1
|
Tatosyan KA, Stasenko DV, Koval AP, Gogolevskaya IK, Kramerov DA. TATA-Like Boxes in RNA Polymerase III Promoters: Requirements for Nucleotide Sequences. Int J Mol Sci 2020; 21:ijms21103706. [PMID: 32466110 PMCID: PMC7279448 DOI: 10.3390/ijms21103706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023] Open
Abstract
tRNA and some other non-coding RNA genes are transcribed by RNA polymerase III (pol III), due to the presence of intragenic promoter, consisting of boxes A and B spaced by 30–40 bp. Such pol III promoters, called type 2, are also intrinsic to Short Interspersed Elements (SINEs). The contribution of 5′-flanking sequences to the transcription efficiency of genes containing type 2 promoters is still studied insufficiently. Here, we studied this issue, focusing on the genes of two small non-coding RNAs (4.5SH and 4.5SI), as well as B1 and B2 SINEs from the mouse genome. We found that the regions from position −31 to −24 may significantly influence the transcription of genes and SINEs. We studied the influence of nucleotide substitutions in these sites, representing TATA-like boxes, on transcription of 4.5SH and 4.5SI RNA genes. As a rule, the substitutions of A and T to G or C reduced the transcription level, although the replacement of C with A also lowered it. In 4.5SH gene, five distal nucleotides of −31/−24 box (TTCAAGTA) appeared to be the most important, while in the box −31/−24 of 4.5SI gene (CTACATGA), all nucleotides, except for the first one, contributed significantly to the transcription efficiency. Random sequences occurring at positions −31/−24 upstream of SINE copies integrated into genome, promoted their transcription with different efficacy. In the 5′-flanking sequences of 4.5SH and 4.5SI RNA genes, the recognition sites of CREB, C/EBP, and Sp1 factors were found, and their deletion decreased the transcription.
Collapse
|
2
|
Ramsay EP, Vannini A. Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:285-294. [PMID: 29155071 DOI: 10.1016/j.bbagrm.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 01/03/2023]
Abstract
RNA polymerase III catalyses the synthesis of tRNAs in eukaryotic organisms. Through combined biochemical and structural characterisation, multiple auxiliary factors have been identified alongside RNA Polymerase III as critical in both facilitating and regulating transcription. Together, this machinery forms dynamic multi-protein complexes at tRNA genes which are required for polymerase recruitment, DNA opening and initiation and elongation of the tRNA transcripts. Central to the function of these complexes is their ability to undergo multiple conformational changes and rearrangements that regulate each step. Here, we discuss the available biochemical and structural data on the structural plasticity of multi-protein complexes involved in RNA Polymerase III transcriptional initiation and facilitated re-initiation during tRNA synthesis. Increasingly, structural information is becoming available for RNA polymerase III and its functional complexes, allowing for a deeper understanding of tRNA transcriptional initiation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
MESH Headings
- Animals
- Eukaryotic Cells/metabolism
- Humans
- Models, Genetic
- Multiprotein Complexes/metabolism
- Promoter Regions, Genetic/genetics
- Protein Subunits
- RNA Polymerase III/chemistry
- RNA Polymerase III/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer, Amino Acid-Specific/biosynthesis
- RNA, Transfer, Amino Acid-Specific/genetics
- Transcription Elongation, Genetic
- Transcription Factors/genetics
- Transcription Initiation, Genetic
Collapse
|
3
|
The 5S rDNA High Dynamism in Diplodus sargus is a Transposon-Mediated Mechanism. Comparison with Other Multigene Families and Sparidae Species. J Mol Evol 2013; 76:83-97. [DOI: 10.1007/s00239-013-9541-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/10/2013] [Indexed: 01/27/2023]
|
4
|
Tsihlis ND, Grove A. The Saccharomyces cerevisiae RNA polymerase III recruitment factor subunits Brf1 and Bdp1 impose a strict sequence preference for the downstream half of the TATA box. Nucleic Acids Res 2006; 34:5585-93. [PMID: 17028095 PMCID: PMC1636458 DOI: 10.1093/nar/gkl534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Association of the TATA-binding protein (TBP) with its cognate site within eukaryotic promoters is key to accurate and efficient transcriptional initiation. To achieve recruitment of Saccharomyces cerevisiae RNA polymerase III, TBP is associated with two additional factors, Brf1 and Bdp1, to form the initiation factor TFIIIB. Previous data have suggested that the structure or dynamics of the TBP–DNA complex may be altered upon entry of Brf1 and Bdp1 into the complex. We show here, using the altered specificity TBP mutant TBPm3 and an iterative in vitro selection assay, that entry of Brf1 and Bdp1 into the complex imposes a strict sequence preference for the downstream half of the TATA box. Notably, the selected sequence (TGTAAATA) is a perfect match to the TATA box of the RNA polymerase III-transcribed U6 small nuclear RNA (SNR6) gene. We suggest that the selected T•A base pair step at the downstream end of the 8 bp TBP site may provide a DNA flexure that promotes TFIIIB-DNA complex formation.
Collapse
Affiliation(s)
| | - Anne Grove
- To whom correspondence should be addressed. Tel: +1 225 578 5148; Fax: +1 225 578 8790;
| |
Collapse
|
5
|
Dieci G, Yukawa Y, Alzapiedi M, Guffanti E, Ferrari R, Sugiura M, Ottonello S. Distinct modes of TATA box utilization by the RNA polymerase III transcription machineries from budding yeast and higher plants. Gene 2006; 379:12-25. [PMID: 16839711 DOI: 10.1016/j.gene.2006.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/23/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
The TATA box is a key upstream control element for basal tRNA gene transcription by RNA polymerase III in some eukaryotes, such as the fission yeast (Schizosaccharomyces pombe) and higher plants, but not in others such as the budding yeast (Saccharomyces cerevisiae). To gain information on this differential TATA box requirement, we examined side-by-side the in vitro transcription properties of TATA-containing and TATA-mutated plant and S. cerevisiae tDNAs in homologous in vitro transcription systems from both organisms and in a hybrid system in which yeast TBP was replaced by its plant homologue. The data support the general conclusion that specific features of the plant transcription machinery, rather than upstream region architecture per se, are responsible for the much stronger TATA box dependence of the plant system. In both systems, however, a strong influence of the TATA box on transcription start site selection was observed. This was particularly striking in the case of plant tDNAs, where TATA-rich upstream regions were found to favour the use of alternative initiation sites. Replacement of yeast TBP with its plant counterpart did not confer any general TATA box responsiveness to the yeast transcription machinery. Interactions involving components other than TBP are thus responsible for the strong TATA box requirement of plant tDNA transcription.
