1
|
Li S, Wang H, Jehi S, Li J, Liu S, Wang Z, Truong L, Chiba T, Wang Z, Wu X. PIF1 helicase promotes break-induced replication in mammalian cells. EMBO J 2021; 40:e104509. [PMID: 33470420 PMCID: PMC8047440 DOI: 10.15252/embj.2020104509] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Break‐induced replication (BIR) is a specialized homologous‐recombination pathway for DNA double‐strand break (DSB) repair, which often induces genome instability. In this study, we establish EGFP‐based recombination reporters to systematically study BIR in mammalian cells and demonstrate an important role of human PIF1 helicase in promoting BIR. We show that at endonuclease cleavage sites, PIF1‐dependent BIR is used for homology‐initiated recombination requiring long track DNA synthesis, but not short track gene conversion (STGC). We also show that structure formation‐prone AT‐rich DNA sequences derived from common fragile sites (CFS‐ATs) induce BIR upon replication stress and oncogenic stress, and PCNA‐dependent loading of PIF1 onto collapsed/broken forks is critical for BIR activation. At broken replication forks, even STGC‐mediated repair of double‐ended DSBs depends on POLD3 and PIF1, revealing an unexpected mechanism of BIR activation upon replication stress that differs from the conventional BIR activation model requiring DSB end sensing at endonuclease‐generated breaks. Furthermore, loss of PIF1 is synthetically lethal with loss of FANCM, which is involved in protecting CFS‐ATs. The breast cancer‐associated PIF1 mutant L319P is defective in BIR, suggesting a direct link of BIR to oncogenic processes.
Collapse
Affiliation(s)
- Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Hailong Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sanaa Jehi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jun Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shuo Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Zi Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Lan Truong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, University of Chinese Academy of Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
2
|
Hum YF, Jinks-Robertson S. DNA strand-exchange patterns associated with double-strand break-induced and spontaneous mitotic crossovers in Saccharomyces cerevisiae. PLoS Genet 2018; 14:e1007302. [PMID: 29579095 PMCID: PMC5886692 DOI: 10.1371/journal.pgen.1007302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 03/08/2018] [Indexed: 11/24/2022] Open
Abstract
Mitotic recombination can result in loss of heterozygosity and chromosomal rearrangements that shape genome structure and initiate human disease. Engineered double-strand breaks (DSBs) are a potent initiator of recombination, but whether spontaneous events initiate with the breakage of one or both DNA strands remains unclear. In the current study, a crossover (CO)-specific assay was used to compare heteroduplex DNA (hetDNA) profiles, which reflect strand exchange intermediates, associated with DSB-induced versus spontaneous events in yeast. Most DSB-induced CO products had the two-sided hetDNA predicted by the canonical DSB repair model, with a switch in hetDNA position from one product to the other at the position of the break. Approximately 40% of COs, however, had hetDNA on only one side of the initiating break. This anomaly can be explained by a modified model in which there is frequent processing of an early invasion (D-loop) intermediate prior to extension of the invading end. Finally, hetDNA tracts exhibited complexities consistent with frequent expansion of the DSB into a gap, migration of strand-exchange junctions, and template switching during gap-filling reactions. hetDNA patterns in spontaneous COs isolated in either a wild-type background or in a background with elevated levels of reactive oxygen species (tsa1Δ mutant) were similar to those associated with the DSB-induced events, suggesting that DSBs are the major instigator of spontaneous mitotic recombination in yeast.
