupinar Blv No: 1 Universiteler Mah., Cankaya, Ankara, 06800, Turkey
| | - Irmak Gurcuoglu
- Department of Biological Sciences, Middle East Technical University (METU), Dumlupinar Blv No: 1 Universiteler Mah., Cankaya, Ankara, 06800, Turkey
| | - Sezen Guntekin Ergun
- Cancer Systems Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
- Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Rengul Cetin-Atalay
- Cancer Systems Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
| | - Tolga Can
- Cancer Systems Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
- Department of Computer Engineering, Middle East Technical University (METU), Dumlupinar Blv No: 1 Universiteler Mah, Ankara, 06800, Turkey
| | - Ayse Elif Erson-Bensan
- Department of Biological Sciences, Middle East Technical University (METU), Dumlupinar Blv No: 1 Universiteler Mah., Cankaya, Ankara, 06800, Turkey.
- Cancer Systems Biology Laboratory, CanSyL, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
4
|
Apoptotic Blocks in Primary Non-Hodgkin B Cell Lymphomas Identified by BH3 Profiling. Cancers (Basel) 2021; 13:cancers13051002. [PMID: 33670870 PMCID: PMC7957722 DOI: 10.3390/cancers13051002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The BCL2 protein is expressed in many non-Hodgkin lymphomas (NHLs) as well as associated leukemias, e.g., chronic lymphocytic leukemia (CLL). It functions as a cell survival protein that reduces that ability of a cell to undergo mitochondrial apoptosis. However, the BCL2 inhibitor venetoclax is mainly effective in CLL, despite the expression of its protein target in NHL. We hypothesized that other mechanisms are inhibiting apoptosis in NHL: defects in pro-apoptotic signaling and/or the expression of anti-apoptotic proteins other than BCL2. Our study makes use of a technique known as BH3 profiling, which is a functional assay that determines the apoptotic competency of cells on primary NHL samples. By determining how cells in NHL avoid apoptosis upon exposure to venetoclax, we can identify patients who may benefit from additional therapies and potentially improve the response of drugs currently undergoing clinical trials for NHL. Abstract To determine causes of apoptotic resistance, we analyzed 124 primary B cell NHL samples using BH3 profiling, a technique that measures the mitochondrial permeabilization upon exposure to synthetic BH3 peptides. Our cohort included samples from chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), high-grade B cell lymphoma with translocations in MYC and BCL2 (HGBL-DH), mantle cell lymphoma (MCL) and marginal zone lymphoma (MZL). While a large number of our samples displayed appropriate responses to apoptosis-inducing peptides, pro-apoptotic functional defects, implicating BAX, BAK, BIM or BID, were seen in 32.4% of high-grade NHLs (12/37) and in 3.4% of low-grade NHLs (3/87, p < 0.0001). The inhibition of single anti-apoptotic proteins induced apoptosis in only a few samples, however, the dual inhibition of BCL2 and MCL1 was effective in 83% of samples, indicating MCL1 was the most common cause of lack of response to the BCL2 inhibitor, venetoclax. We then profiled Toledo and OCI-Ly8 high-grade lymphoma cell lines to determine which drugs could reduce MCL1 expression and potentiate venetoclax responses. Doxorubicin and vincristine decreased levels of MCL1 and increased venetoclax-induced apoptosis (all p < 0.05). Overall, in primary NHLs expressing BCL2 that have no defects in pro-apoptotic signaling, a poor response to venetoclax is primarily due to the presence of MCL1, which may be overcome by combining venetoclax with doxorubicin and vincristine-based chemotherapy or with other anti-microtubule inhibitors.
Collapse
|
5
|
Phillips BL, Banerjee A, Sanchez BJ, Di Marco S, Gallouzi IE, Pavlath GK, Corbett AH. Post-transcriptional regulation of Pabpn1 by the RNA binding protein HuR. Nucleic Acids Res 2019; 46:7643-7661. [PMID: 29939290 PMCID: PMC6125628 DOI: 10.1093/nar/gky535] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/08/2018] [Indexed: 01/14/2023] Open
Abstract
RNA processing is critical for proper spatial and temporal control of gene expression. The ubiquitous nuclear polyadenosine RNA binding protein, PABPN1, post-transcriptionally regulates multiple steps of gene expression. Mutations in the PABPN1 gene expanding an N-terminal alanine tract in the PABPN1 protein from 10 alanines to 11–18 alanines cause the muscle-specific disease oculopharyngeal muscular dystrophy (OPMD), which affects eyelid, pharynx, and proximal limb muscles. Previous work revealed that the Pabpn1 transcript is unstable, contributing to low steady-state Pabpn1 mRNA and protein levels in vivo, specifically in skeletal muscle, with even lower levels in muscles affected in OPMD. Thus, low levels of PABPN1 protein could predispose specific tissues to pathology in OPMD. However, no studies have defined the mechanisms that regulate Pabpn1 expression. Here, we define multiple cis-regulatory elements and a trans-acting factor, HuR, which regulate Pabpn1 expression specifically in mature muscle in vitro and in vivo. We exploit multiple models including C2C12 myotubes, primary muscle cells, and mice to determine that HuR decreases Pabpn1 expression. Overall, we have uncovered a mechanism in mature muscle that negatively regulates Pabpn1 expression in vitro and in vivo, which could provide insight to future studies investigating therapeutic strategies for OPMD treatment.
Collapse
Affiliation(s)
- Brittany L Phillips
- Department of Biology, Emory University, Atlanta, GA 30322, USA.,Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Ayan Banerjee
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Brenda J Sanchez
- Department of Biochemistry, Goodman Cancer Center, McGill University, Montreal, Quebec, Canada
| | - Sergio Di Marco
- Department of Biochemistry, Goodman Cancer Center, McGill University, Montreal, Quebec, Canada
| | - Imed-Eddine Gallouzi
- Department of Biochemistry, Goodman Cancer Center, McGill University, Montreal, Quebec, Canada.,Hamad Bin Khalifa University (HBKU), Life Sciences Division, College of Sciences and Engineering, Education City, Doha, Qatar
| | - Grace K Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Dogar AM, Pauchard-Batschulat R, Grisoni-Neupert B, Richman L, Paillusson A, Pradervand S, Hagenbüchle O, Ambrosini G, Schmid CD, Bucher P, Kühn LC. Short-lived AUF1 p42-binding mRNAs of RANKL and BCL6 have two distinct instability elements each. PLoS One 2018; 13:e0206823. [PMID: 30418981 PMCID: PMC6231638 DOI: 10.1371/journal.pone.0206823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/20/2018] [Indexed: 11/19/2022] Open
Abstract
Regulation of mRNA stability by RNA-protein interactions contributes significantly to quantitative aspects of gene expression. We have identified potential mRNA targets of the AU-rich element binding protein AUF1. Myc-tagged AUF1 p42 was induced in mouse NIH/3T3 cells and RNA-protein complexes isolated using anti-myc tag antibody beads. Bound mRNAs were analyzed with Affymetrix microarrays. We have identified 508 potential target mRNAs that were at least 3-fold enriched compared to control cells without myc-AUF1. 22.3% of the enriched mRNAs had an AU-rich cluster in the ARED Organism database, against 16.3% of non-enriched control mRNAs. The enrichment towards AU-rich elements was also visible by AREScore with an average value of 5.2 in the enriched mRNAs versus 4.2 in the control group. Yet, numerous mRNAs were enriched without a high ARE score. The enrichment of tetrameric and pentameric sequences suggests a broad AUF1 p42-binding spectrum at short U-rich sequences flanked by A or G. Still, some enriched mRNAs were highly unstable, as those of TNFSF11 (known as RANKL), KLF10, HES1, CCNT2, SMAD6, and BCL6. We have mapped some of the instability determinants. HES1 mRNA appeared to have a coding region determinant. Detailed analysis of the RANKL and BCL6 3’UTR revealed for both that full instability required two elements, which are conserved in evolution. In RANKL mRNA both elements are AU-rich and separated by 30 bases, while in BCL6 mRNA one is AU-rich and 60 bases from a non AU-rich element that potentially forms a stem-loop structure.
Collapse
Affiliation(s)
- Afzal M. Dogar
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV—Sciences de la Vie, ISREC—Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Ramona Pauchard-Batschulat
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV—Sciences de la Vie, ISREC—Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Barbara Grisoni-Neupert
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV—Sciences de la Vie, ISREC—Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Larry Richman
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV—Sciences de la Vie, ISREC—Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Alexandra Paillusson
- Center for Integrative Genomics (CIG), University of Lausanne, Génopode, Lausanne, Switzerland
| | - Sylvain Pradervand
- Center for Integrative Genomics (CIG), University of Lausanne, Génopode, Lausanne, Switzerland
| | - Otto Hagenbüchle
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV—Sciences de la Vie, ISREC—Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- Center for Integrative Genomics (CIG), University of Lausanne, Génopode, Lausanne, Switzerland
| | - Giovanna Ambrosini
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV—Sciences de la Vie, ISREC—Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | | | - Philipp Bucher
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV—Sciences de la Vie, ISREC—Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Lukas C. Kühn
- Ecole Polytechnique Fédérale de Lausanne (EPFL), SV—Sciences de la Vie, ISREC—Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Abstract
Receptor tyrosine kinase signalling pathways have been successfully targeted to inhibit proliferation and angiogenesis for cancer therapy. However, kinase deregulation has been firmly demonstrated to play an essential role in virtually all major disease areas. Kinase inhibitor drug discovery programmes have recently broadened their focus to include an expanded range of kinase targets and therapeutic areas. In this Review, we provide an overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors.
Collapse
|
8
|
Hsiung CCS, Bartman CR, Huang P, Ginart P, Stonestrom AJ, Keller CA, Face C, Jahn KS, Evans P, Sankaranarayanan L, Giardine B, Hardison RC, Raj A, Blobel GA. A hyperactive transcriptional state marks genome reactivation at the mitosis-G1 transition. Genes Dev 2017; 30:1423-39. [PMID: 27340175 PMCID: PMC4926865 DOI: 10.1101/gad.280859.116] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/23/2016] [Indexed: 01/07/2023]
Abstract
Hsiung et al. tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. During the earliest rounds of transcription at the mitosis–G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis–G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis–G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer–promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis–G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis–G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis–G1 transition might predispose cells to diverge in gene expression states.