Collapse
Affiliation(s)
- Giorgio Dieci
- Department of Biochemistry and Molecular Biology, University of Parma, Parco Area delle Scienze 23A, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
6
|
Zhao X, Schramm L, Hernandez N, Herr W. A shared surface of TBP directs RNA polymerase II and III transcription via association with different TFIIB family members. Mol Cell 2003; 11:151-61. [PMID: 12535529 DOI: 10.1016/s1097-2765(02)00797-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The TATA box binding protein TBP is highly conserved and the only known basal factor that is involved in transcription by all three eukaryotic nuclear RNA polymerases from promoters with or without a TATA box. By mutagenesis and analysis on a selected set of four model pol II and pol III TATA box-containing and TATA-less promoters, we demonstrate that human TBP utilizes two modes to achieve its versatile functions. First, it uses a different set of surfaces on the conserved and structured TBP core domain to direct transcription from each of the four model promoters. Second, unlike yeast TBP, human TBP can use a shared surface to interact with two different TFIIB family members--TFIIB and Brf2--to initiate transcription by different RNA polymerases.
Collapse
Affiliation(s)
- Xuemei Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Laura Schramm
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
8
|
Yieh L, Hatzis H, Kassavetis G, Sandmeyer SB. Mutational analysis of the transcription factor IIIB-DNA target of Ty3 retroelement integration. J Biol Chem 2002; 277:25920-8. [PMID: 11994300 DOI: 10.1074/jbc.m202729200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ty3 retrovirus-like element inserts preferentially at the transcription initiation sites of genes transcribed by RNA polymerase III. The requirements for transcription factor (TF) IIIC and TFIIIB in Ty3 integration into the two initiation sites of the U6 gene carried on pU6LboxB were previously examined. Ty3 integrates at low but detectable frequencies in the presence of TFIIIB subunits Brf1 and TATA-binding protein. Integration increases in the presence of the third subunit, Bdp1. TFIIIC is not essential, but the presence of TFIIIC specifies an orientation of TFIIIB for transcriptional initiation and directs integration to the U6 gene-proximal initiation site. In the current study, recombinant wild type TATA-binding protein, wild type and mutant Brf1, and Bdp1 proteins and highly purified TFIIIC were used to investigate the roles of specific protein domains in Ty3 integration. The amino-terminal half of Brf1, which contains a TFIIB-like repeat, contributed more strongly than the carboxyl-terminal half of Brf1 to Ty3 targeting. Each half of Bdp1 split at amino acid 352 enhanced integration. In the presence of TFIIIB and TFIIIC, the pattern of integration extended downstream by several base pairs compared with the pattern observed in vitro in the absence of TFIIIC and in vivo, suggesting that TFIIIC may not be present on genes targeted by Ty3 in vivo. Mutations in Bdp1 that affect its interaction with TFIIIC resulted in TFIIIC-independent patterns of Ty3 integration. Brf1 zinc ribbon and Bdp1 internal deletion mutants that are competent for polymerase III recruitment but defective in promoter opening were competent for Ty3 integration irrespective of the state of DNA supercoiling. These results extend the similarities between the TFIIIB domains required for transcription and Ty3 integration and also reveal requirements that are specific to transcription.
Collapse
Affiliation(s)
- Lynn Yieh
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-1700, USA
| | | | | | | |
Collapse
|
9
|
Andrau JC, Werner M. B"-associated factor(s) involved in RNA polymerase III preinitiation complex formation and start-site selection. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5167-75. [PMID: 11589709 DOI: 10.1046/j.0014-2956.2001.02445.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The TFIIIB transcription factor is the central component of the RNA polymerase III transcriptional machinery. In yeast, this factor is composed of three essential polypeptides TBP, TFIIIB70 and TFIIIB90, that are sufficient as recombinant proteins, together with TFIIIC, to promote accurate transcription in vitro. Here we show that a partially purified fraction, named B", that contains the TFIIIB90 subunit, displays properties distinct from recombinant TFIIIB90. This fraction contains at least a component that interacts with DNA*TFIIIC complexes, either alone or in combination with TFIIIB90, and increases the resistance of the complexes to heparin treatment. In addition, primer extension and single round transcriptions experiment reveal a different start-site selection pattern directed by B" or rTFIIIB90. In mixing experiments, we show that an activity in B", distinct from TFIIIB90, can promote transcription initiation at the +1 site without affecting the rate of preinitiation complex formation. Our data suggest the existence of at least one new component that participates in preinitiation complex formation and influences start-site selection by RNA polymerase III.
Collapse
Affiliation(s)
- J C Andrau
- Service de Biochimie et Génétique Moléculaire, Bät. 142, CEA/Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | | |
Collapse
|
10
|
Hernandez N. Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J Biol Chem 2001; 276:26733-6. [PMID: 11390411 DOI: 10.1074/jbc.r100032200] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- N Hernandez
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
11
|
Affiliation(s)
- E P Geiduschek
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
12
|
Kruppa M, Moir RD, Kolodrubetz D, Willis IM. Nhp6, an HMG1 protein, functions in SNR6 transcription by RNA polymerase III in S. cerevisiae. Mol Cell 2001; 7:309-18. [PMID: 11239460 DOI: 10.1016/s1097-2765(01)00179-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nhp6A and Nhp6B are HMG1-like proteins required for the growth of S. cerevisiae at elevated temperatures. We show that the conditional lethality of an nhp6 strain results from defective transcription of SNR6 (U6 snRNA) by RNA polymerase III. Overexpression of U6 snRNA or Brf1, a limiting component of TFIIIB, and an activating mutation (PCF1-1) in TFIIIC were each found to suppress the nhp6 growth defect. Additionally, U6 snRNA levels, which are reduced over 10-fold in nhp6 cells at 37 degrees C, were restored by Brf1 overexpression and by PCF1-1. Nhp6A protein specifically enhanced TFIIIC-dependent, but not TATA box-dependent, SNR6 transcription in vitro by facilitating TFIIIC binding to the SNR6 promoter. Thus, Nhp6 has a direct role in transcription complex assembly at SNR6.