Collapse
Affiliation(s)
- Yee Fang Hum
- Department of Molecular Genetics and Microbiology and the University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology and the University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
3
|
Nath S, Somyajit K, Mishra A, Scully R, Nagaraju G. FANCJ helicase controls the balance between short- and long-tract gene conversions between sister chromatids. Nucleic Acids Res 2017; 45:8886-8900. [PMID: 28911102 PMCID: PMC5587752 DOI: 10.1093/nar/gkx586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/28/2017] [Indexed: 01/01/2023] Open
Abstract
The FANCJ DNA helicase is linked to hereditary breast and ovarian cancers as well as bone marrow failure disorder Fanconi anemia (FA). Although FANCJ has been implicated in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), the molecular mechanism underlying the tumor suppressor functions of FANCJ remains obscure. Here, we demonstrate that FANCJ deficient human and hamster cells exhibit reduction in the overall gene conversions in response to a site-specific chromosomal DSB induced by I-SceI endonuclease. Strikingly, the gene conversion events were biased in favour of long-tract gene conversions in FANCJ depleted cells. The fine regulation of short- (STGC) and long-tract gene conversions (LTGC) by FANCJ was dependent on its interaction with BRCA1 tumor suppressor. Notably, helicase activity of FANCJ was essential for controlling the overall HR and in terminating the extended repair synthesis during sister chromatid recombination (SCR). Moreover, cells expressing FANCJ pathological mutants exhibited defective SCR with an increased frequency of LTGC. These data unravel the novel function of FANCJ helicase in regulating SCR and SCR associated gene amplification/duplications and imply that these functions of FANCJ are crucial for the genome maintenance and tumor suppression.
Collapse
Affiliation(s)
- Sarmi Nath
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Anup Mishra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ralph Scully
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, USA
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Mitotic Gene Conversion Tracts Associated with Repair of a Defined Double-Strand Break in Saccharomyces cerevisiae. Genetics 2017; 207:115-128. [PMID: 28743762 DOI: 10.1534/genetics.117.300057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022] Open
Abstract
Mitotic recombination between homologous chromosomes leads to the uncovering of recessive alleles through loss of heterozygosity. In the current study, a defined double-strand break was used to initiate reciprocal loss of heterozygosity between diverged homologs of chromosome IV in Saccharomyces cerevisiae These events resulted from the repair of two broken chromatids, one of which was repaired as a crossover and the other as a noncrossover. Associated gene conversion tracts resulting from the donor-directed repair of mismatches formed during strand exchange (heteroduplex DNA) were mapped using microarrays. Gene conversion tracts associated with individual crossover and noncrossover events were similar in size and position, with half of the tracts being unidirectional and mapping to only one side of the initiating break. Among crossover events, this likely reflected gene conversion on only one side of the break, with restoration-type repair occurring on the other side. For noncrossover events, an ectopic system was used to directly compare gene conversion tracts produced in a wild-type strain to heteroduplex DNA tracts generated in the absence of the Mlh1 mismatch-repair protein. There was a strong bias for unidirectional tracts in the absence, but not in the presence, of Mlh1 This suggests that mismatch repair acts on heteroduplex DNA that is only transiently present in noncrossover intermediates of the synthesis dependent strand annealing pathway. Although the molecular features of events associated with loss of heterozygosity generally agreed with those predicted by current recombination models, there were unexpected complexities in associated gene conversion tracts.
Collapse
|
5
|
Targeted recombination between homologous chromosomes for precise breeding in tomato. Nat Commun 2017; 8:15605. [PMID: 28548094 PMCID: PMC5458649 DOI: 10.1038/ncomms15605] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/05/2017] [Indexed: 01/10/2023] Open
Abstract
Homologous recombination (HR) between parental chromosomes occurs stochastically. Here, we report on targeted recombination between homologous chromosomes upon somatic induction of DNA double-strand breaks (DSBs) via CRISPR-Cas9. We demonstrate this via a visual and molecular assay whereby DSB induction between two alleles carrying different mutations in the PHYTOENE SYNTHASE (PSY1) gene results in yellow fruits with wild type red sectors forming via HR-mediated DSB repair. We also show that in heterozygote plants containing one psy1 allele immune and one sensitive to CRISPR, repair of the broken allele using the unbroken allele sequence template is a common outcome. In another assay, we show evidence of a somatically induced DSB in a cross between a psy1 edible tomato mutant and wild type Solanum pimpinellifolium, targeting only the S. pimpinellifolium allele. This enables characterization of germinally transmitted targeted somatic HR events, demonstrating that somatically induced DSBs can be exploited for precise breeding of crops. Targeted homologous recombination between parental chromosomes could facilitate precision breeding of crop plants. Here, Filler Hayut et al. show that CRISPR-Cas9 can be used to induce DNA double strand breaks in somatic tissue and achieve targeted recombination between homologs at an endogenous locus in tomato.