Collapse
Affiliation(s)
- Chris C-S Hsiung
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Caroline R Bartman
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Paul Ginart
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA, Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Aaron J Stonestrom
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Carolyne Face
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Kristen S Jahn
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Perry Evans
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Laavanya Sankaranarayanan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Arjun Raj
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
9
|
Nguyen L, Papenhausen P, Shao H. The Role of c-MYC in B-Cell Lymphomas: Diagnostic and Molecular Aspects. Genes (Basel) 2017; 8:genes8040116. [PMID: 28379189 PMCID: PMC5406863 DOI: 10.3390/genes8040116] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Abstract
c-MYC is one of the most essential transcriptional factors, regulating a diverse array of cellular functions, including proliferation, growth, and apoptosis. Dysregulation of c-MYC is essential in the pathogenesis of a number of B-cell lymphomas, but is rarely reported in T-cell lymphomas. c-MYC dysregulation induces lymphomagenesis by loss of the tight control of c-MYC expression, leading to overexpression of intact c-MYC protein, in contrast to the somatic mutations or fusion proteins seen in many other oncogenes. Dysregulation of c-MYC in B-cell lymphomas occurs either as a primary event in Burkitt lymphoma, or secondarily in aggressive lymphomas such as diffuse large B-cell lymphoma, plasmablastic lymphoma, mantle cell lymphoma, or double-hit lymphoma. Secondary c-MYC changes include gene translocation and gene amplification, occurring against a background of complex karyotype, and most often confer aggressive clinical behavior, as evidenced in the double-hit lymphomas. In low-grade B-cell lymphomas, acquisition of c-MYC rearrangement usually results in transformation into highly aggressive lymphomas, with some exceptions. In this review, we discuss the role that c-MYC plays in the pathogenesis of B-cell lymphomas, the molecular alterations that lead to c-MYC dysregulation, and their effect on prognosis and diagnosis in specific types of B-cell lymphoma.
Collapse
Affiliation(s)
- Lynh Nguyen
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Peter Papenhausen
- Cytogenetics Laboratory, Laboratory Corporation of America, Research Triangle Park, NC 27709, USA.
| | - Haipeng Shao
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
10
|
Yun J, Song SH, Kim HP, Han SW, Yi EC, Kim TY. Dynamic cohesin-mediated chromatin architecture controls epithelial-mesenchymal plasticity in cancer. EMBO Rep 2016; 17:1343-59. [PMID: 27466323 PMCID: PMC5007572 DOI: 10.15252/embr.201541852] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/03/2016] [Accepted: 06/22/2016] [Indexed: 01/26/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET) are important interconnected events in tumorigenesis controlled by complex genetic networks. However, the cues that activate EMT-initiating factors and the mechanisms that reversibly connect EMT/MET are not well understood. Here, we show that cohesin-mediated chromatin organization coordinates EMT/MET by regulating mesenchymal genes. We report that RAD21, a subunit of the cohesin complex, is expressed in epithelial breast cancer cells, whereas its expression is decreased in mesenchymal cancer. Depletion of RAD21 in epithelial cancer cells causes transcriptional activation of TGFB1 and ITGA5, inducing EMT. Reduced binding of RAD21 changes intrachromosomal chromatin interactions within the TGFB1 and ITGA5 loci, creating an active transcriptional environment. Similarly, stem cell-like cancer cells also show an open chromatin structure at both genes, which correlates with high expression levels and mesenchymal fate characteristics. Conversely, overexpression of RAD21 in mesenchymal cancer cells induces MET-specific expression patterns. These findings indicate that dynamic cohesin-mediated chromatin structures are responsible for the initiation and regulation of essential EMT-related cell fate changes in cancer.
Collapse
Affiliation(s)
- Jiyeon Yun
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hwang-Phill Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology Seoul National University College of Medicine, Seoul, Korea
| | - Tae-You Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology Seoul National University College of Medicine, Seoul, Korea Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
11
|
Tortolina L, Duffy DJ, Maffei M, Castagnino N, Carmody AM, Kolch W, Kholodenko BN, Ambrosi CD, Barla A, Biganzoli EM, Nencioni A, Patrone F, Ballestrero A, Zoppoli G, Verri A, Parodi S. Advances in dynamic modeling of colorectal cancer signaling-network regions, a path toward targeted therapies. Oncotarget 2015; 6:5041-58. [PMID: 25671297 PMCID: PMC4467132 DOI: 10.18632/oncotarget.3238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/28/2014] [Indexed: 12/22/2022] Open
Abstract
The interconnected network of pathways downstream of the TGFβ, WNT and EGF-families of receptor ligands play an important role in colorectal cancer pathogenesis.We studied and implemented dynamic simulations of multiple downstream pathways and described the section of the signaling network considered as a Molecular Interaction Map (MIM). Our simulations used Ordinary Differential Equations (ODEs), which involved 447 reactants and their interactions.Starting from an initial "physiologic condition", the model can be adapted to simulate individual pathologic cancer conditions implementing alterations/mutations in relevant onco-proteins. We verified some salient model predictions using the mutated colorectal cancer lines HCT116 and HT29. We measured the amount of MYC and CCND1 mRNAs and AKT and ERK phosphorylated proteins, in response to individual or combination onco-protein inhibitor treatments. Experimental and simulation results were well correlated. Recent independently published results were also predicted by our model.Even in the presence of an approximate and incomplete signaling network information, a predictive dynamic modeling seems already possible. An important long term road seems to be open and can be pursued further, by incremental steps, toward even larger and better parameterized MIMs. Personalized treatment strategies with rational associations of signaling-proteins inhibitors, could become a realistic goal.
Collapse
Affiliation(s)
- Lorenzo Tortolina
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Italy
| | - David J. Duffy
- Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Massimo Maffei
- Department of Internal Medicine and Medical Specializations (DIMI), University of Genoa, Italy
| | - Nicoletta Castagnino
- Department of Internal Medicine and Medical Specializations (DIMI), University of Genoa, Italy
| | - Aimée M. Carmody
- Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Boris N. Kholodenko
- Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Cristina De Ambrosi
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Italy
| | - Annalisa Barla
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Italy
| | - Elia M. Biganzoli
- Unit of Medical Statistics, Biometry and Bioinformatics “Giulio A. Maccacaro”, Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specializations (DIMI), University of Genoa, Italy
- Istituto a Carattere di Ricerca Clinic - Scientifico (IRCCS), Azienda Ospedaliera Universitaria San Martino, Istituto Nazionale Tumori (IST), Genoa, Italy
| | - Franco Patrone
- Department of Internal Medicine and Medical Specializations (DIMI), University of Genoa, Italy
- Istituto a Carattere di Ricerca Clinic - Scientifico (IRCCS), Azienda Ospedaliera Universitaria San Martino, Istituto Nazionale Tumori (IST), Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine and Medical Specializations (DIMI), University of Genoa, Italy
- Istituto a Carattere di Ricerca Clinic - Scientifico (IRCCS), Azienda Ospedaliera Universitaria San Martino, Istituto Nazionale Tumori (IST), Genoa, Italy
| | - Gabriele Zoppoli
- Department of Internal Medicine and Medical Specializations (DIMI), University of Genoa, Italy
- Istituto a Carattere di Ricerca Clinic - Scientifico (IRCCS), Azienda Ospedaliera Universitaria San Martino, Istituto Nazionale Tumori (IST), Genoa, Italy
| | - Alessandro Verri
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Italy
| | - Silvio Parodi
- Department of Internal Medicine and Medical Specializations (DIMI), University of Genoa, Italy
| |
Collapse
|
12
|
Kumar P P, Emechebe U, Smith R, Franklin S, Moore B, Yandell M, Lessnick SL, Moon AM. Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. eLife 2014; 3. [PMID: 24876127 PMCID: PMC4071561 DOI: 10.7554/elife.02805] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/22/2014] [Indexed: 12/19/2022] Open
Abstract
Cellular senescence is a crucial tumor suppressor mechanism. We discovered a CAPERα/TBX3 repressor complex required to prevent senescence in primary cells and mouse embryos. Critical, previously unknown roles for CAPERα in controlling cell proliferation are manifest in an obligatory interaction with TBX3 to regulate chromatin structure and repress transcription of CDKN2A-p16INK and the RB pathway. The IncRNA UCA1 is a direct target of CAPERα/TBX3 repression whose overexpression is sufficient to induce senescence. In proliferating cells, we found that hnRNPA1 binds and destabilizes CDKN2A-p16INK mRNA whereas during senescence, UCA1 sequesters hnRNPA1 and thus stabilizes CDKN2A-p16INK. Thus CAPERα/TBX3 and UCA1 constitute a coordinated, reinforcing mechanism to regulate both CDKN2A-p16INK transcription and mRNA stability. Dissociation of the CAPERα/TBX3 co-repressor during oncogenic stress activates UCA1, revealing a novel mechanism for oncogene-induced senescence. Our elucidation of CAPERα and UCA1 functions in vivo provides new insights into senescence induction, and the oncogenic and developmental properties of TBX3. DOI:http://dx.doi.org/10.7554/eLife.02805.001 Cell division and growth are essential for survival. But it is equally important that cells can stop dividing, because failing to do so can lead to the uncontrolled tumor growth seen in cancer. One such quality control mechanism is called senescence, which stops the growth and multiplication of cells that are old, damaged or behaving in ways that may harm the organism. All cells eventually stop dividing and undergo senescence, but a number of factors may trigger the process early, such as DNA damage, stress or the appearance of cancer-causing proteins. Senescence can be harmful if it occurs too early in life and interferes with normal growth. Severe birth defects—including fatal heart problems and limb malformations—occur if senescence is inappropriately triggered early in development. Mutations in a gene encoding a protein called TBX3 have been linked to these severe birth defects. Normally, TBX3 stops the production of other proteins that trigger senescence in early development, and helps to maintain stable conditions in adult cells. Understanding how it does so could help scientists understand normal cell function and aging, and also help to find ways to trigger senescence in cancerous cells. Kumar et al. found that a protein called CAPERα—for short Coactivator of AP1 and Estrogen Receptor—forms a complex with TBX3 that stops cells dividing in living organisms in at least two different ways. One way is by altering how DNA is folded. The other way involves a non-coding strand of RNA from a gene called UCA1: this RNA prevents the degradation of proteins that stop cell division. In normal proliferating cells, the CAPERα/TBX3 protein complex prevents the production of UCA1 RNA. In contrast, in cells that received a cancer causing stimulus, TBX3 and CAPERα physically separate: this activates production of UCA1 RNA and causes senescence. Further studies will be required to establish exactly how the CAPERα/TBX3 protein complex interacts with DNA and RNA to control senescence and prevent cancer. DOI:http://dx.doi.org/10.7554/eLife.02805.002
Collapse
Affiliation(s)
- Pavan Kumar P
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | - Uchenna Emechebe
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, United States
| | - Richard Smith
- The Centre for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, United States
| | - Barry Moore
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Stephen L Lessnick
- Department of Pediatrics, University of Utah, Salt Lake City, United States
| | - Anne M Moon
- Weis Center for Research, Geisinger Clinic, Danville, United States
| |
Collapse
|
13
|
Wakai M, Abe S, Kazuki Y, Oshimura M, Ishikawa F. A human artificial chromosome recapitulates the metabolism of native telomeres in mammalian cells. PLoS One 2014; 9:e88530. [PMID: 24558398 PMCID: PMC3928237 DOI: 10.1371/journal.pone.0088530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/07/2014] [Indexed: 01/03/2023] Open
Abstract
Telomeric and subtelomeric regions of human chromosomes largely consist of highly repetitive and redundant DNA sequences, resulting in a paucity of unique DNA sequences specific to individual telomeres. Accordingly, it is difficult to analyze telomere metabolism on a single-telomere basis. To circumvent this problem, we have exploited a human artificial chromosome (HAC#21) derived from human chromosome 21 (hChr21). HAC#21 was generated through truncation of the long arm of native hChr21 by the targeted telomere seeding technique. The newly established telomere of HAC#21 lacks canonical subtelomere structures but possesses unique sequences derived from the target vector backbone and the internal region of hChr21 used for telomere targeting, which enabled us to molecularly characterize the single HAC telomere. We established HeLa and NIH-3T3 sub-lines containing a single copy of HAC#21, where it was robustly maintained. The seeded telomere is associated with telomeric proteins over a length similar to that reported in native telomeres, and is faithfully replicated in mid-S phase in HeLa cells. We found that the seeded telomere on HAC#21 is transcribed from the newly juxtaposed site. The transcript, HAC-telRNA, shares several features with TERRA (telomeric repeat-containing RNA): it is a short-lived RNA polymerase II transcript, rarely contains a poly(A) tail, and associates with chromatin. Interestingly, HAC-telRNA undergoes splicing. These results suggest that transcription into TERRA is locally influenced by the subtelomeric context. Taken together, we have established human and mouse cell lines that will be useful for analyzing the behavior of a uniquely identifiable, functional telomere.