Collapse
MESH Headings
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Genes, Lethal/genetics
- HMGN Proteins
- High Mobility Group Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Polymerase III/chemistry
- RNA Polymerase III/metabolism
- RNA, Fungal/biosynthesis
- RNA, Fungal/genetics
- RNA, Ribosomal, 5S/biosynthesis
- RNA, Ribosomal, 5S/genetics
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Suppression, Genetic/genetics
- Temperature
- Transcription Factor TFIIIB
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors, TFIII/genetics
- Transcription Factors, TFIII/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- M Kruppa
- Department of Microbiology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
13
|
Schramm L, Pendergrast PS, Sun Y, Hernandez N. Different human TFIIIB activities direct RNA polymerase III transcription from TATA-containing and TATA-less promoters. Genes Dev 2000; 14:2650-63. [PMID: 11040218 PMCID: PMC316990 DOI: 10.1101/gad.836400] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcription initiation at RNA polymerase III promoters requires transcription factor IIIB (TFIIIB), an activity that binds to RNA polymerase III promoters, generally through protein-protein contacts with DNA binding factors, and directly recruits RNA polymerase III. Saccharomyces cerevisiae TFIIIB is a complex of three subunits, TBP, the TFIIB-related factor BRF, and the more loosely associated polypeptide beta("). Although human homologs for two of the TFIIIB subunits, the TATA box-binding protein TBP and the TFIIB-related factor BRF, have been characterized, a human homolog of yeast B(") has not been described. Moreover, human BRF, unlike yeast BRF, is not universally required for RNA polymerase III transcription. In particular, it is not involved in transcription from the small nuclear RNA (snRNA)-type, TATA-containing, RNA polymerase III promoters. Here, we characterize two novel activities, a human homolog of yeast B("), which is required for transcription of both TATA-less and snRNA-type RNA polymerase III promoters, and a factor equally related to human BRF and TFIIB, designated BRFU, which is specifically required for transcription of snRNA-type RNA polymerase III promoters. Together, these results contribute to the definition of the basal RNA polymerase III transcription machinery and show that two types of TFIIIB activities, with specificities for different classes of RNA polymerase III promoters, have evolved in human cells.
Collapse
Affiliation(s)
- L Schramm
- Department of Pharmacology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
14
|
Yieh L, Kassavetis G, Geiduschek EP, Sandmeyer SB. The Brf and TATA-binding protein subunits of the RNA polymerase III transcription factor IIIB mediate position-specific integration of the gypsy-like element, Ty3. J Biol Chem 2000; 275:29800-7. [PMID: 10882723 DOI: 10.1074/jbc.m003149200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ty3 integrates into the transcription initiation sites of genes transcribed by RNA polymerase III. It is known that transcription factors (TF) IIIB and IIIC are important for recruiting Ty3 to its sites of integration upstream of tRNA genes, but that RNA polymerase III is not required. In order to investigate the respective roles of TFIIIB and TFIIIC, we have developed an in vitro integration assay in which Ty3 is targeted to the U6 small nuclear RNA gene, SNR6. Because TFIIIB can bind to the TATA box upstream of the U6 gene through contacts mediated by TATA-binding protein (TBP), TFIIIC is dispensable for in vitro transcription. Thus, this system offers an opportunity to test the role of TFIIIB independent of a requirement of TFIIIC. We demonstrate that the recombinant Brf and TBP subunits of TFIIIB, which interact over the SNR6 TATA box, direct integration at the SNR6 transcription initiation site in the absence of detectable TFIIIC or TFIIIB subunit B". These findings suggest that the minimal requirements for pol III transcription and Ty3 integration are very similar.
Collapse
Affiliation(s)
- L Yieh
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-1700, USA
| | | | | | | |
Collapse
|
15
|
McCulloch V, Hardin P, Peng W, Ruppert JM, Lobo-Ruppert SM. Alternatively spliced hBRF variants function at different RNA polymerase III promoters. EMBO J 2000; 19:4134-43. [PMID: 10921893 PMCID: PMC306597 DOI: 10.1093/emboj/19.15.4134] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In yeast, a single form of TFIIIB is required for transcription of all RNA polymerase III (pol III) genes. It consists of three subunits: the TATA box-binding protein (TBP), a TFIIB-related factor, BRF, and B". Human TFIIIB is not as well defined and human pol III promoters differ in their requirements for this activity. A human homolog of yeast BRF was shown to be required for transcription at the gene-internal 5S and VA1 promoters. Whether or not it was also involved in transcription from the gene-external human U6 promoter was unclear. We have isolated cDNAs encoding alternatively spliced forms of human BRF that can complex with TBP. Using immunopurified complexes containing the cloned hBRFs, we show that while hBRF1 functions at the 5S, VA1, 7SL and EBER2 promoters, a different variant, hBRF2, is required at the human U6 promoter. Thus, pol III utilizes different TFIIIB complexes at structurally distinct promoters.
Collapse
Affiliation(s)
- V McCulloch
- Department of Medical Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
16
|
Dieci G, Percudani R, Giuliodori S, Bottarelli L, Ottonello S. TFIIIC-independent in vitro transcription of yeast tRNA genes. J Mol Biol 2000; 299:601-13. [PMID: 10835271 DOI: 10.1006/jmbi.2000.3783] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The most peculiar transcriptional property of eukaryotic tRNA genes, as well as of other genes served by RNA polymerase III, is their complete dependence on the intragenic interaction platform provided by transcription factor IIIC (TFIIIC) for the productive assembly of the TBP-containing initiation factor TFIIIB. The sole exception, in yeast, is the U6 RNA gene, which is able to exploit a TATAAATA element, 30 bp upstream of the transcription start site, for the TFIIIC-independent assembly of TFIIIB. To find out whether this extragenic core promoter organization and autonomous TFIIIB assembly capacity are unique features of the U6 gene or also apply to other genes transcribed by RNA polymerase III, we scanned the 5'-flanking regions (up to position -100) of the entire tRNA gene set of Saccharomyces cerevisiae searching for U6-like TATA motifs. Four tRNA genes harboring such a sequence motif around position -30 were identified and found to be transcribed in vitro by a minimal system only composed of TFIIIB and RNA polymerase III. In this system, start site selection is not at all affected by the absence of TFIIIC, which, when added, significantly stimulates transcription by determining an increase in the number, rather than in the efficiency of utilization, of productive initiation complexes. A specific TBP-TATA element interaction is absolutely required for TFIIIC-independent transcription, but the nearby sequence context also contributes to the efficiency of autonomous TFIIIB assembly. The existence of a TFIIIB assembly pathway leading to the faithful transcription of natural eukaryotic tRNA genes in the absence of TFIIIC provides novel insights into the functional flexibility of the eukaryotic tRNA gene transcription machinery and on its evolution from an ancestral RNA polymerase III system relying on upstream, TATA- centered control elements.