Collapse
|
6
|
Abstract
Somatic recombination is essential to protect genomes of somatic cells from DNA damage but it also has important clinical implications, as it is a driving force of tumorigenesis leading to inactivation of tumor suppressor genes. Despite this importance, our knowledge about somatic recombination in adult tissues remains very limited. Our recent work, using the Drosophila adult midgut has demonstrated that spontaneous events of mitotic recombination accumulate in aging adult intestinal stem cells and result in frequent loss of heterozygosity (LOH). In this Extra View article, we provide further data supporting long-track chromosome LOH and discuss potential mechanisms involved in the process. In addition, we further discuss relevant questions surrounding somatic recombination and how the mechanisms and factors influencing somatic recombination in adult tissues can be explored using the Drosophila midgut model.
Collapse
Affiliation(s)
- Katarzyna Siudeja
- a Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group , Paris , France , Sorbonne Universités, UPMC Univ Paris 6 , Paris , France
| | - Allison J Bardin
- a Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group , Paris , France , Sorbonne Universités, UPMC Univ Paris 6 , Paris , France
| |
Collapse
|
7
|
Hartlerode AJ, Willis NA, Rajendran A, Manis JP, Scully R. Complex Breakpoints and Template Switching Associated with Non-canonical Termination of Homologous Recombination in Mammalian Cells. PLoS Genet 2016; 12:e1006410. [PMID: 27832076 PMCID: PMC5104497 DOI: 10.1371/journal.pgen.1006410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 10/07/2016] [Indexed: 12/11/2022] Open
Abstract
A proportion of homologous recombination (HR) events in mammalian cells resolve by "long tract" gene conversion, reflecting copying of several kilobases from the donor sister chromatid prior to termination. Cells lacking the major hereditary breast/ovarian cancer predisposition genes, BRCA1 or BRCA2, or certain other HR-defective cells, reveal a bias in favor of long tract gene conversion, suggesting that this aberrant HR outcome might be connected with genomic instability. If termination of gene conversion occurs in regions lacking homology with the second end of the break, the normal mechanism of HR termination by annealing (i.e., homologous pairing) is not available and termination must occur by as yet poorly defined non-canonical mechanisms. Here we use a previously described HR reporter to analyze mechanisms of non-canonical termination of long tract gene conversion in mammalian cells. We find that non-canonical HR termination can occur in the absence of the classical non-homologous end joining gene XRCC4. We observe obligatory use of microhomology (MH)-mediated end joining and/or nucleotide addition during rejoining with the second end of the break. Notably, non-canonical HR termination is associated with complex breakpoints. We identify roles for homology-mediated template switching and, potentially, MH-mediated template switching/microhomology-mediated break-induced replication, in the formation of complex breakpoints at sites of non-canonical HR termination. This work identifies non-canonical HR termination as a potential contributor to genomic instability and to the formation of complex breakpoints in cancer.
Collapse
Affiliation(s)
- Andrea J. Hartlerode
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicholas A. Willis
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anbazhagan Rajendran
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - John P. Manis
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ralph Scully
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
Chromosome rearrangement plays a causal role in tumorigenesis by contributing to the inactivation of tumor suppressor genes, the dysregulated expression or amplification of oncogenes and the generation of novel gene fusions. Chromosome breaks are important intermediates in this process. How, when and where these breaks arise and the specific mechanisms engaged in their repair strongly influence the resulting patterns of chromosome rearrangement. Here, we review recent progress in understanding how certain distinctive features of the cancer genome, including clustered mutagenesis, tandem segmental duplications, complex breakpoints, chromothripsis, chromoplexy and chromoanasynthesis may arise.