Collapse
Affiliation(s)
- Michihito Wakai
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Satoshi Abe
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Mitsuo Oshimura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
- * E-mail:
| |
Collapse
|
14
|
Dcp2 decapping protein modulates mRNA stability of the critical interferon regulatory factor (IRF) IRF-7. Mol Cell Biol 2012; 32:1164-72. [PMID: 22252322 DOI: 10.1128/mcb.06328-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian Dcp2 mRNA-decapping protein functions primarily on a subset of mRNAs in a transcript-specific manner. Here we show that Dcp2 is an important modulator of genes involved in the type I interferon (IFN) response, which is the initial line of antiviral innate immune response elicited by a viral challenge. Mouse embryonic fibroblast cells with reduced Dcp2 levels (Dcp2(β/β)) contained significantly elevated levels of mRNAs encoding proteins involved in the type I IFN response. In particular, analysis of a key type I IFN transcription factor, IFN regulatory factor 7 (IRF-7), revealed an increase in both IRF-7 mRNA and protein in Dcp2(β/β) cells. Importantly, the increase in IRF-7 mRNA within the background of reduced Dcp2 levels was attributed to a stabilization of the IRF-7 mRNA, suggesting that Dcp2 normally modulates IRF-7 mRNA stability. Moreover, Dcp2 expression was also induced upon viral infection, consistent with a role in attenuating the antiviral response by promoting IRF-7 mRNA degradation. The induction of Dcp2 levels following a viral challenge and the specificity of Dcp2 in targeting the decay of IRF-7 mRNA suggest that Dcp2 may negatively contribute to the innate immune response in a negative feedback mechanism to restore normal homeostasis following viral infection.
Collapse
|
15
|
Annibaldi A, Dousse A, Martin S, Tazi J, Widmann C. Revisiting G3BP1 as a RasGAP binding protein: sensitization of tumor cells to chemotherapy by the RasGAP 317-326 sequence does not involve G3BP1. PLoS One 2011; 6:e29024. [PMID: 22205990 PMCID: PMC3242762 DOI: 10.1371/journal.pone.0029024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/18/2011] [Indexed: 01/31/2023] Open
Abstract
RasGAP is a multifunctional protein that controls Ras activity and that is found in chromosomal passenger complexes. It also negatively or positively regulates apoptosis depending on the extent of its cleavage by caspase-3. RasGAP has been reported to bind to G3BP1 (RasGAP SH3-domain-binding protein 1), a protein regulating mRNA stability and stress granule formation. The region of RasGAP (amino acids 317-326) thought to bind to G3BP1 corresponds exactly to the sequence within fragment N2, a caspase-3-generated fragment of RasGAP, that mediates sensitization of tumor cells to genotoxins. While assessing the contribution of G3BP1 in the anti-cancer function of a cell-permeable peptide containing the 317-326 sequence of RasGAP (TAT-RasGAP₃₁₇₋₃₂₆), we found that, in conditions where G3BP1 and RasGAP bind to known partners, no interaction between G3BP1 and RasGAP could be detected. TAT-RasGAP₃₁₇₋₃₂₆ did not modulate binding of G3BP1 to USP10, stress granule formation or c-myc mRNA levels. Finally, TAT-RasGAP₃₁₇₋₃₂₆ was able to sensitize G3BP1 knock-out cells to cisplatin-induced apoptosis. Collectively these results indicate that G3BP1 and its putative RasGAP binding region have no functional influence on each other. Importantly, our data provide arguments against G3BP1 being a genuine RasGAP-binding partner. Hence, G3BP1-mediated signaling may not involve RasGAP.
Collapse
Affiliation(s)
| | - Aline Dousse
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Sophie Martin
- Institut de Génétique Moleculaire de Montpellier UMR 5535, IFR 122, Centre National de Recherche Scientifique, Montpellier, France
| | - Jamal Tazi
- Institut de Génétique Moleculaire de Montpellier UMR 5535, IFR 122, Centre National de Recherche Scientifique, Montpellier, France
| | - Christian Widmann
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
16
|
Schoenberg DR. Mechanisms of endonuclease-mediated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:582-600. [PMID: 21957046 DOI: 10.1002/wrna.78] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endonuclease cleavage was one of the first identified mechanisms of mRNA decay but until recently it was thought to play a minor role to the better-known processes of deadenylation, decapping, and exonuclease-catalyzed decay. Most of the early examples of endonuclease decay came from studies of a particular mRNA whose turnover changed in response to hormone, cytokine, developmental, or nutritional stimuli. Only a few of these examples of endonuclease-mediated mRNA decay progressed to the point where the enzyme responsible for the initiating event was identified and studied in detail. The discovery of microRNAs and RISC-catalyzed endonuclease cleavage followed by the identification of PIN (pilT N-terminal) domains that impart endonuclease activity to a number of the proteins involved in mRNA decay has led to a resurgence of interest in endonuclease-mediated mRNA decay. PIN domains show no substrate selectivity and their involvement in a number of decay pathways highlights a recurring theme that the context in which an endonuclease function is a primary factor in determining whether any given mRNA will be targeted for decay by this or the default exonuclease-mediated decay processes.
Collapse
Affiliation(s)
- Daniel R Schoenberg
- Center for RNA Biology and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Abstract
The control of mammalian mRNA turnover and translation has been linked almost exclusively to specific cis-elements within the 5'- and 3'-untranslated regions (UTRs) of the mature mRNA. However, instances of regulated turnover and translation via cis-elements within the coding region (CR) of mRNAs are accumulating. Here, we describe the regulation of post-transcriptional fate through trans-binding factors (RNA-binding proteins and microRNAs) that function via CR sequences. We discuss how the CR enriches the post-transcriptional control of gene expression, and predict that new high-throughput technologies will enable a more mainstream study of CR-governed gene regulation.