Collapse
MESH Headings
- Base Sequence
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA-Binding Proteins/metabolism
- Evolution, Molecular
- Gene Expression Regulation, Fungal/genetics
- Gene Frequency/genetics
- Genes, Fungal/genetics
- Genes, Plant/genetics
- Kinetics
- Molecular Sequence Data
- Mutation/genetics
- RNA Polymerase III/metabolism
- RNA, Fungal/analysis
- RNA, Fungal/biosynthesis
- RNA, Fungal/genetics
- RNA, Small Nuclear/genetics
- RNA, Transfer/analysis
- RNA, Transfer/biosynthesis
- RNA, Transfer/genetics
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- TATA Box/genetics
- TATA-Box Binding Protein
- Templates, Genetic
- Transcription Factor TFIIIB
- Transcription Factors/metabolism
- Transcription Factors, TFIII/physiology
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- G Dieci
- Institute of Biochemical Sciences, University of Parma, Parma, I-43100, Italy.
| | | | | | | | | |
Collapse
|
17
|
Grove A, Kassavetis GA, Johnson TE, Geiduschek EP. The RNA polymerase III-recruiting factor TFIIIB induces a DNA bend between the TATA box and the transcriptional start site. J Mol Biol 1999; 285:1429-40. [PMID: 9917387 DOI: 10.1006/jmbi.1998.2347] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TFIIIB, the RNA polymerase III-recruiting factor of Saccharomyces cerevisiae, may be assembled upstream of the transcriptional start site, either through the interaction of its constituent TATA-binding protein (TBP) with a strong TATA-box, or by means of the multisubunit assembly factor, TFIIIC. Missing nucleoside interference analysis of TFIIIC-dependent TFIIIB-DNA complex formation revealed enhanced complex formation at 0 degreesC when the DNA is missing nucleosides in two broad 7-10 bp regions centered around base-pairs -17 and -3 relative to the transcriptional start site; no effect of missing nucleosides was evident at 20 degreesC. The implication of these results for required DNA flexure in TFIIIC-mediated TFIIIB-DNA complex formation was pursued in a TFIIIC-independent context, using DNA with a suboptimal 6 bp TATA box (TATAAA). A unique missing nucleoside at the downstream end of the TATA box, corresponding to the position of one of two TBP-mediated DNA kinks, significantly enhances TBP-DNA complex formation. In contrast, TFIIIB displays a broad preference for missing nucleosides within an approximately 15 bp region immediately downstream of the TATA box. Consecutive mismatches (4-nt loops), either at the sites of TBP-mediated DNA kinking at both ends of the TATA box or within the identified region where missing nucleosides promote TFIIIB-DNA complex formation, also result in enhanced and specific TFIIIB assembly; 4-nt loops further downstream do not lead to preferential placement of TFIIIB. We conclude that TFIIIB induces an additional DNA deformation between the TATA box and the start site of transcription that is likely to be more extended than the sharp kinks generated by TBP.
Collapse
Affiliation(s)
- A Grove
- Department of Biology and Center for Molecular Genetics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0634, USA.
| | | | | | | |
Collapse
|
18
|
Grove A, Galeone A, Yu E, Mayol L, Geiduschek EP. Affinity, stability and polarity of binding of the TATA binding protein governed by flexure at the TATA Box. J Mol Biol 1998; 282:731-9. [PMID: 9743622 DOI: 10.1006/jmbi.1998.2058] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The TATA binding protein (TBP), which plays a central role in gene regulation as an essential component of all three nuclear transcription systems, sharply kinks the TATA box at two sites and severely contorts the intervening DNA segment. DNA constructs with precisely localized flexure have been used to investigate the special repertoire of mechanisms and properties that arise from TBP interacting with the TATA box. DNA flexure precisely localized to the sites of TBP-mediated DNA kinking increases the affinity of TBP more than 100-fold; unexpectedly, this increase in affinity is achieved almost exclusively by increasing the stability of the TBP-DNA complex rather than the rate of its formation. In vitro transcription with RNA polymerase III provides a first demonstration that the orientation of TBP on the TATA box is governed by DNA deformability, its C-proximal repeat contacting the more flexible end of the TATA box. Exceptionally stable TBP-DNA complexes reach their orientational equilibrium very slowly; in these circumstances, assembly of stable ("committed") transcription initiation complexes can freeze far-from-equilibrium orientations of TBP on the TATA box, causing transcription polarity to be determined by a kinetic trapping mechanism.