Collapse
|
9
|
Westmoreland JW, Resnick MA. Recombinational repair of radiation-induced double-strand breaks occurs in the absence of extensive resection. Nucleic Acids Res 2015; 44:695-704. [PMID: 26503252 PMCID: PMC4737140 DOI: 10.1093/nar/gkv1109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023] Open
Abstract
Recombinational repair provides accurate chromosomal restitution after double-strand break (DSB) induction. While all DSB recombination repair models include 5′-3′ resection, there are no studies that directly assess the resection needed for repair between sister chromatids in G-2 arrested cells of random, radiation-induced ‘dirty’ DSBs. Using our Pulse Field Gel Electrophoresis-shift approach, we determined resection at IR-DSBs in WT and mutants lacking exonuclease1 or Sgs1 helicase. Lack of either reduced resection length by half, without decreased DSB repair or survival. In the exo1Δ sgs1Δ double mutant, resection was barely detectable, yet it only took an additional hour to achieve a level of repair comparable to WT and there was only a 2-fold dose-modifying effect on survival. Results with a Dnl4 deletion strain showed that remaining repair was not due to endjoining. Thus, similar to what has been shown for a single, clean HO-induced DSB, a severe reduction in resection tract length has only a modest effect on repair of multiple, dirty DSBs in G2-arrested cells. Significantly, this study provides the first opportunity to directly relate resection length at DSBs to the capability for global recombination repair between sister chromatids.
Collapse
Affiliation(s)
- James W Westmoreland
- Chromosome Stability Section, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Michael A Resnick
- Chromosome Stability Section, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
10
|
Kiraly O, Gong G, Olipitz W, Muthupalani S, Engelward BP. Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLoS Genet 2015; 11:e1004901. [PMID: 25647331 PMCID: PMC4372043 DOI: 10.1371/journal.pgen.1004901] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/17/2014] [Indexed: 11/23/2022] Open
Abstract
Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. People with chronic inflammatory conditions have a markedly increased risk for cancer. In addition, many cancers have an inflammatory microenvironment that promotes tumor growth. Here, we show that inflammatory infiltration synergizes with tissue regeneration to induce DNA sequence rearrangements in vivo. Chronically inflamed issues that are continuously regenerating are thus at an increased risk for mutagenesis and malignant transformation. Further, rapidly dividing tumor cells in an inflammatory microenvironment can also acquire mutations, which have been shown to contribute to drug resistance and disease recurrence. Finally, inflammation-induced tissue regeneration sensitizes tissues to DNA damaging environmental exposures and chemotherapeutics. The work described here thus increases our understanding of how inflammation leads to genetic changes that drive cancer formation and recurrence.
Collapse
Affiliation(s)
- Orsolya Kiraly
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Singapore–MIT Alliance for Research and Technology, Singapore
| | - Guanyu Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Werner Olipitz
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Singapore–MIT Alliance for Research and Technology, Singapore
- * E-mail:
| |
Collapse
|
11
|
Chandramouly G, Kwok A, Huang B, Willis NA, Xie A, Scully R. BRCA1 and CtIP suppress long-tract gene conversion between sister chromatids. Nat Commun 2014; 4:2404. [PMID: 23994874 PMCID: PMC3838905 DOI: 10.1038/ncomms3404] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/05/2013] [Indexed: 12/14/2022] Open
Abstract
BRCA1 controls early steps of the synthesis-dependent strand annealing (SDSA) pathway of homologous recombination, but has no known role following Rad51-mediated synapsis. Here we show that BRCA1 influences post-synaptic homologous recombination events, controlling the balance between short- (STGC) and long-tract gene conversion (LTGC) between sister chromatids. Brca1 mutant cells reveal a bias towards LTGC that is corrected by expression of wild type but not cancer-predisposing BRCA1 alleles. The LTGC bias is enhanced by depletion of CtIP but reversed by inhibition of 53BP1, implicating DNA end resection as a contributor to the STGC/LTGC balance. The impact of BRCA1/CtIP loss on the STGC/LTGC balance is abolished when the second (non-invading) end of the break is unable to support termination of STGC by homologous pairing (“annealing”). This suggests that BRCA1/CtIP-mediated processing of the second end of the break controls the annealing step that normally terminates SDSA, thereby suppressing the error-prone LTGC outcome.