Collapse
Affiliation(s)
- Eun Kyung Lee
- Laboratory of Cellular and Molecular Biology, NIA-IRP, NIH, Baltimore, MD, USA
| | | |
Collapse
|
18
|
Chen CYA, Shyu AB. Mechanisms of deadenylation-dependent decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:167-83. [PMID: 21957004 DOI: 10.1002/wrna.40] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Degradation of messenger RNAs (mRNAs) plays an essential role in modulation of gene expression and in quality control of mRNA biogenesis. Nearly all major mRNA decay pathways characterized thus far in eukaryotes are initiated by deadenylation, i.e., shortening of the mRNA 3(') poly(A) tail. Deadenylation is often a rate-limiting step for mRNA degradation and translational silencing, making it an important control point for both processes. In this review, we discuss the fundamental principles that govern mRNA deadenylation in eukaryotes. We use several major mRNA decay pathways in mammalian cells to illustrate mechanisms and regulation of deadenylation-dependent mRNA decay, including decay directed by adenine/uridine-rich elements (AREs) in the 3(') -untranslated region (UTR), the rapid decay mediated by destabilizing elements in protein-coding regions, the surveillance mechanism that detects and degrades nonsense-containing mRNA [i.e., nonsense-mediated decay (NMD)], the decay directed by miRNAs, and the default decay pathway for stable messages. Mammalian mRNA deadenylation involves two consecutive phases mediated by the PAN2-PAN3 and the CCR4-CAF1 complexes, respectively. Decapping takes place after deadenylation and may serve as a backup mechanism to trigger mRNA decay if initial deadenylation is compromised. In addition, we discuss how deadenylation impacts the dynamics of RNA processing bodies (P-bodies), where nontranslatable mRNAs can be degraded or stored. Possible models for mechanisms of various deadenylation-dependent mRNA decay pathways are also discussed.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas-Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
19
|
Barnes T, Kim WC, Mantha AK, Kim SE, Izumi T, Mitra S, Lee CH. Identification of Apurinic/apyrimidinic endonuclease 1 (APE1) as the endoribonuclease that cleaves c-myc mRNA. Nucleic Acids Res 2009; 37:3946-58. [PMID: 19401441 PMCID: PMC2709568 DOI: 10.1093/nar/gkp275] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/01/2009] [Accepted: 04/13/2009] [Indexed: 11/28/2022] Open
Abstract
Endonucleolytic cleavage of the coding region determinant (CRD) of c-myc mRNA appears to play a critical role in regulating c-myc mRNA turnover. Using (32)P-labeled c-myc CRD RNA as substrate, we have purified and identified two endoribonucleases from rat liver polysomes that are capable of cleaving the transcript in vitro. A 17-kDa enzyme was identified as RNase1. Apurinic/apyrimidinic (AP) DNA endonuclease 1 (APE1) was identified as the 35-kDa endoribonuclease that preferentially cleaves in between UA and CA dinucleotides of c-myc CRD RNA. APE1 was further confirmed to be the 35-kDa endoribonuclease because: (i) the endoribonuclease activity of the purified 35-kDa native enzyme was specifically immuno-depleted with APE1 monoclonal antibody, and (ii) recombinant human APE1 generated identical RNA cleavage patterns as the native liver enzyme. Studies using E96A and H309N mutants of APE1 suggest that the endoribonuclease activity for c-myc CRD RNA shares the same active center with the AP-DNA endonuclease activity. Transient knockdown of APE1 in HeLa cells led to increased steady-state level of c-myc mRNA and its half-life. We conclude that the ability to cleave RNA dinucleotides is a previously unidentified function of APE1 and it can regulate c-myc mRNA level possibly via its endoribonuclease activity.
Collapse
Affiliation(s)
- Tavish Barnes
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Wan-Cheol Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Anil K. Mantha
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Sang-Eun Kim
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Tadahide Izumi
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Sankar Mitra
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| | - Chow H. Lee
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia V2N 4Z9, Canada, Sealy Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 and Health Sciences Center, Louisiana State University, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Siemetzki U, Ashok MS, Briese T, Lipkin WI. Identification of RNA instability elements in Borna disease virus. Virus Res 2009; 144:27-34. [PMID: 19720240 DOI: 10.1016/j.virusres.2009.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 03/24/2009] [Accepted: 03/26/2009] [Indexed: 11/19/2022]
Abstract
Genome organization and gene expression of Borna disease virus (BDV) are remarkable for the overlap of open reading frames, transcription units and transcription signals, readthrough of transcription termination signals, differential use of translation initiation codons, and exploitation of the cellular splicing machinery. Here we report an additional control of gene expression at the level of mRNA stability. Levels of BDV proteins in infected cells do not correspond to the transcriptional gradient typically observed in nonsegmented negative-sense RNA viruses. The third transcription unit of BDV's negative-sense RNA genome encodes viral proteins M, G and L. Analysis of the third transcription unit identified RNA-destabilizing domains with the most pronounced activity located in regions spanning nucleotides 2818-2918 (instability domain-1) and 4022-4071 (instability domain-2). Given that one domain maps to intron-2 and is thereby eliminated upon splicing, this represents an intriguing mechanism for regulating transcript levels independent of a transcriptional gradient. The presence of instability domains in introns offers a mechanism to create the observed discontinuous gradient M>L>G, compatible with the non-cytopathic, persistent infection that is characteristic for BDV, and provides a rationale for the use of alternative splicing by this unusual virus.
Collapse
Affiliation(s)
- Ulrike Siemetzki
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
21
|
Abstract
The abundance of a cytoplasmic mRNA in eukaryotes often determines the level of the encoded protein product. The rates at which an mRNA is synthesized, exported, and degraded collectively contribute to its abundance in all cell types. Numerous mRNAs, particularly those encoding structural proteins, are very stable, with half-lives in the order of many hours. In contrast, mRNAs encoding regulatory proteins, including oncoproteins, cytokines, and signaling proteins, are relatively unstable with half-lives of an hour or less. As a result, modest changes in their decay rates affect their levels over a relatively short time period. This is particularly important to ensure rapid responses to extracellular signaling events. Messenger RNAs often harbor sequence elements that dictate their degradation rates. Adenylate uridylate (A+U)-rich elements (AREs), first identified in 1986, are perhaps the best characterized sequences that promote rapid mRNA degradation. These elements, localized within 3'-untranslated regions, sometimes contain AUUUA pentamers within an overall U-rich sequence, but this does not always define a bona fide ARE. Thus, experimental validation is essential before bestowing upon a suspected A+U-rich sequence the title of "ARE." This chapter describes a reporter gene system that permits quantitative assessment of the effects of candidate A+U-rich sequences on mRNA half-life. This system employs tetracycline-controlled transcriptional silencing of the reporter gene, isolation of total-cell RNA at selected time points, quantitative reverse transcriptase polymerase chain reaction analysis of reporter mRNA levels, and nonlinear regression analysis of mRNA level as a function of time to quantitatively define parameters describing mRNA decay kinetics. Finally, this chapter describes more specialized assays to characterize ARE-mediated mRNA decay pathways, including deadenylation, and discusses decapping.
Collapse
|
22
|
Sparanese D, Lee CH. CRD-BP shields c-myc and MDR-1 RNA from endonucleolytic attack by a mammalian endoribonuclease. Nucleic Acids Res 2007; 35:1209-21. [PMID: 17264115 PMCID: PMC1851641 DOI: 10.1093/nar/gkl1148] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The c-myc mRNA coding region determinant-binding protein (CRD-BP) has high affinity for the coding region determinant (CRD) of c-myc mRNA. Such affinity is believed to protect c-myc CRD from endonucleolytic attack. We have recently purified a mammalian endoribonuclease which can cleave within the c-myc CRD in vitro. The availability of this purified endonuclease has made it possible to directly test the interaction between CRD-BP and the endonuclease in regulating c-myc CRD RNA cleavage. In this study, we have identified the coding region of MDR-1 RNA as a new target for CRD-BP. CRD-BP has the same affinity for c-myc CRD nts 1705-1886 and MDR-1 RNA nts 746-962 with K(d) of 500 nM. The concentration-dependent affinity of CRD-BP to these transcripts correlated with the concentration-dependent blocking of endonuclease-mediated cleavage by CRD-BP. In contrast, three other recombinant proteins tested which had no affinity for c-myc CRD did not block endonuclease-mediated cleavage. Finally, we have identified RNA sequences required for CRD-BP binding. These results provide the first direct evidence that CRD-BP can indeed protect c-myc CRD cleavage initiated by an endoribonuclease, and the framework for further investigation into the interactions between CRD-BP, c-myc mRNA, MDR-1 mRNA and the endoribonuclease in cells.
Collapse
Affiliation(s)
| | - Chow H. Lee
- *To whom correspondence should be addressed. Tel: +250 960 5413; Fax: +250 960 5170;
| |
Collapse
|
23
|
Menon KMJ, Nair AK, Wang L, Peegel H. Regulation of luteinizing hormone receptor mRNA expression by a specific RNA binding protein in the ovary. Mol Cell Endocrinol 2007; 260-262:109-16. [PMID: 17055149 PMCID: PMC2677972 DOI: 10.1016/j.mce.2006.03.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 03/21/2006] [Indexed: 12/01/2022]
Abstract
The expression of LH receptor mRNA shows significant changes during different physiological states of the ovary. Previous studies from our laboratory have identified a post-transcriptional mechanism by which LH receptor mRNA is regulated following preovulatory LH surge or in response to hCG administration. A specific binding protein, identified as mevalonate kinase, binds to the open reading frame of LH receptor mRNA. The protein binding site is localized to nucleotides 203-220 of the LH receptor mRNA and exhibits a high degree of specificity. The expression levels of the protein show an inverse relationship to the LH receptor mRNA levels. The hCG-induced down-regulation of LH receptor mRNA can be mimicked by increasing the intracellular levels of cyclic AMP by a phosphodiesterase inhibitor. An in vitro mRNA decay assay showed that addition of the binding protein to the decay system caused accelerated LH receptor mRNA decay. Our results therefore show that LH receptor mRNA expression in the ovary is regulated post-transcriptionally by altering the rate of mRNA degradation by a specific mRNA binding protein.
Collapse
Affiliation(s)
- K M J Menon
- Department of Obstetrics and Gynecology, The University of Michigan Medical School, 6428 Medical Science I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0617, United States.
| | | | | | | |
Collapse
|
24
|
Paschoud S, Dogar AM, Kuntz C, Grisoni-Neupert B, Richman L, Kühn LC. Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol Cell Biol 2006; 26:8228-41. [PMID: 16954375 PMCID: PMC1636780 DOI: 10.1128/mcb.01155-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interleukin-6 mRNA is unstable and degraded with a half-life of 30 min. Instability determinants can entirely be attributed to the 3' untranslated region. By grafting segments of this region to stable green fluorescent protein mRNA and subsequent scanning mutagenesis, we have identified two conserved elements, which together account for most of the instability. The first corresponds to a short noncanonical AU-rich element. The other, 80 nucleotides further 5', comprises a sequence predicted to form a stem-loop structure. Neither element alone was sufficient to confer full instability, suggesting that they might cooperate. Overexpression of myc-tagged AUF1 p37 and p42 isoforms as well as suppression of endogenous AUF1 by RNA interference stabilized interleukin-6 mRNA. Both effects required the AU-rich instability element. Similarly, the proteasome inhibitor MG132 stabilized interleukin-6 mRNA probably through an increase of AUF1 levels. The mRNA coimmunoprecipitated specifically with myc-tagged AUF1 p37 and p42 in cell extracts but only when the AU-rich instability element was present. These results indicate that AUF1 binds to the AU-rich element in vivo and promotes IL-6 mRNA degradation.
