1
|
Seo HR, Kim J, Bae S, Soh JW, Lee YS. Cdk5-mediated phosphorylation of c-Myc on Ser-62 is essential in transcriptional activation of cyclin B1 by cyclin G1. J Biol Chem 2008; 283:15601-10. [PMID: 18408012 PMCID: PMC2414302 DOI: 10.1074/jbc.m800987200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/08/2008] [Indexed: 01/16/2023] Open
Abstract
It has been reported previously that cyclin G1 enables cells to overcome radiation-induced G(2) arrest and increased cell death and that these effects are mediated by transcriptional activation of cyclin B1. In this study, we further investigated the mechanism by which cyclin G1 transcriptionally activates cyclin B1. Deletion or point mutations within the cyclin B1 promoter region revealed that the c-Myc binding site (E-box) is necessary for cyclin G1-mediated transcriptional activation of cyclin B1 to occur. In addition, the kinase activity of Cdk5 was increased by cyclin G1 overexpression, and Cdk5 directly phosphorylated c-Myc on Ser-62. Furthermore, cyclin G1 mediated increased radiosensitivity, and radiation-induced M phase arrest was attenuated when RNA interference of Cdk5 was treated. Taken together, the results of this study indicate that Cdk5 activation in cells that overexpress cyclin G1 leads to c-Myc phosphorylation on Ser-62, which is responsible for cyclin G1-mediated transcriptional activation of cyclin B1.
Collapse
Affiliation(s)
- Haeng Ran Seo
- Division of Radiation Effect, Korea
Institute of Radiological and Medical Sciences, Seoul 139-706, Korea,
School of Life Sciences and Biotechnology, Korea
University, Seoul 136-701, Korea, and Laboratory
of Signal Transduction, Department of Chemistry, Inha University, Incheon
402-751, Korea
| | - Joon Kim
- Division of Radiation Effect, Korea
Institute of Radiological and Medical Sciences, Seoul 139-706, Korea,
School of Life Sciences and Biotechnology, Korea
University, Seoul 136-701, Korea, and Laboratory
of Signal Transduction, Department of Chemistry, Inha University, Incheon
402-751, Korea
| | - Sangwoo Bae
- Division of Radiation Effect, Korea
Institute of Radiological and Medical Sciences, Seoul 139-706, Korea,
School of Life Sciences and Biotechnology, Korea
University, Seoul 136-701, Korea, and Laboratory
of Signal Transduction, Department of Chemistry, Inha University, Incheon
402-751, Korea
| | - Jae-Won Soh
- Division of Radiation Effect, Korea
Institute of Radiological and Medical Sciences, Seoul 139-706, Korea,
School of Life Sciences and Biotechnology, Korea
University, Seoul 136-701, Korea, and Laboratory
of Signal Transduction, Department of Chemistry, Inha University, Incheon
402-751, Korea
| | - Yun-Sil Lee
- Division of Radiation Effect, Korea
Institute of Radiological and Medical Sciences, Seoul 139-706, Korea,
School of Life Sciences and Biotechnology, Korea
University, Seoul 136-701, Korea, and Laboratory
of Signal Transduction, Department of Chemistry, Inha University, Incheon
402-751, Korea
| |
Collapse
|
2
|
Molinari S, Relaix F, Lemonnier M, Kirschbaum B, Schäfer B, Buckingham M. A novel complex regulates cardiac actin gene expression through interaction of Emb, a class VI POU domain protein, MEF2D, and the histone transacetylase p300. Mol Cell Biol 2004; 24:2944-57. [PMID: 15024082 PMCID: PMC371105 DOI: 10.1128/mcb.24.7.2944-2957.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Revised: 10/23/2002] [Accepted: 01/06/2004] [Indexed: 11/20/2022] Open
Abstract
Expression of the mouse cardiac actin gene depends on a distal enhancer (-7 kbp) which has been shown, in transgenic mice, to direct expression to embryonic skeletal muscle. The presence of this distal sequence is also associated with reproducible expression of cardiac actin transgenes. In differentiated skeletal muscle cells, activity of the enhancer is driven by an E box, binding MyoD family members, and by a 3' AT-rich sequence which is in the location of a DNase I-hypersensitive site. This sequence does not bind MEF2 proteins, or other known muscle transcription factors, directly. Oct1 and Emb, a class VI POU domain protein, bind to consensus sites on the DNA, and it is the binding of Emb which is important for activity. Emb binds as a major complex with MEF2D and the histone transacetylase p300. The form of Emb present in this complex and as a major form in muscle cell extracts is longer (80 kDa) than that previously described. These results demonstrate the importance of this novel complex in the transcriptional regulation of the cardiac actin gene and suggest a potential role in chromatin remodeling associated with muscle gene activation.