Collapse
Affiliation(s)
- A Grove
- Department of Biology and Center for Molecular Genetics, University of California, 9500 Gilman Drive, San Diego, CA, 92093-0634, USA
| | | | | | | | | |
Collapse
|
19
|
Sethy-Coraci I, Moir RD, López-de-León A, Willis IM. A differential response of wild type and mutant promoters to TFIIIB70 overexpression in vivo and in vitro. Nucleic Acids Res 1998; 26:2344-52. [PMID: 9580684 PMCID: PMC147558 DOI: 10.1093/nar/26.10.2344] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
TFIIIB, the initiation factor for transcription by RNA polymerase III (pol III) is, in yeast, composed of three subunits: TBP, TFIIIB70/Brf1 and TFIIIB90. To determine the extent to which each of these subunits is limiting for pol III transcription, the effect of overexpressing each subunit was assessed on the expression of wild-type and promoter mutant pol III genes both in vivo and in vitro . In vivo , we find that the synthesis of wild-type pol III genes is not limited to a significant extent by the level of any TFIIIB subunit. There is, however, a two-fold increase in the synthesis of the promoter mutant gene, sup9-e A19-supS1 , in strains overexpressing TFIIIB70. The findings suggest that overexpression of TFIIIB70has a differential effect on the expression of pol III genes with strong versus weak promoters. In vitro transcription assays support this conclusion and reveal an inverse correlation between the transcriptional response to TFIIIB70overexpression and promoter strength. The individual TFIIIB subunits are nuclear by immunofluorescence and are calculated to have nuclear concentrations in the low micromolar range. In comparison, the factors are diluted 100-fold or more in whole cell extracts. This dilution accounts for the generally limiting nature of TFIIIB70in pol III gene transcription in vitro.
Collapse
Affiliation(s)
- I Sethy-Coraci
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
20
|
Affiliation(s)
- T I Lee
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
21
|
Librizzi MD, Brenowitz M, Willis IM. The TATA element and its context affect the cooperative interaction of TATA-binding protein with the TFIIB-related factor, TFIIIB70. J Biol Chem 1998; 273:4563-8. [PMID: 9468512 DOI: 10.1074/jbc.273.8.4563] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have conducted a quantitative thermodynamic study of the effects of the TATA element and TATA-flanking sequences on the assembly of complexes containing TATA-binding protein (TBP) and the TFIIB-related factor, TFIIIB70. TBP binds to the sequence TATAAAAG in the context of the yeast U6 gene (yU6 hybrid TATA) or the adenovirus major late promoter (AdMLP) with different affinities demonstrating that the sequence context of a TATA element contributes to TBP binding. We also determined the cooperative free energies of formation of TBP.TFIIIB70.DNA complexes on the yU6 TATA element, the yU6 hybrid TATA element and a nonconsensus TATA element. The yU6 hybrid TATA displayed a moderate, less than 5-fold, increase in TBP affinity similar to the 3-fold increase observed for the AdMLP. In contrast, the nonconsensus and yU6 TATAs increased the affinity of TBP for DNA 12- and 17-fold, respectively. Since the TBP-TFIIIB70 cooperativity is greater on lower affinity TATA boxes and most polymerase III genes contain low affinity "TATA boxes," we conclude that the cooperative binding of TFIIIB70 and TBP to DNA represents an important driving force in the assembly of polymerase III-specific transcription complexes. An effect of the sequences surrounding the TATA box was also observed on TBP-TFIIIB70 cooperativity. The mechanistic implications of the thermodynamic linkage between DNA sequence and binding cooperativity are discussed.
Collapse
Affiliation(s)
- M D Librizzi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
22
|
Huet J, Conesa C, Carles C, Sentenac A. A cryptic DNA binding domain at the COOH terminus of TFIIIB70 affects formation, stability, and function of preinitiation complexes. J Biol Chem 1997; 272:18341-9. [PMID: 9218475 DOI: 10.1074/jbc.272.29.18341] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
TFIIIC-dependent assembly of yeast TFIIIB on class III genes unmasks a high avidity of TFIIIB for DNA. TFIIIB contains TATA-binding protein (TBP), TFIIIB90/B", and TFIIIB70/Brf1, which is homologous to TFIIB. Using limited proteolysis, we have found that the COOH terminus of TFIIIB70 (residues 510-596) forms a protease-resistant domain that binds DNA tightly as seen by Southwestern, DNase I footprinting, and gel shift assays. Consistent with a role for this DNA binding activity, preinitiation complexes were formed less efficiently with truncated TFIIIB70 lacking the COOH-terminal domain and displayed an increased sensitivity to heparin. B' (TFIIIB70 + TBP).TFIIIC.DNA complexes were also particularly unstable. In addition, TFIIIB.TFIIIC.DNA complexes containing truncated TFIIIB70 were impaired in promoting transcription initiation.
Collapse
Affiliation(s)
- J Huet
- Service de Biochimie et Génétique Moléculaire, Commissariat à l'Energie Atomique, Saclay, F91191 Gif sur Yvette Cedex, France
| | | | | | | |
Collapse
|
23
|
Vilalta A, Trivedi A, Wang Z, Roeder RG, Johnson DL. An RNA polymerase III-defective mutation in TATA-binding protein disrupts its interaction with a transcription factor IIIB subunit in drosophila cells. J Biol Chem 1997; 272:18087-92. [PMID: 9218440 DOI: 10.1074/jbc.272.29.18087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A subunit of the Drosophila RNA polymerase III transcription factor IIIB (TFIIIB) complex has been identified using antibodies directed against the analogous human protein, hIIIB90. This protein has an apparent molecular mass of 105 kDa and has been designated dTAFIII105. Drosophila S-2 cell extracts that were immunodepleted of dTAFIII105 were substantially reduced in their capacity to support tRNA gene transcription. A protein (far Western) blot analysis revealed that dTAFIII105, present in a TFIIIB fraction, directly interacts with TATA-binding protein (TBP). Coimmunoprecipitation assays demonstrated that this protein associates with TBP in S-2 cell extracts. Our previous studies have identified a mutation at position 332 within Drosophila TBP that changes a highly conserved arginine residue to a histidine residue, which renders it specifically defective in its ability to support RNA polymerase III transcription in S-2 cells (Trivedi, A., Vilalta, A., Gopalan, S., and Johnson, D. L. (1996) Mol. Cell. Biol. 16, 6909-6916). We further demonstrate that extracts prepared from a stable cell line expressing epitope-tagged wild-type TBP exhibit an increase in tRNA gene transcription, whereas extracts derived from cells expressing the mutant TBP protein do not. Coimmunoprecipitation assays and far Western blot analysis demonstrate that this mutation in TBP abolishes its ability to stably interact with dTAFIII105. Thus, we have identified both a Drosophila protein that is directly associated with TBP in the TFIIIB complex, dTAFIII105, and an amino acid residue within the highly conserved carboxyl-terminal region of TBP that is critical for dTAFIII105-TBP interactions.