Collapse
Affiliation(s)
- Serge Paschoud
- Swiss Institute for Experimental Cancer Research, Genetics Unit, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland.
| | | | | | | | | | | |
Collapse
|
25
|
Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, Singer RH, Segall JE, Condeelis JS. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 2005; 64:8585-94. [PMID: 15574765 DOI: 10.1158/0008-5472.can-04-1136] [Citation(s) in RCA: 336] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We subjected cells collected using an in vivo invasion assay to cDNA microarray analysis to identify the gene expression profile of invasive carcinoma cells in primary mammary tumors. Expression of genes involved in cell division, survival, and cell motility were most dramatically changed in invasive cells indicating a population that is neither dividing nor apoptotic but intensely motile. In particular, the genes coding for the minimum motility machine that regulates beta-actin polymerization at the leading edge and, therefore, the motility and chemotaxis of carcinoma cells, were dramatically up-regulated. However, ZBP1, which restricts the localization of beta-actin, the substrate for the minimum motility machine, was down-regulated. This pattern of expression implicated ZBP1 as a suppressor of invasion. Reexpression of ZBP1 in metastatic cells with otherwise low levels of ZBP1 reestablished normal patterns of beta-actin mRNA targeting and suppressed chemotaxis and invasion in primary tumors. ZBP1 reexpression also inhibited metastasis from tumors. These experiments support the involvement in metastasis of the pathways identified in invasive cells, which are regulated by ZBP1.
Collapse
Affiliation(s)
- Weigang Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hansen TVO, Hammer NA, Nielsen J, Madsen M, Dalbaeck C, Wewer UM, Christiansen J, Nielsen FC. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice. Mol Cell Biol 2004; 24:4448-64. [PMID: 15121863 PMCID: PMC400488 DOI: 10.1128/mcb.24.10.4448-4464.2004] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Insulin-like growth factor II mRNA-binding protein 1 (IMP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control. Mouse IMP1 is expressed during early development, and an increase in expression occurs around embryonic day 12.5 (E12.5). To characterize the physiological role of IMP1, we generated IMP1-deficient mice carrying a gene trap insertion in the Imp1 gene. Imp1(-/-) mice were on average 40% smaller than wild-type and heterozygous sex-matched littermates. Growth retardation was apparent from E17.5 and remained permanent into adult life. Moreover, Imp1(-/-) mice exhibited high perinatal mortality, and only 50% were alive 3 days after birth. In contrast to most other organs, intestinal epithelial cells continue to express IMP1 postnatally, and Imp1(-/-) mice exhibited impaired development of the intestine, with small and misshapen villi and twisted colon crypts. Analysis of target mRNAs and global expression profiling at E12.5 indicated that Igf2 translation was downregulated, whereas the postnatal intestine showed reduced expression of transcripts encoding extracellular matrix components, such as galectin- 1, lumican, tenascin-C, procollagen transcripts, and the Hsp47 procollagen chaperone. Taken together, the results demonstrate that IMP1 is essential for normal growth and development. Moreover, IMP1 may facilitate intestinal morphogenesis via regulation of extracellular matrix formation.
Collapse
Affiliation(s)
- Thomas V O Hansen
- Department of Clinical Biochemistry, University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ostrow KM, Loeb DD. Characterization of the cis-acting contributions to avian hepadnavirus RNA encapsidation. J Virol 2002; 76:9087-95. [PMID: 12186892 PMCID: PMC136466 DOI: 10.1128/jvi.76.18.9087-9095.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous analysis of duck hepatitis B virus (DHBV) indicated the presence of at least two cis-acting sequences required for efficient encapsidation of its pregenomic RNA (pgRNA), epsilon and region II. epsilon, an RNA stem-loop near the 5' end of the pgRNA, has been characterized in detail, while region II, located in the middle of the pgRNA, is not as well defined. Our initial aim was to identify the sequence important for the function of region II in DHBV. We scanned region II and the surrounding sequence by using a quantitative encapsidation assay. We found that the sequence between nucleotides (nt) 438 and 720 contributed to efficient pgRNA encapsidation, while the sequence between nt 538 and 610 made the largest contribution to encapsidation. Additionally, deletions between the two encapsidation sequences, epsilon and region II, had variable effects on encapsidation, while substitutions of heterologous sequence between epsilon and region II disrupted the ability of the pgRNA to be encapsidated efficiently. Overall, these data indicate that the intervening sequences between epsilon and region II play a role in encapsidation. We also analyzed heron hepatitis B virus (HHBV) for the presence of region II and found features similar to DHBV: a broad region necessary for efficient encapsidation that contained a critical region II sequence. Furthermore, we analyzed variants of DHBV that were substituted with HHBV sequence over region II and found that the chimeras were not fully functional for RNA encapsidation. These results indicate that sequences within region II may need to be compatible with other viral components in order to function in pgRNA encapsidation.
Collapse
Affiliation(s)
- Kristin M Ostrow
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
28
|
Lemm I, Ross J. Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant. Mol Cell Biol 2002; 22:3959-69. [PMID: 12024010 PMCID: PMC133878 DOI: 10.1128/mcb.22.12.3959-3969.2002] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 249-nucleotide coding region instability determinant (CRD) destabilizes c-myc mRNA. Previous experiments identified a CRD-binding protein (CRD-BP) that appears to protect the CRD from endonuclease cleavage. However, it was unclear why a CRD-BP is required to protect a well-translated mRNA whose coding region is covered with ribosomes. We hypothesized that translational pausing in the CRD generates a ribosome-deficient region downstream of the pause site, and this region is exposed to endonuclease attack unless it is shielded by the CRD-BP. Transfection and cell-free translation experiments reported here support this hypothesis. Ribosome pausing occurs within the c-myc CRD in tRNA-depleted reticulocyte translation reactions. The pause sites map to a rare arginine (CGA) codon and to an adjacent threonine (ACA) codon. Changing these codons to more common codons increases translational efficiency in vitro and increases mRNA abundance in transfected cells. These data suggest that c-myc mRNA is rapidly degraded unless it is (i) translated without pausing or (ii) protected by the CRD-BP when pausing occurs. Additional mapping experiments suggest that the CRD is bipartite, with several upstream translation pause sites and a downstream endonuclease cleavage site.
Collapse
Affiliation(s)
- Ira Lemm
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
29
|
Tourrière H, Gallouzi IE, Chebli K, Capony JP, Mouaikel J, van der Geer P, Tazi J. RasGAP-associated endoribonuclease G3Bp: selective RNA degradation and phosphorylation-dependent localization. Mol Cell Biol 2001; 21:7747-60. [PMID: 11604510 PMCID: PMC99945 DOI: 10.1128/mcb.21.22.7747-7760.2001] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen activation of mRNA decay pathways likely involves specific endoribonucleases, such as G3BP, a phosphorylation-dependent endoribonuclease that associates with RasGAP in dividing but not quiescent cells. G3BP exclusively cleaves between cytosine and adenine (CA) after a specific interaction with RNA through the carboxyl-terminal RRM-type RNA binding motif. Accordingly, G3BP is tightly associated with a subset of poly(A)(+) mRNAs containing its high-affinity binding sequence, such as the c-myc mRNA in mouse embryonic fibroblasts. Interestingly, c-myc mRNA decay is delayed in RasGAP-deficient fibroblasts, which contain a defective isoform of G3BP that is not phosphorylated at serine 149. A G3BP mutant in which this serine is changed to alanine remains exclusively cytoplasmic, whereas a glutamate for serine substitution that mimics the charge of a phosphorylated serine is translocated to the nucleus. Thus, a growth factor-induced change in mRNA decay may be modulated by the nuclear localization of a site-specific endoribonuclease such as G3BP.
Collapse
Affiliation(s)
- H Tourrière
- Institut de Génétique Moléculaire de Montpellier (IGM), UMR 5535 CNRS, Université Montpellier II, IFR 24, F34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Misquitta CM, Iyer VR, Werstiuk ES, Grover AK. The role of 3'-untranslated region (3'-UTR) mediated mRNA stability in cardiovascular pathophysiology. Mol Cell Biochem 2001; 224:53-67. [PMID: 11693200 DOI: 10.1023/a:1011982932645] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Knowledge of transcription and translation has advanced our understanding of cardiac diseases. Here, we present the hypothesis that the stability of mRNA mediated by the 3'-untranslated region (3'-UTR) plays a role in changing gene expression in cardiovascular pathophysiology. Several proteins that bind to sequences in the 3'-UTR of mRNA of cardiovascular targets have been identified. The affected mRNAs include those encoding beta-adrenergic receptors, angiotensin II receptors, endothelial and inducible nitric oxide synthases, cyclooxygenase, endothelial growth factor, tissue necrosis factor (TNF-alpha), globin, elastin, proteins involved in cell cycle regulation, oncogenes, cytokines and lymphokines. We discuss: (a) the types of 3'-UTR sequences involved in mRNA stability, (b) AUF1, HuR and other proteins that bind to these sequences to either stabilize or destabilize the target mRNAs, and (c) the potential role of the 3'-UTR mediated mRNA stability in heart failure, myocardial infarction and hypertension. We hope that these concepts will aid in better understanding cardiovascular diseases and in developing new therapies.