Collapse
|
12
|
The Rate and Tract Length of Gene Conversion between Duplicated Genes. Genes (Basel) 2011; 2:313-31. [PMID: 24710193 PMCID: PMC3924818 DOI: 10.3390/genes2020313] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/11/2011] [Accepted: 03/17/2011] [Indexed: 11/26/2022] Open
Abstract
Interlocus gene conversion occurs such that a certain length of DNA fragment is non-reciprocally transferred (copied and pasted) between paralogous regions. To understand the rate and tract length of gene conversion, there are two major approaches. One is based on mutation-accumulation experiments, and the other uses natural DNA sequence variation. In this review, we overview the two major approaches and discuss their advantages and disadvantages. In addition, to demonstrate the importance of statistical analysis of empirical and evolutionary data for estimating tract length, we apply a maximum likelihood method to several data sets.
Collapse
|
13
|
Cross FR, Pecani K. Efficient and rapid exact gene replacement without selection. Yeast 2010; 28:167-79. [PMID: 21246629 DOI: 10.1002/yea.1822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/24/2010] [Indexed: 12/11/2022] Open
Abstract
We describe a highly efficient method for exact gene replacement in budding yeast. Induction of rapid and efficient recombination in an entire cell population results in at least 50% of the recombinants undergoing a switch of the endogenous copy to a specific mutated allele, with no remaining markers or remnant of foreign DNA, without selection. To accomplish this, a partial copy of the replacement allele, followed by an HO cut site, is installed adjacent to the wild-type locus, in a GAL-HO MATa-inc background. HO induction results in near-quantitative site cleavage and recombination/gene conversion, resulting in either regeneration of wild-type or switch of the endogenous allele to the mutant, with accompanying deletion of intervening marker sequences, yielding an exact replacement. Eliminating the need for selection (over days) of rare recombinants removes concerns about second-site suppressor mutations and also allows direct phenotypic analysis, even of lethal gene replacements, without the need of a method to make the lethality conditional or to employ regulated promoters of unknown strength compared to the endogenous promoter. To test this method, we tried two known lethal gene replacements, substituting the non-essential CDH1 gene with a dominantly lethal version mutated for its Cdk phosphorylation sites and substituting the essential CDC28 gene with two recessively lethal versions, one containing an early stop codon and another inactivating Cdc28 kinase activity. We also tested a gene replacement of unknown phenotypic consequences: replacing the non-essential CLB3 B-type cyclin with a version lacking its destruction box.
Collapse
|
14
|
Wang S, Zhang L, Hu J, Bao Z, Liu Z. Molecular and cellular evidence for biased mitotic gene conversion in hybrid scallop. BMC Evol Biol 2010; 10:6. [PMID: 20064268 PMCID: PMC2818637 DOI: 10.1186/1471-2148-10-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 01/11/2010] [Indexed: 11/10/2022] Open
Abstract
Background Concerted evolution has been believed to account for homogenization of genes within multigene families. However, the exact mechanisms involved in the homogenization have been under debate. Use of interspecific hybrid system allows detection of greater level of sequence variation, and therefore, provide advantage for tracing the sequence changes. In this work, we have used an interspecific hybrid system of scallop to study the sequence homogenization processes of rRNA genes. Results Through the use of a hybrid scallop system (Chlamys farreri ♀ × Argopecten irradians ♂), here we provide solid molecular and cellular evidence for homogenization of the rDNA sequences into maternal genotypes. The ITS regions of the rDNA of the two scallop species exhibit distinct sequences and thereby restriction fragment length polymorphism (RFLP) patterns, and such a difference was exploited to follow the parental ITS contributions in the F1 hybrid during early development using PCR-RFLP. The representation of the paternal ITS decreased gradually in the hybrid during the development of the hybrid, and almost diminished at the 14th day after fertilization while the representation of the maternal ITS gradually increased. Chromosomal-specific fluorescence in situ hybridization (FISH) analysis in the hybrid revealed the presence of maternal ITS sequences on the paternal ITS-bearing chromosomes, but not vice versa. Sequence analysis of the ITS region in the hybrid not only confirmed the maternally biased conversion, but also allowed the detection of six recombinant variants in the hybrid involving short recombination regions, suggesting that site-specific recombination may be involved in the maternally biased gene conversion. Conclusion Taken together, these molecular and cellular evidences support rapid concerted gene evolution via maternally biased gene conversion. As such a process would lead to the expression of only one parental genotype, and have the opportunities to generate recombinant intermediates; this work may also have implications in novel hybrid zone alleles and genetic imprinting, as well as in concerted gene evolution. In the course of evolution, many species may have evolved involving some levels of hybridization, intra- or interspecific, the sex-biased sequence homogenization could have led to a greater role of one sex than the other in some species.