Collapse
Affiliation(s)
- A Vilalta
- Department of Molecular Pharmacology, Schools of Pharmacy and Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
24
|
Marsolier MC, Prioleau MN, Sentenac A. A RNA polymerase III-based two-hybrid system to study RNA polymerase II transcriptional regulators. J Mol Biol 1997; 268:243-9. [PMID: 9159467 DOI: 10.1006/jmbi.1997.0979] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In a previous study, we explored the mechanisms of SNR6 gene activation by grafting a heterologous DNA-binding domain, GAL4-(1-147), to various components of the yeast RNA polymerase III transcription system. Here, we demonstrate that a modified SNR6 gene harboring GAL4-binding sites (UAS(G)-SNR6) can be efficiently activated via an intervening, unrelated protein-protein interaction, thus laying the foundations of a RNA polymerase III-based two-hybrid system. In a model system, the interacting proteins recruiting TFIIIC to DNA were PRP21 and PRP9 or PRP21 and PRP11. Mutations affecting the interaction between PRP21 and PRP9, or PRP21 and PRP11 decreased UAS(G)-SNR6 activation level proportionally. RNA polymerase II transcriptional activators, like GAL4, VP16 or p53, fused to GAL4 DNA-binding domain, did not activate the UAS(G)-SNR6 gene. However, GAL4 strongly activated UAS(G)-SNR6 when GAL80, an interacting protein, was fused to TFIIIC. This result indicates that this two-hybrid system can be used to assess the interactions between RNA polymerase II regulatory proteins and their partners.
Collapse
Affiliation(s)
- M C Marsolier
- Service de Biochimie et de Génétique Moléculaire, CEA-Saclay, Gir-sur-Yvette, France
| | | | | |
Collapse
|
25
|
Henry RW, Ma B, Sadowski CL, Kobayashi R, Hernandez N. Cloning and characterization of SNAP50, a subunit of the snRNA-activating protein complex SNAPc. EMBO J 1996; 15:7129-36. [PMID: 9003788 PMCID: PMC452539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human RNA polymerase II and III snRNA promoters share a common basal element, the proximal sequence element (PSE), which is recognized by a complex we refer to as the snRNA-activating protein complex (SNAPc). Biochemical purifications suggest that SNAPc is composed of at least four polypeptides of 43, 45, 50 and 190 kDa, as well as variable amounts of the TATA box binding protein, TBP. cDNAs encoding the 43 and 45 kDa subunits, SNAP43 and SNAP45, have been isolated, but there is no evidence that either of these subunits contacts DNA. Here we report the isolation of cDNAs encoding the 50 kDa subunit of SNAPc, SNAP50. The open reading frame predicts a 411 amino acid protein, which contains two potential zinc finger motifs. Depletions with anti-SNAP50 antibodies inhibit RNA polymerase II and III snRNA gene transcription in vitro. SNAP50 interacts with SNAP43 in co-immunoprecipitation experiments, but not with SNAP45 or TBP. UV cross-linking experiments suggest that SNAP50 contacts DNA in the SNAP complex. These results are consistent with the same core SNAP complex recognizing the PSEs of RNA polymerase II and III snRNA promoters, and provide an initial view of the architecture of the SNAP complex.
Collapse
Affiliation(s)
- R W Henry
- Cold Spring Harbor Laboratory, NY 11724, USA
| | | | | | | | | |
Collapse
|
26
|
Roberts S, Miller SJ, Lane WS, Lee S, Hahn S. Cloning and functional characterization of the gene encoding the TFIIIB90 subunit of RNA polymerase III transcription factor TFIIIB. J Biol Chem 1996; 271:14903-9. [PMID: 8662956 DOI: 10.1074/jbc.271.25.14903] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The yeast RNA polymerase III (pol III) general transcription factor TFIIIB is composed of three subunits; the TATA-binding protein (TBP)1, the TFIIB-related factor (BRF1), and a third factor termed TFIIIB90 or B". Here we report the purification of yeast TFIIIB90, cloning of the gene encoding TFIIIB90, and reconstitution of TFIIIB from recombinant polypeptides. The TFIIIB90 open reading frame encodes a 68-kDa polypeptide and has no obvious similarity to any other known protein sequences. The gene encoding TFIIIB90 is essential for viability of yeast. Using recombinant TFIIIB subunits, we found that TFIIIB90 interacts weakly with TBP in the absence of BRF1, and that this interaction is enhanced at least 25-fold by BRF1. In addition, TFIIIB90 showed pol III specificity as it could not interact with the pol II-specific TFIIB-TBP-DNA complex. To localize the regions of the TBP-DNA complex that interact with BRF1 and TFIIIB90, we tested whether the pol II factors TFIIA and TFIIB interfered with the binding of BRF1 and TFIIIB90 to TBP-DNA. Our results suggest that the binding sites for BRF1 and TFIIIB90 on TBP-DNA both overlap the binding sites for TFIIA and TFIIB.
Collapse
Affiliation(s)
- S Roberts
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
27
|
Rüth J, Conesa C, Dieci G, Lefebvre O, Düsterhöft A, Ottonello S, Sentenac A. A suppressor of mutations in the class III transcription system encodes a component of yeast TFIIIB. EMBO J 1996; 15:1941-9. [PMID: 8617241 PMCID: PMC450113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Class III genes depend on TFIIIB for recruitment of RNA polymerase III. Yeast TFIIIB is comprised of three components: TBP, TFIIIB70 and a 90 kDa polypeptide contained in the fraction B". We report the isolation of the yeast gene TFC7 which, based on genetic and biochemical evidence, encodes the 90 kDa polypeptide. TFC7 was isolated as a multicopy suppressor of temperature-sensitive mutations in the two largest subunits of TFIIIC. It is an essential gene, encoding a polypeptide of 68 kDa migrating with an apparent size of approximately 90 kDa. In gel shift assays, recombinant TFC7 protein (rTFC7) alone did not bind detectably to DNA, or to the TFIIIC-DNA complex even in the presence of TBP or TFIIIB70, but it was required to assemble the TFIIIB-TFIIIC-DNA complex. The two-hybrid assay pointed to an interaction between TFC7 protein and tau 131, the second largest subunit of TFIIIC (that also interacts with TFIIIB70). rTFC7p can replace the B" component of TFIIIB for synthesis of U6 RNA in a system reconstituted with recombinant TBP and TFIIIB70 polypeptides and highly purified RNA polymerase III. Surprisingly, specific transcription of the SUP4 tRNATyr gene promoted by rTFC7p was much weaker than with B". An additional factor activity, provided by the recently identified TFIIIE fraction, was required to restore control levels of transcription.