Collapse
Affiliation(s)
- C M Misquitta
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
31
|
Stefanovic B, Hellerbrand C, Brenner DA. Regulatory role of the conserved stem-loop structure at the 5' end of collagen alpha1(I) mRNA. Mol Cell Biol 1999; 19:4334-42. [PMID: 10330174 PMCID: PMC104393 DOI: 10.1128/mcb.19.6.4334] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three fibrillar collagen mRNAs, alpha1(I), alpha2(I), and alpha1(III), are coordinately upregulated in the activated hepatic stellate cell (hsc) in liver fibrosis. These three mRNAs contain sequences surrounding the start codon that can be folded into a stem-loop structure. We investigated the role of this stem-loop structure in expression of collagen alpha1(I) reporter mRNAs in hsc's and fibroblasts. The stem-loop dramatically decreases accumulation of mRNAs in quiescent hsc's and to a lesser extent in activated hsc's and fibroblasts. The stem-loop decreases mRNA stability in fibroblasts. In activated hsc's and fibroblasts, a protein complex binds to the stem-loop, and this binding requires the presence of a 7mG cap on the RNA. Placing the 3' untranslated region (UTR) of collagen alpha1(I) mRNA in a reporter mRNA containing this stem-loop further increases the steady-state level in activated hsc's. This 3' UTR binds alphaCP, a protein implicated in increasing stability of collagen alpha1(I) mRNA in activated hsc's (B. Stefanovic, C. Hellerbrand, M. Holcik, M. Briendl, S. A. Liebhaber, and D. A. Brenner, Mol. Cell. Biol. 17:5201-5209, 1997). A set of protein complexes assembles on the 7mG capped stem-loop RNA, and a 120-kDa protein is specifically cross-linked to this structure. Thus, collagen alpha1(I) mRNA is regulated by a complex interaction between the 5' stem-loop and the 3' UTR, which may optimize collagen production in activated hsc's.
Collapse
Affiliation(s)
- B Stefanovic
- Departments of Medicine and Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
32
|
Dibbens JA, Miller DL, Damert A, Risau W, Vadas MA, Goodall GJ. Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol Biol Cell 1999; 10:907-19. [PMID: 10198046 PMCID: PMC25213 DOI: 10.1091/mbc.10.4.907] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of developmental, physiological, and tumor angiogenesis. Upregulation of VEGF expression by hypoxia appears to be a critical step in the neovascularization of solid cancers. The VEGF mRNA is intrinsically labile, but in response to hypoxia the mRNA is stabilized. We have systematically analyzed the regions in the VEGF mRNA that are responsible for its lability under normoxic conditions and for stabilization in response to hypoxia. We find that the VEGF mRNA not only contains destabilizing elements in its 3' untranslated region (3'UTR), but also contains destabilizing elements in the 5'UTR and coding region. Each region can independently promote mRNA degradation, and together they act additively to effect rapid degradation under normoxic conditions. Stabilization of the mRNA in response to hypoxia is completely dependent on the cooperation of elements in each of the 5'UTR, coding region, and 3'UTR. Combinations of any of two of these three regions were completely ineffective in responding to hypoxia, whereas combining all three regions allowed recapitulation of the hypoxic stabilization seen with the endogenous VEGF mRNA. We conclude that multiple regions in the VEGF mRNA cooperate both to ensure the rapid degradation of the mRNA under normoxic conditions and to allow stabilization of the mRNA in response to hypoxia. Our findings highlight the complexity of VEGF gene expression and also reveal a mechanism of gene regulation that could become the target for strategies of therapeutic intervention.
Collapse
Affiliation(s)
- J A Dibbens
- Hanson Centre for Cancer Research, Adelaide, South Australia 5000, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Sivak LE, Pont-Kingdon G, Le K, Mayr G, Tai KF, Stevens BT, Carroll WL. A novel intron element operates posttranscriptionally To regulate human N-myc expression. Mol Cell Biol 1999; 19:155-63. [PMID: 9858540 PMCID: PMC83874 DOI: 10.1128/mcb.19.1.155] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1998] [Accepted: 09/23/1998] [Indexed: 11/20/2022] Open
Abstract
Precisely regulated expression of oncogenes and tumor suppressor genes is essential for normal development, and deregulated expression can lead to cancer. The human N-myc gene normally is expressed in only a subset of fetal epithelial tissues, and its expression is extinguished in all adult tissues except transiently in pre-B lymphocytes. The N-myc gene is overexpressed due to genomic amplification in the childhood tumor neuroblastoma. In previous work to investigate mechanisms of regulation of human N-myc gene expression, we observed that N-myc promoter-chloramphemicol acelyltransferase reporter constructs containing sequences 5' to exon 1 were active in all cell types examined, regardless of whether endogenous N-myc RNA was detected. In contrast, inclusion of the first exon and a portion of the first intron allowed expression only in those cell types with detectable endogenous N-myc transcripts. We investigated further the mechanisms by which this tissue-specific control of N-myc expression is achieved. Using nuclear run-on analyses, we determined that the N-myc gene is actively transcribed in all cell types examined, indicating a posttranscriptional mode of regulation. Using a series of N-myc intron 1 deletion constructs, we localized a 116-bp element (tissue-specific element [TSE]) within the first intron that directs tissue-specific N-myc expression. The TSE can function independently to regulate expression of a heterologous promoter-reporter minigene in a cell-specific pattern that mirrors the expression pattern of the endogenous N-myc gene. Surprisingly, the TSE can function in both sense and antisense orientations to regulate gene expression. Our data indicate that the human N-myc TSE functions through a posttranscriptional mechanism to regulate N-myc expression.
Collapse
Affiliation(s)
- L E Sivak
- Department of Experimental Pathology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Coller JM, Gray NK, Wickens MP. mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes Dev 1998; 12:3226-35. [PMID: 9784497 PMCID: PMC317214 DOI: 10.1101/gad.12.20.3226] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/1998] [Accepted: 08/27/1998] [Indexed: 11/24/2022]
Abstract
Translation and mRNA stability are enhanced by the presence of a poly(A) tail. In vivo, the tail interacts with a conserved polypeptide, poly(A) binding protein (Pab1p). To examine Pab1p function in vivo, we have tethered Pab1p to the 3' UTR of reporter mRNAs by fusing it to MS2 coat protein and placing MS2 binding sites in the 3' UTR of the reporter. This strategy allows us to uncouple Pab1p function from its RNA binding activity. We show that mRNAs that lack a poly(A) tail in vivo are stabilized by Pab1p, and that the portions of Pab1p required for stabilization are genetically distinct from those required for poly(A) binding. In addition, stabilization by Pab1p requires ongoing translation of the mRNA. We conclude that the primary, or sole, function of poly(A) with respect to mRNA stability is simply to bring Pab1p to the mRNA, and that mRNA stabilization is an intrinsic property of Pab1p. The approach we describe may be useful in identifying and assaying 3' UTR regulatory proteins, as it uncouples analysis of function from RNA binding.
Collapse
Affiliation(s)
- J M Coller
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544 USA
| | | | | |
Collapse
|
35
|
Gallouzi IE, Parker F, Chebli K, Maurier F, Labourier E, Barlat I, Capony JP, Tocque B, Tazi J. A novel phosphorylation-dependent RNase activity of GAP-SH3 binding protein: a potential link between signal transduction and RNA stability. Mol Cell Biol 1998; 18:3956-65. [PMID: 9632780 PMCID: PMC108980 DOI: 10.1128/mcb.18.7.3956] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A potential p120 GTPase-activating protein (RasGAP) effector, G3BP (RasGAP Src homology 3 [SH3] binding protein), was previously identified based on its ability to bind the SH3 domain of RasGAP. Here we show that G3BP colocalizes and physically interacts with RasGAP at the plasma membrane of serum-stimulated but not quiescent Chinese hamster lung fibroblasts. In quiescent cells, G3BP was hyperphosphorylated on serine residues, and this modification was essential for its activity. Indeed, G3BP harbors a phosphorylation-dependent RNase activity which specifically cleaves the 3'-untranslated region of human c-myc mRNA. The endoribonuclease activity of G3BP can initiate mRNA degradation and therefore represents a link between a RasGAP-mediated signaling pathway and RNA turnover.
Collapse
Affiliation(s)
- I E Gallouzi
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Université Montpellier II, F34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Paulin FE, Chappell SA, Willis AE. A single nucleotide change in the c-myc internal ribosome entry segment leads to enhanced binding of a group of protein factors. Nucleic Acids Res 1998; 26:3097-103. [PMID: 9628905 PMCID: PMC147696 DOI: 10.1093/nar/26.13.3097] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A 340 nucleotide section of the c- myc 5' untranslated region (UTR) contains an internal ribosome entry segment. We have described previously a mutation in this region of RNA in cell lines derived from patients with multiple myeloma (MM) which exhibit increased expression of c- myc protein by an aberrant translational mechanism. In this study we show by electrophoretic mobility shift assays (EMSA), north-western blotting and UV cross-linking that radiolabelled c- myc 5' UTR RNA transcripts which harbour the mutation cause enhanced binding of cellular proteins. In addition, we also demonstrate that an MM derived cell line possesses an altered repertoire of RNA binding proteins. Our data suggest that the deregulated expression of c -myc in MM could result both from the effect of the mutation and the additional proteins which are present in these cell types.
Collapse
Affiliation(s)
- F E Paulin
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | | | | |
Collapse
|
37
|
Sokolowski M, Tan W, Jellne M, Schwartz S. mRNA instability elements in the human papillomavirus type 16 L2 coding region. J Virol 1998; 72:1504-15. [PMID: 9445054 PMCID: PMC124632 DOI: 10.1128/jvi.72.2.1504-1515.1998] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1997] [Accepted: 11/03/1997] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus capsid proteins L1 and L2 are detected only in terminally differentiated cells, indicating that expression of the L1 and L2 genes is blocked in dividing cells. The results presented here establish that the human papillomavirus type 16 L2 coding region contains cis-acting inhibitory sequences. When placed downstream of a reporter gene, the human papillomavirus type 16 L2 sequence reduced both mRNA and protein levels in an orientation-dependent manner. Deletion analysis revealed that the L2 sequence contains two cis-acting inhibitory RNA regions. We identified an inhibitory region in the 5'-most 845 nucleotides of L2 that acted by reducing cytoplasmic mRNA stability and a second, weaker inhibitory region in the 3' end of L2. In contrast, human papillomavirus type 1 L1 and L2 genes did not encode strong inhibitory sequences. This result is consistent with observations of high virus production in human papillomavirus type 1-infected tissue, whereas only low levels of human papillomavirus type 16 virions are detectable in infected epithelium. The presence of inhibitory sequences in the L1 and L2 mRNAs may aid the virus in avoiding the host immunosurveillance and in establishing persistent infections.