Collapse
Affiliation(s)
- Shi Wang
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao 266003, China
| | | | | | | | | |
Collapse
|
15
|
de Mayolo AA, Sunjevaric I, Reid R, Mortensen UH, Rothstein R, Lisby M. The rad52-Y66A allele alters the choice of donor template during spontaneous chromosomal recombination. DNA Repair (Amst) 2009; 9:23-32. [PMID: 19892607 DOI: 10.1016/j.dnarep.2009.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/30/2009] [Accepted: 10/03/2009] [Indexed: 11/30/2022]
Abstract
Spontaneous mitotic recombination is a potential source of genetic changes such as loss of heterozygosity and chromosome translocations, which may lead to genetic disease. In this study we have used a rad52 hyper-recombination mutant, rad52-Y66A, to investigate the process of spontaneous heteroallelic recombination in the yeast Saccharomyces cerevisiae. We find that spontaneous recombination has different genetic requirements, depending on whether the recombination event occurs between chromosomes or between chromosome and plasmid sequences. The hyper-recombination phenotype of the rad52-Y66A mutation is epistatic with deletion of MRE11, which is required for establishment of DNA damage-induced cohesion. Moreover, single-cell analysis of strains expressing YFP-tagged Rad52-Y66A reveals a close to wild-type frequency of focus formation, but with foci lasting 6 times longer. This result suggests that spontaneous DNA lesions that require recombinational repair occur at the same frequency in wild-type and rad52-Y66A cells, but that the recombination process is slow in rad52-Y66A cells. Taken together, we propose that the slow recombinational DNA repair in the rad52-Y66A mutant leads to a by-pass of the window-of-opportunity for sister chromatid recombination normally promoted by MRE11-dependent damage-induced cohesion thereby causing a shift towards interchromosomal recombination.
Collapse
Affiliation(s)
- Adriana Antúnez de Mayolo
- Department of Genetics & Development, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
16
|
XRCC2 and XRCC3 regulate the balance between short- and long-tract gene conversions between sister chromatids. Mol Cell Biol 2009; 29:4283-94. [PMID: 19470754 DOI: 10.1128/mcb.01406-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of DNA lesions associated with replication and is thought to be important for suppressing genomic instability. The mechanisms regulating the initiation and termination of SCR in mammalian cells are poorly understood. Previous work has implicated all the Rad51 paralogs in the initiation of gene conversion and the Rad51C/XRCC3 complex in its termination. Here, we show that hamster cells deficient in the Rad51 paralog XRCC2, a component of the Rad51B/Rad51C/Rad51D/XRCC2 complex, reveal a bias in favor of long-tract gene conversion (LTGC) during SCR. This defect is corrected by expression of wild-type XRCC2 and also by XRCC2 mutants defective in ATP binding and hydrolysis. In contrast, XRCC3-mediated homologous recombination and suppression of LTGC are dependent on ATP binding and hydrolysis. These results reveal an unexpectedly general role for Rad51 paralogs in the control of the termination of gene conversion between sister chromatids.