Collapse
Affiliation(s)
- J Rüth
- Service de Biochimie et de Génétique Moléculaire, CEA-Centre d'Etudes de Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Joazeiro CA, Kassavetis GA, Geiduschek EP. Alternative outcomes in assembly of promoter complexes: the roles of TBP and a flexible linker in placing TFIIIB on tRNA genes. Genes Dev 1996; 10:725-39. [PMID: 8598299 DOI: 10.1101/gad.10.6.725] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Saccharomyces cerevisiae transcription factor (TF) IIIB, a TATA-binding protein (TBP)-containing multisubunit factor, recruits RNA polymerase (Pol) III for multiple rounds of transcription. TFIIIC is an assembly factor for TFIIIB on TATA-less tRNA gene promoters. To investigate the role of TBP-DNA interactions in tRNA gene transcription, we generated sequence substitutions in the SUP4 tRNATyr gene TFIIIB binding site. Purified transcription proteins were used to analyze the selection of transcription initiation sites and the physical structures of the protein complexes formed on these mutant genes. We show that the association of TFIIIB with tRNA genes proceeds through an initial step of binding-site selection that is codirected by its TBP subunit and by TFIIIC. TFIIIB is assembled in a predominantly metric manner with regard to box A, the start site-proximal binding site of TFIIIC, but TFIIIC opens a window within which wild-type TBP can select the TFIIIB-binding site. Despite its clear preference for AT-rich sequences, TBP can mediate TFIIIB assembly at diverse DNA sequences, including stretches containing only G and C. However, a mutant TBP, m3, which recognizes TATAAA and TGTAAA and is active for Pol III transcription, utilizes other sequences only poorly. We also show that alternative alignments between DNA-bound TFIIIB and TFIIIC are possible, implying a remarkably flexible linkage, and suggest that Tfc4, the TFIIIB-assembling subunit of TFIIIC, could be responsible for such elasticity. The relevance of these findings to alternative initiation of Pol II- and other Pol III-transcribed genes is discussed.
Collapse
Affiliation(s)
- C A Joazeiro
- Department of Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla, 92093-0634, USA
| | | | | |
Collapse
|
29
|
Abstract
We show that the high in vitro transcription efficiency of yeast RNA pol III is mainly due to rapid recycling. Kinetic analysis shows that RNA polymerase recycling on preassembled tDNA.TFIIIC.TFIIIB complexes is much faster than the initial transcription cycle. High efficiency of RNA pol III recycling is favored at high UTP concentrations and requires termination at the natural termination signal. Runoff transcription does not allow efficient recycling. The reinitiation process shows increased resistance to heparin as compared with the primary initiation cycle, as if RNA polymerase was not released after termination. Indeed, template competition assays show that RNA pol III is committed to reinitiate on the same gene. A model is proposed where the polymerase molecule is directly transferred from the termination site to the promoter.
Collapse
Affiliation(s)
- G Dieci
- Service de Biochimie et Génétique Moléculaire Commissariat à l'Energie Atomique-Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
30
|
Whitehall SK, Kassavetis GA, Geiduschek EP. The symmetry of the yeast U6 RNA gene's TATA box and the orientation of the TATA-binding protein in yeast TFIIIB. Genes Dev 1995; 9:2974-85. [PMID: 7498793 DOI: 10.1101/gad.9.23.2974] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The central RNA polymerase III (Pol III) transcription factor TFIIIB is composed of the TATA-binding protein (TBP), Brf, a protein related to TFIIB, and the product of the newly cloned TFC5 gene. TFIIIB assembles autonomously on the upstream promoter of the yeast U6 snRNA (SNR6) gene in vitro, through the interaction of its TBP subunit with a consensus TATA box located at base pair -30. As both the DNA-binding domain of TBP and the U6 TATA box are nearly twofold symmetrical, we have examined how the binding polarity of TFIIIB is determined. We find that TFIIIB can bind to the U6 promoter in both directions, that TBP is unable to discern the natural polarity of the TATA element and that, as a consequence, the U6 TATA box is functionally symmetrical. A modest preference for TFIIIB binding in the natural direction of the U6 promoter is instead dictated by flanking DNA. Because the assembly of TFIIIB on the yeast U6 gene in vivo occurs via a TFIIIC-dependent mechanism, we investigated the influence of TFIIIC on the binding polarity of TFIIIB. TFIIIC places TFIIIB on the promoter in one direction only; thus, it is TFIIIC that primarily specifies the direction of transcription. Experiments using TFIIIB reconstituted with the altered DNA specificity mutant TBPm3 demonstrate that in the TFIIIB-U6 promoter complex, the carboxy-terminal repeat of TBP contacts the upstream half of the TATA box. This orientation of yeast TBP in Pol III promoter-bound TFIIIB is the same as in Pol II promoter-bound TFIID and in TBP-DNA complexes that have been analyzed by X-ray crystallography.
Collapse
Affiliation(s)
- S K Whitehall
- Department of Biology, University of California at San Deigo, La Jolla 92093-0634, USA
| | | | | |
Collapse
|
31
|
Geiduschek EP, Kassavetis GA. Comparing transcriptional initiation by RNA polymerases I and III. Curr Opin Cell Biol 1995; 7:344-51. [PMID: 7662364 DOI: 10.1016/0955-0674(95)80089-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We comment on the current understanding of transcriptional initiation by RNA polymerases I and III, and look for common modes of operation of these enzymes, emphasizing selected recent developments. These include definitive experiments on the constitution of the human RNA polymerase I transcription factor SL1/TIF-IB, the development of a genetic system for analyzing the function of RNA polymerase I in yeast, the elucidation of the structure of the human snRNA gene transcription factor SNAPc, and initial stages of mapping the protein-protein interactions involved in the assembly of transcriptional initiation complexes.