Collapse
Affiliation(s)
- M Sokolowski
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
38
|
Abstract
Histone mRNA is destabilized at the end of S phase and in cell-free mRNA decay reaction mixtures supplemented with histone proteins, indicating that histones might autoregulate the histone mRNA half-life. Histone mRNA destabilization in vitro requires three components: polysomes, histones, and postpolysomal supernatant (S130). Polysomes are the source of the mRNA and mRNA-degrading enzymes. To investigate the role of the S130 in autoregulation, crude S130 was fractionated by histone-agarose affinity chromatography. Two separate activities affecting the histone mRNA half-life were detected. The histone-agarose-bound fraction contained a histone mRNA destabilizer that was activated by histone proteins; the unbound fraction contained a histone mRNA stabilizer. Further chromatographic fractionation of unbound material revealed only a single protein stabilizer, which was purified to homogeneity, partially sequenced, and found to be La, a well-characterized RNA-binding protein. When purified La was added to reaction mixtures containing polysomes, a histone mRNA decay intermediate was stabilized. This intermediate corresponded to histone mRNA lacking 12 nucleotides from its 3' end and containing an intact coding region. Anti-La antibody blocked the stabilization effect. La had little or no effect on several other cell cycle-regulated mRNAs. We suggest that La prolongs the histone mRNA half-life during S phase and thereby increases histone protein production.
Collapse
Affiliation(s)
- R S McLaren
- McArdle Laboratory for Cancer Research University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
39
|
Yeilding NM, Lee WM. Coding elements in exons 2 and 3 target c-myc mRNA downregulation during myogenic differentiation. Mol Cell Biol 1997; 17:2698-707. [PMID: 9111340 PMCID: PMC232120 DOI: 10.1128/mcb.17.5.2698] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Downregulation in expression of the c-myc proto-oncogene is an early molecular event in differentiation of murine C2C12 myoblasts into multinucleated myotubes. During differentiation, levels of c-myc mRNA decrease 3- to 10-fold despite a lack of change in its transcription rate. To identify cis-acting elements that target c-myc mRNA for downregulation during myogenesis, we stably transfected C2C12 cells with mutant myc genes or chimeric genes in which various myc sequences were fused to the human beta-globin gene or to the bacterial chloramphenicol acetyltransferase (CAT) gene. Deletion of coding sequences from myc exon 2 or exon 3 abolished downregulation of myc mRNA during myogenic differentiation, while deletion of introns or sequences in the 5' or 3' untranslated regions (UTRs) did not, demonstrating that coding elements in both exons 2 and 3 are necessary for myc mRNA downregulation. Fusion of coding sequences from either myc exon 2 or 3 to beta-globin mRNA conferred downregulation onto the chimeric mRNA, while fusion of myc 3' UTR sequences or coding sequences from CAT or ribosomal protein L32 did not, demonstrating that coding elements in myc exons 2 and 3 specifically confer downregulation. These results present the apparent paradox that coding elements in either myc exon 2 or myc exon 3 are sufficient to confer downregulation onto beta-globin mRNA, but neither element alone was sufficient for myc mRNA downregulation, suggesting that some feature of beta-globin mRNA may potentiate the regulatory properties of myc exons 2 and 3. A similar regulatory function is not shared by all mRNAs because fusion of either myc exon 2 or myc exon 3 to CAT mRNA did not confer downregulation onto the chimeric mRNA, but fusion of the two elements together did. We conclude from these results that two myc regulatory elements, one exon 2 and one in exon 3, are required for myc mRNA downregulation. Finally, using a highly sensitive and specific PCR-based assay for comparing mRNA levels, we demonstrated that the downregulation mediated by myc exons 2 and 3 results in a decrease in cytoplasmic mRNA levels, but not nuclear mRNA levels, indicating that regulation is a postnuclear event.
Collapse
Affiliation(s)
- N M Yeilding
- Department of Medicine and Cancer Center, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
40
|
Pistoi S, Roland J, Babinet C, Morello D. Exon 2-mediated c-myc mRNA decay in vivo is independent of its translation. Mol Cell Biol 1996; 16:5107-16. [PMID: 8756668 PMCID: PMC231511 DOI: 10.1128/mcb.16.9.5107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have previously shown that the steady-state level of c-myc mRNA in vivo is primarily controlled by posttranscriptional regulatory mechanisms. To identify the sequences involved in this process, we constructed a series of H-2/myc transgenic lines in which various regions of the human c-MYC gene were placed under the control of the quasi-ubiquitous H-2K class I regulatory sequences. We demonstrated that the presence of one of the two coding exons, exon 2 or exon 3, is sufficient to confer a level of expression of transgene mRNA similar to that of endogenous c-myc in various adult tissues as well as after partial hepatectomy or after protein synthesis inhibition. We now focus on the molecular mechanisms involved in modulation of expression of mRNAs containing c-myc exon 2 sequences, with special emphasis on the coupling between translation and c-myc mRNA turnover. We have undertaken an analysis of expression, both at the mRNA level and at the protein level, of new transgenic constructs in which the translation is impaired either by disruption of the initiation codon or by addition of stop codons upstream of exon 2. Our results show that the translation of c-myc exon 2 is not required for regulated expression of the transgene in the different situations analyzed, and therefore they indicate that the mRNA destabilizing function of exon 2 is independent of translation by ribosomes. Our investigations also reveal that, in the thymus, some H-2/myc transgenes express high levels of mRNA but low levels of protein. Besides the fact that these results suggest the existence of tissue-specific mechanisms that control c-myc translatability in vivo, they also bring another indication of the uncoupling of c-myc mRNA translation and degradation.
Collapse
Affiliation(s)
- S Pistoi
- Department of Immunology, Unité de Biologie du Développement, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
41
|
Yeilding NM, Rehman MT, Lee WM. Identification of sequences in c-myc mRNA that regulate its steady-state levels. Mol Cell Biol 1996; 16:3511-22. [PMID: 8668167 PMCID: PMC231346 DOI: 10.1128/mcb.16.7.3511] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The level of cellular myc proto-oncogene expression is rapidly regulated in response to environmental signals and influences cell proliferation and differentiation. Regulation is dependent on the fast turnover of c-myc mRNA, which enables cells to rapidly alter c-myc mRNA levels. Efforts to identify elements in myc mRNA responsible for its instability have used a variety of approaches, all of which require manipulations that perturb normal cell metabolism. These various approaches have implicated different regions of the mRNA and have led to a lack of consensus over which regions actually dictate rapid turnover and low steady-state levels of c-myc mRNA. To identify these regions by an approach that does not perturb cell metabolism acutely and that directly assesses the effect of a c-myc mRNA region on the steady-state levels of c-myc mRNA, we developed an assay using reverse transcription and PCR to compare the steady-state levels of human myc mRNAs transcribed from two similarly constructed myc genes transiently cotransfected into proliferating C2C12 myoblasts. Deletion mutations were introduced into myc genes, and the levels of their mRNAs were compared with that of a near-normal, reference myc mRNA. Deletion of most of the myc 3' untranslated region (UTR) raised myc mRNA levels, while deletion of sequences in the myc 5' UTR (most of exon 1), exon 2, or the protein-coding region of exon 3 did not, thus demonstrating that the 3' UTR is responsible for keeping myc mRNA levels low. Using a similar reverse transcription-PCR assay for comparing the steady-state levels of two beta-globin-myc fusion mRNAs, we showed that fusion of the myc 3' UTR lowers globin mRNA levels by destabilizing beta-globin mRNA. Surprisingly, fusion of the protein-coding region of myc exon 3 also lowered globin mRNA steady-state levels. Investigating the possibility that exon 3 coding sequences may play some other role in regulating c-myc mRNA turnover, we demonstrated that these sequences, but not myc 3' UTR sequences, are necessary for the normal posttranscriptional downregulation of c-myc mRNA during myoblast differentiation. We conclude that, while two elements within c-myc mRNA can act as instability determinants in a heterologous context, only the instability element in the 3' UTR regulates its steady-state levels in proliferating C2C12 cells.
Collapse
Affiliation(s)
- N M Yeilding
- Department of Medicine and Cancer Center, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | |
Collapse
|
42
|
Zelus BD, Stewart RS, Ross J. The virion host shutoff protein of herpes simplex virus type 1: messenger ribonucleolytic activity in vitro. J Virol 1996; 70:2411-9. [PMID: 8642669 PMCID: PMC190084 DOI: 10.1128/jvi.70.4.2411-2419.1996] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Shortly after tissue culture cells are infected with herpes simplex virus (HSV) type 1 or 2, the rate of host protein synthesis decreases 5- to 10-fold and most host mRNAs are degraded. mRNA destabilization is triggered by the virion host shutoff (vhs) protein, a virus encoded, 58-kDa protein located in the virion tegument. To determine whether it can function as a messenger RNase (mRNase), the capacity of vhs protein to degrade RNA in vitro in absence of host cell components was assessed. Two sources of vhs protein were used in these assays: crude extract from virions or protein translated in a reticulocyte-free system. In each case, wild-type but not mutant vhs protein degraded various RNA substrates. Preincubation with anti-vhs antibody blocked RNase activity. These studies do not prove that vhs protein on its own is an mRNase but do demonstrate that the protein, either on its own or in conjunction with another factor(s), has the biochemical property of an mRNase, consistent with its role in infected cells.
Collapse
Affiliation(s)
- B D Zelus
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
43
|
Skuse GR, Cappione AJ, Sowden M, Metheny LJ, Smith HC. The neurofibromatosis type I messenger RNA undergoes base-modification RNA editing. Nucleic Acids Res 1996; 24:478-85. [PMID: 8602361 PMCID: PMC145654 DOI: 10.1093/nar/24.3.478] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A functional mooring sequence, known to be required for apolipoprotein B (apoB) mRNA editing, exists in the mRNA encoding the neurofibromatosis type I (NF1) tumor suppressor. Editing of NF1 mRNA modifies cytidine in an arginine codon (CGA) at nucleotide 2914 to a uridine (UGA), creating an in frame translation stop codon. NF1 editing occurs in normal tissue but was several-fold higher in tumors. In vitro editing and transfection assays demonstrated that apoB and NF1 RNA editing will take place in both neural tumor and hepatoma cells. Unlike apoB, NF1 editing did not demonstrate dependence on rate-limiting quantities of APOBEC-1 (the apoB editing catalytic subunit) suggesting that different trans-acting factors may be involved in the two editing processes.