Collapse
Affiliation(s)
- S Molinari
- CNRS URA 2578, Department of Developmental Biology, Pasteur Institute, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
3
|
Huang WY, Chen JJ, Shih N, Liew CC. Multiple muscle-specific regulatory elements are associated with a DNase I hypersensitive site of the cardiac beta-myosin heavy-chain gene. Biochem J 1997; 327 ( Pt 2):507-12. [PMID: 9359423 PMCID: PMC1218823 DOI: 10.1042/bj3270507] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using nuclei isolated from neonatal cardiomyocytes, we have mapped the DNase I hypersensitive sites (DHSs) residing within the 5'-upstream regions of the hamster cardiac myosin heavy-chain (MyHC) gene. Two cardiac-specific DHSs within the 5 kb upstream region of the cardiac MyHC gene were identified. One of the DHSs was mapped to the -2.3 kb (beta-2.3 kb) region and the other to the proximal promoter region. We further localized the beta-2.3 kb site to a range of 250 bp. Multiple, conserved, muscle regulatory motifs were found within the beta-2.3 kb site, consisting of three E-boxes, one AP-2 site, one CArG motif, one CT/ACCC box and one myocyte-specific enhancer factor-2 site. This cluster of regulatory elements is strikingly similar to a cluster found in the enhancer of the mouse muscle creatine kinase gene (-1256 to -1050). The specific interaction of the motifs within the beta-2.3 kb site and the cardiac nuclear proteins was demonstrated using gel mobility-shift assays and footprinting analysis. In addition, transfection analysis revealed a significant increase in chloramphenicol acetyltransferase activity when the beta-2.3 kb site was linked to a heterologous promoter. These results suggest that previously undefined regulatory elements of the beta-MyHC gene may be associated with the beta-2.3 kb site.
Collapse
Affiliation(s)
- W Y Huang
- Laboratory for Molecular Cardiology, Departments of Clinical Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
4
|
Kelly R, Alonso S, Tajbakhsh S, Cossu G, Buckingham M. Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J Cell Biol 1995; 129:383-96. [PMID: 7721942 PMCID: PMC2199907 DOI: 10.1083/jcb.129.2.383] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The myosin light chain IF/3F locus contains two independent promoters, MLC1F and MLC3F, which are differentially activated during skeletal muscle development. Transcription at this locus is regulated by a 3' skeletal muscle enhancer element, which directs correct temporal and tissue-specific expression from the MLC1F promoter in transgenic mice. To investigate the role of this enhancer in regulation of the MLC3F promoter in vivo, we have analyzed reporter gene expression in transgenic mice containing lacZ under transcriptional control of the mouse MLC3F promoter and 3' enhancer element. Our results show that these regulatory elements direct strong expression of lacZ in skeletal muscle; the transgene, however, is activated 4-5 d before the endogenous MLC3F promoter, at the time of initiation of MLC1F transcription. In adult mice, transgene activity is downregulated in muscles that have reduced contributions of type IIB fibers (soleus and diaphragm). The rostrocaudal positional gradient of transgene expression documented for MLC1F transgenic mice (Donoghue, M., J. P. Merlie, N. Rosenthal, and J. R. Sanes. 1991. Proc. Natl. Acad. Sci. USA. 88:5847-5851) is not seen in MLC3F transgenic mice. Although MLC3F was previously thought to be restricted to skeletal striated muscle, the MLC3F-lacZ transgene is expressed in cardiac muscle from 7.5 d of development in a spatially restricted manner in the atria and left ventricular compartments, suggesting that transcriptional differences exist between cardiomyocytes in left and right compartments of the heart. We show here that transgene-directed expression of the MLC3F promoter reflects low level expression of endogenous MLC3F transcripts in the mouse heart.
Collapse
MESH Headings
- Animals
- Base Sequence
- Down-Regulation
- Embryonic and Fetal Development
- Enhancer Elements, Genetic/genetics
- Female
- Fetal Heart/physiology
- Gene Expression Regulation, Developmental/physiology
- Genes, Reporter/genetics
- Heart/embryology
- Heart/growth & development
- Heart/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Muscle Development
- Muscle, Skeletal/embryology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/physiology
- Myocardium/cytology
- Myosins/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- Transcriptional Activation
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- R Kelly
- Centre National de la Recherche Scientifique Unité de Recherche Associée 1947, Department of Molecular Biology, Pasteur Institute, Paris, France
| | | | | | | | | |
Collapse
|