Collapse
Affiliation(s)
- E P Geiduschek
- Department of Biology, University of California at San Diego, La Jolla 92093-0634, USA
| | | |
Collapse
|
32
|
Kaiser MW, Brow DA. Lethal mutations in a yeast U6 RNA gene B block promoter element identify essential contacts with transcription factor-IIIC. J Biol Chem 1995; 270:11398-405. [PMID: 7744776 DOI: 10.1074/jbc.270.19.11398] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The B block promoter element is the primary binding site for the RNA polymerase III transcription initiation factor TFIIIC. It is always located within the transcript coding region, except in the Saccharomyces cerevisiae U6 RNA gene (SNR6), in which the B block lies 120 base pairs downstream of the terminator. We have exploited the unique location of the SNR6 B block to examine the sequence specificity of its interaction with TFIIIC. The in vitro and in vivo effects of all possible single base pair substitutions in the 9-base pair core of the B block were determined. Five mutant alleles are recessive lethal when present at a low copy number; these alleles identify crucial contacts between TFIIIC and the B block promoter element. Transcript analysis reveals that lethal B block substitutions reduce U6 RNA synthesis at least 10-fold in vivo and 20-fold in vitro. One viable B block mutant strain has one-third the wild type amount of U6 RNA and exhibits reduced levels of the U4-U6 RNA complex required for spliceosome assembly. The locations of lethal single and double point mutations leads us to propose that two domains of TFIIIC contact overlapping sites on the B block element.
Collapse
MESH Headings
- Alleles
- Base Composition
- Base Sequence
- Binding Sites
- Consensus Sequence
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- Gene Expression
- Genes, Fungal
- Genes, Lethal
- Genes, Recessive
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Oligodeoxyribonucleotides
- Promoter Regions, Genetic
- RNA, Small Nuclear/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Sequence Homology, Nucleic Acid
- Transcription Factors/metabolism
- Transcription Factors, TFIII
- Transcription, Genetic
Collapse
Affiliation(s)
- M W Kaiser
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706-1532, USA
| | | |
Collapse
|
33
|
Roberts S, Colbert T, Hahn S. TFIIIC determines RNA polymerase III specificity at the TATA-containing yeast U6 promoter. Genes Dev 1995; 9:832-42. [PMID: 7705660 DOI: 10.1101/gad.9.7.832] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gene encoding yeast U6 snRNA that is transcribed by RNA polymerase III (Pol III) contains both a TATA box upstream of the transcription start site and a downstream binding site for the factor TFIIIC. This juxtaposition of elements typical of both Pol II- and Pol III-transcribed genes raises the question of how polymerase specificity is determined. The upstream U6 promoter containing the TATA box and transcription start site was shown previously to be transcribed by Pol III in vitro. We therefore tested whether the upstream promoter of yeast U6 encodes Pol III specificity. One model is that polymerase specificity is conferred by the homologous Pol II and Pol III transcription factors TFIIB and BRF1. However, we found no specificity in the binding of BRF1 or TFIIB to TATA-containing promoters of genes specifically transcribed by Pol III or Pol II. Yeast strains deficient for Pol II or Pol III transcription were employed to examine U6 polymerase specificity in vivo. We find that the U6 upstream promoter is Pol II-specific in vivo and is converted to Pol III specificity by TFIIIC. Thus, preferential recruitment of TFIIIB by TFIIIC probably excludes the Pol II general factors and promotes Pol III transcription, thereby determining polymerase specificity.
Collapse
Affiliation(s)
- S Roberts
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
34
|
Marsolier MC, Tanaka S, Livingstone-Zatchej M, Grunstein M, Thoma F, Sentenac A. Reciprocal interferences between nucleosomal organization and transcriptional activity of the yeast SNR6 gene. Genes Dev 1995; 9:410-22. [PMID: 7883166 DOI: 10.1101/gad.9.4.410] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent work has demonstrated a repressive effect of chromatin on the transcription of the yeast SNR6 gene in vitro. Here, we show the relations between chromatin structure and transcriptional activity of this gene in vivo. Analysis of the SNR6 locus by micrococcal nuclease digestion showed a protection of the TATA box, nuclease-sensitive sites around the A and B blocks, and arrays of positioned nucleosomes in the flanking regions. Analysis of a transcriptionally silent SNR6 mutant containing a 2-bp deletion in the B block showed a loss of TATA-protection and rearrangement or destabilization of nucleosomes in the flanking regions. Hence, SNR6 organizes the chromatin structure in the whole region in a manner dependent on its transcriptional state. Transcriptional analysis was performed by use of maxi-gene SNR6 constructs introduced into histone-mutated strains. Chromatin disruption induced by histone H4 depletion stimulated the transcription of promoter-deficient, but not of wild-type SNR6 genes, revealing a competition between the formation of nucleosomes and the assembly of Pol III transcription complexes that was much in favor of transcription factors. On the other hand, amino-terminal mutations in histone H3 or H4 had no effect (H4) or only a moderate stimulatory effect (H3) on the transcription of promoter-deficient SNR6 genes.
Collapse
Affiliation(s)
- M C Marsolier
- Service de Biochimie et de Génétique Moléculaire, CEA-Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
35
|
Auble DT, Hansen KE, Mueller CG, Lane WS, Thorner J, Hahn S. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev 1994; 8:1920-34. [PMID: 7958867 DOI: 10.1101/gad.8.16.1920] [Citation(s) in RCA: 272] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Basal transcription of many genes in yeast is repressed by Mot1, an essential protein which is a member of the Snf2/Swi2 family of conserved nuclear factors. ADI is an ATP-dependent inhibitor of TATA-binding protein (TBP) binding to DNA that inhibits transcription in vitro. Here we demonstrate that ADI is encoded by the MOT1 gene. Mutation of MOT1 abolishes ADI activity and derepresses basal transcription in vitro and in vivo. Recombinant Mot1 removes TBP from DNA and Mot1 contains an ATPase activity which is essential for its function. Genetic interactions between Mot1 and TBP indicate that their functions are interlinked in vivo. These results provide a general model for understanding the mechanism of action of a large family of nuclear factors involved in processes such as transcription and DNA repair.
Collapse
Affiliation(s)
- D T Auble
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | | | | | | | |
Collapse
|