Collapse
Affiliation(s)
- G R Skuse
- Department of Medicine, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | | | | | |
Collapse
|
44
|
Wennborg A, Sohlberg B, Angerer D, Klein G, von Gabain A. A human RNase E-like activity that cleaves RNA sequences involved in mRNA stability control. Proc Natl Acad Sci U S A 1995; 92:7322-6. [PMID: 7638189 PMCID: PMC41331 DOI: 10.1073/pnas.92.16.7322] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have detected an endoribonucleolytic activity in human cell extracts that processes the Escherichia coli 9S RNA and outer membrane protein A (ompA) mRNA with the same specificity as RNase E from E. coli. The human enzyme was partially purified by ion-exchange chromatography, and the active fractions contained a protein that was detected with antibodies shown to recognize E. coli RNase E. RNA containing four repeats of the destabilizing motif AUUUA and RNA from the 3' untranslated region of human c-myc mRNA were also found to be cleaved by E. coli RNase E and its human counterpart in a fashion that may suggest a role of this activity in mammalian mRNA decay. It was also found that RNA containing more than one AUUUA motif was cleaved more efficiently than RNA with only one or a mutated motif. This finding of a eukaryotic endoribonucleolytic activity corresponding to RNase E indicates an evolutionary conservation of the components of mRNA degradation systems.
Collapse
Affiliation(s)
- A Wennborg
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
45
|
Lavenu A, Pistoi S, Pournin S, Babinet C, Morello D. Both coding exons of the c-myc gene contribute to its posttranscriptional regulation in the quiescent liver and regenerating liver and after protein synthesis inhibition. Mol Cell Biol 1995; 15:4410-9. [PMID: 7623834 PMCID: PMC230681 DOI: 10.1128/mcb.15.8.4410] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In vivo, the steady-state level of c-myc mRNA is mainly controlled by posttranscriptional mechanisms. Using a panel of transgenic mice in which various versions of the human c-myc proto-oncogene were under the control of major histocompatibility complex H-2Kb class I regulatory sequences, we have shown that the 5' and the 3' noncoding sequences are dispensable for obtaining a regulated expression of the transgene in adult quiescent tissues, at the start of liver regeneration, and after inhibition of protein synthesis. These results indicated that the coding sequences were sufficient to ensure a regulated c-myc expression. In the present study, we have pursued this analysis with transgenes containing one or the other of the two c-myc coding exons either alone or in association with the c-myc 3' untranslated region. We demonstrate that each of the exons contains determinants which control c-myc mRNA expression. Moreover, we show that in the liver, c-myc exon 2 sequences are able to down-regulate an otherwise stable H-2K mRNA when embedded within it and to induce its transient accumulation after cycloheximide treatment and soon after liver ablation. Finally, the use of transgenes with different coding capacities has allowed us to postulate that the primary mRNA sequence itself and not c-Myc peptides is an important component of c-myc posttranscriptional regulation.
Collapse
Affiliation(s)
- A Lavenu
- Department of Immunology, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
46
|
L'Ecuyer TJ, Tompach PC, Morris E, Fulton AB. Transdifferentiation of chicken embryonic cells into muscle cells by the 3' untranslated region of muscle tropomyosin. Proc Natl Acad Sci U S A 1995; 92:7520-4. [PMID: 7638223 PMCID: PMC41371 DOI: 10.1073/pnas.92.16.7520] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transfection with a plasmid encoding the 3' untranslated region (3' UTR) of skeletal muscle tropomyosin induces chicken embryonic fibroblasts to express skeletal tropomyosin. Such cells become spindle shaped, fuse, and express titin, a marker of striated muscle differentiation. Skeletal muscle tropomyosin and titin organize in sarcomeric arrays. When the tropomyosin 3' UTR is expressed in osteoblasts, less skeletal muscle tropomyosin is expressed, and titin expression is delayed. Some transfected osteoblasts become spindle shaped but do not fuse nor organize these proteins into sarcomeres. Transfected cells expressing muscle tropomyosin organize muscle and nonmuscle isoforms into the same structures. Thus, the skeletal muscle tropomyosin 3' UTR induces transdifferentiation into a striated muscle phenotype in a cell-type-specific context.
Collapse
Affiliation(s)
- T J L'Ecuyer
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
47
|
Weiss IM, Liebhaber SA. Erythroid cell-specific mRNA stability elements in the alpha 2-globin 3' nontranslated region. Mol Cell Biol 1995; 15:2457-65. [PMID: 7739530 PMCID: PMC230475 DOI: 10.1128/mcb.15.5.2457] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Very little is known about the mechanisms mediating longevities of mRNAs. As a means of identifying potential cis- and trans-acting elements which stabilize an individual mRNA, naturally occurring mutations that decreased stability of the normally long-lived globin mRNA were analyzed. Our previous studies demonstrated that a subset of mutations which allowed the translating ribosome to read through into the alpha 2-globin 3' nontranslated region (NTR) targeted the mutant mRNAs for accelerated turnover in erythroid cells but not in several nonerythroid cell lines (I. M. Weiss and S. A. Liebhaber, Mol. Cell. Biol. 14:8123-8132, 1994). These results suggested that translational readthrough interfered with some feature of the alpha 2-globin 3' NTR required for message stability in erythroid cells. To define the cis-acting sequences which comprise this erythroid cell-specific stability determinant, scanning mutagenesis was performed on the alpha 2-globin 3' NTR, and the stability of each mutant mRNA was examined during transient expression. Three cytidine-rich regions which are required for longevity of the alpha 2-globin mRNA were identified. However, in contrast to the readthrough mutations, base substitutions in these elements destabilize the message through a translation-independent mechanism. To account for these results, we propose that the cis-acting elements form a complex or determinant in the normal alpha 2-globin mRNA which protects the message from degradation in erythroid cells. Disruption of this determinant, by translational readthrough or because mutations in an element prevent or inhibit its formation, targets the message for accelerated turnover in these cells.
Collapse
Affiliation(s)
- I M Weiss
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
48
|
Zhang S, Ruiz-Echevarria MJ, Quan Y, Peltz SW. Identification and characterization of a sequence motif involved in nonsense-mediated mRNA decay. Mol Cell Biol 1995; 15:2231-44. [PMID: 7891717 PMCID: PMC230451 DOI: 10.1128/mcb.15.4.2231] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In both prokaryotes and eukaryotes, nonsense mutations in a gene can enhance the decay rate or reduce the abundance of the mRNA transcribed from that gene, and we call this process nonsense-mediated mRNA decay. We have been investigating the cis-acting sequences involved in this decay pathway. Previous experiments have demonstrated that, in addition to a nonsense codon, specific sequences 3' of a nonsense mutation, which have been defined as downstream elements, are required for mRNA destabilization. The results presented here identify a sequence motif (TGYYGATGYYYYY, where Y stands for either T or C) that can predict regions in genes that, when positioned 3' of a nonsense codon, promote rapid decay of its mRNA. Sequences harboring two copies of the motif from five regions in the PGK1, ADE3, and HIS4 genes were able to function as downstream elements. In addition, four copies of this motif can function as an independent downstream element. The sequences flanking the motif played a more significant role in modulating its activity when fewer copies of the sequence motif were present. Our results indicate the sequences 5' of the motif can modulate its activity by maintaining a certain distance between the sequence motif and the termination codon. We also suggest that the sequences 3' of the motif modulate the activity of the downstream element by forming RNA secondary structures. Consistent with this view, a stem-loop structure positioned 3' of the sequence motif can enhance the activity of the downstream element. This sequence motif is one of the few elements that have been identified that can predict regions in genes that can be involved in mRNA turnover. The role of these sequences in mRNA decay is discussed.
Collapse
Affiliation(s)
- S Zhang
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854
| | | | | | | |
Collapse
|
49
|
Jeon S, Lambert PF. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A 1995; 92:1654-8. [PMID: 7878034 PMCID: PMC42578 DOI: 10.1073/pnas.92.5.1654] [Citation(s) in RCA: 387] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In many cervical cancers, human papillomavirus type 16 (HPV-16) DNA genomes are found to be integrated into the host chromosome. In this study, we demonstrate that integration of HPV-16 DNA leads to increased steady-state levels of mRNAs encoding the viral oncogenes E6 and E7. This increase is shown to result, at least in part, from an increased stability of E6 and E7 mRNAs that arise specifically from those integrated viral genomes disrupted in the 3' untranslated region of the viral early region. Further, we demonstrate that the A+U-rich element within this viral early 3' untranslated region confers instability on a heterologous mRNA. We conclude that integration of HPV-16 DNA, as occurs in cervical cancers, can result in the increased expression of the viral E6 and E7 oncogenes through altered mRNA stability.
Collapse
Affiliation(s)
- S Jeon
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706
| | | |
Collapse
|
50
|
Abstract
Although globin mRNAs are considered prototypes of highly stable messages, the mechanisms responsible for their longevity remain largely undefined. As an initial step in identifying potential cis-acting elements or structures which contribute to their stability, we analyzed the defect in expression of a naturally occurring alpha 2-globin mutant, alpha Constant Spring (CS). The CS mutation is a single-base change in the translation termination codon (UAA-->CAA) that allows the ribosome to read through into the 3' nontranslated region (NTR). The presence of CS mRNA in transcriptionally active erythroid precursors and its absence (relative to normal alpha-globin mRNA) in the more differentiated transcriptionally silent erythrocytes suggest that this mutation disrupts some feature of the alpha-globin mRNA required for its stability. Using a transient transfection system, we demonstrate that in murine erythroleukemia cells the CS mRNA is unstable compared with the normal alpha 2-globin mRNA. The analyses of several other naturally occurring and site-directed mutant alpha-globin genes in murine erythroleukemia cells indicate that entry of a translating ribosome into the 3' NTR targets the message for accelerated degradation in erythroid cells. In contrast, both the CS and alpha 2-globin mRNAs are stable in several nonerythroid cell lines. These results suggest that translational readthrough disrupts a determinant associated with the alpha 2-globin 3' NTR which is required for mRNA stability in erythroid cells.
Collapse
|