Collapse
|
17
|
Mazloum N, Holloman WK. Second-end capture in DNA double-strand break repair promoted by Brh2 protein of Ustilago maydis. Mol Cell 2009; 33:160-70. [PMID: 19187759 PMCID: PMC2663533 DOI: 10.1016/j.molcel.2008.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/18/2008] [Accepted: 12/18/2008] [Indexed: 11/28/2022]
Abstract
Brh2 plays a central role in the homologous recombination system of Ustilago maydis, mediating delivery of Rad51 to single-stranded DNA. Here we report that Brh2 can pair the displaced strand of a D loop with a complementary single-stranded DNA to form a duplexed, or double, D loop. The reaction emulates the second-end capture step envisioned in models of DNA double-strand break repair. This second-end capture reaction promoted by Brh2 proceeds efficiently when performed in the presence of Rad51 under conditions that block annealing by Rad52, or when the second single-stranded DNA substrate is replaced by double-stranded DNA. In a coupled reaction that requires extension of the D loop more than 200 nt by DNA synthesis in order to reveal a complementary region, Brh2 was also able to promote second-end capture and thus model a synthesis-dependent strand-annealing mechanism.
Collapse
Affiliation(s)
- Nayef Mazloum
- Department of Microbiology and Immunology, Cornell University Weill Medical College, New York, NY 10021
| | - William K. Holloman
- Department of Microbiology and Immunology, Cornell University Weill Medical College, New York, NY 10021
| |
Collapse
|
18
|
Johzuka-Hisatomi Y, Terada R, Iida S. Efficient transfer of base changes from a vector to the rice genome by homologous recombination: involvement of heteroduplex formation and mismatch correction. Nucleic Acids Res 2008; 36:4727-35. [PMID: 18632759 PMCID: PMC2504299 DOI: 10.1093/nar/gkn451] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene targeting refers to the alteration of a specific DNA sequence in an endogenous gene at its original locus in the genome by homologous recombination. Through a gene-targeting procedure with positive–negative selection, we previously reported the generation of fertile transgenic rice plants with a positive marker inserted into the Adh2 gene by using an Agrobacterium-mediated transformation vector containing the positive marker flanked by two 6-kb homologous segments for recombination. We describe here that base changes within the homologous segments in the vector could be efficiently transferred into the corresponding genomic sequences of rice recombinants. Interestingly, a few sequences from the host genome were flanked by the changed sequences derived from the vector in most of the recombinants. Because a single-stranded T-DNA molecule in Agrobacterium-mediated transformation is imported into the plant nucleus and becomes double-stranded, both single-stranded and double-stranded T-DNA intermediates can serve in gene-targeting processes. Several alternative models, including the occurrence of the mismatch correction of heteroduplex molecules formed between the genomic DNA and either a single-stranded or double-stranded T-DNA intermediate, are compared to explain the observation, and implications for the modification of endogenous genes for functional genomic analysis by gene targeting are discussed.
Collapse
|
19
|
Krishna S, Wagener BM, Liu HP, Lo YC, Sterk R, Petrini JH, Nickoloff JA. Mre11 and Ku regulation of double-strand break repair by gene conversion and break-induced replication. DNA Repair (Amst) 2007; 6:797-808. [PMID: 17321803 PMCID: PMC1948817 DOI: 10.1016/j.dnarep.2007.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 01/08/2007] [Accepted: 01/17/2007] [Indexed: 02/06/2023]
Abstract
The yeast Mre11-Rad50-Xrs2 (MRX) and Ku complexes regulate single-strand resection at DNA double-strand breaks (DSB), a key early step in homologous recombination (HR). A prior plasmid gap repair study showed that mre11 mutations, which slow single-strand resection, reduce gene conversion tract lengths and the frequency of associated crossovers. Here we tested whether mre11Delta or nuclease-defective mre11 mutations reduced gene conversion tract lengths during HR between homologous chromosomes in diploid yeast. We found that mre11 mutations reduced the efficiency of HR but did not reduce tract lengths or crossovers, despite substantially reduced end-resection at the test (ura3) locus. End-resection is increased in yku70Delta, but this change also had no effect on tract lengths. Thus, heteroduplex formation and tract lengths are not regulated by the extent of end-resection during DSB repair in a chromosomal context. In a plasmid-chromosome DSB repair assay, tract lengths were again similar in wild-type and mre11Delta, but they were reduced in mre11Delta in a gap repair assay. These results indicate that tract lengths are not affected by the extent of end processing when broken ends can invade nearby sites, perhaps because MRX coordination of the two broken ends is dispensable when ends invade nearby sites. Although HR outcome was largely unaffected in mre11 mutants, break-induced replication (BIR) and chromosome loss increased, suggesting that Mre11 function in mitotic HR is limited to early HR stages. Interestingly, yku70Delta suppressed BIR in mre11 mutants. BIR is also elevated in rad51 mutants, but yku70Delta did not suppress BIR in a rad51 background. These results indicate that Mre11 functions in Rad51-independent BIR, and that Ku functions in Rad51-dependent BIR.
Collapse
Affiliation(s)
- Sanchita Krishna
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - Brant M. Wagener
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - Hui Ping Liu
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - Yi-Chen Lo
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - Rosa Sterk
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| | - John H.J. Petrini
- Molecular Biology Program Memorial Sloan-Kettering Cancer Center New York, NY 10021
| | - Jac A. Nickoloff
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center University of New Mexico School of Medicine Albuquerque, NM 87131
| |
Collapse
|
20
|
Nagaraju G, Scully R. Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks. DNA Repair (Amst) 2007; 6:1018-31. [PMID: 17379580 PMCID: PMC2989184 DOI: 10.1016/j.dnarep.2007.02.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hereditary breast and ovarian cancer predisposition genes, BRCA1 and BRCA2, participate in the repair of DNA double strand breaks by homologous recombination. Circumstantial evidence implicates these genes in recombinational responses to DNA polymerase stalling during the S phase of the cell cycle. These responses play a key role in preventing genomic instability and cancer. Here, we review the current literature implicating the BRCA pathway in HR at stalled replication forks and explore the hypothesis that BRCA1 and BRCA2 participate in the recombinational resolution of single stranded DNA lesions termed "daughter strand gaps", generated during replication across a damaged DNA template.
Collapse
Affiliation(s)
| | - Ralph Scully
- Corresponding author. Tel.: +1 617 667 4252; fax: +1 617 667 0980. (R. Scully)
| |
Collapse
|
21
|
Nagaraju G, Odate S, Xie A, Scully R. Differential regulation of short- and long-tract gene conversion between sister chromatids by Rad51C. Mol Cell Biol 2006; 26:8075-86. [PMID: 16954385 PMCID: PMC1636746 DOI: 10.1128/mcb.01235-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Rad51 paralog Rad51C has been implicated in the control of homologous recombination. To study the role of Rad51C in vivo in mammalian cells, we analyzed short-tract and long-tract gene conversion between sister chromatids in hamster Rad51C(-/-) CL-V4B cells in response to a site-specific chromosomal double-strand break. Gene conversion was inefficient in these cells and was specifically restored by expression of wild-type Rad51C. Surprisingly, gene conversions in CL-V4B cells were biased in favor of long-tract gene conversion, in comparison to controls expressing wild-type Rad51C. These long-tract events were not associated with crossing over between sister chromatids. Analysis of gene conversion tract lengths in CL-V4B cells lacking Rad51C revealed a bimodal frequency distribution, with almost all gene conversions being either less than 1 kb or greater than 3.2 kb in length. These results indicate that Rad51C plays a pivotal role in determining the "choice" between short- and long-tract gene conversion and in suppressing gene amplifications associated with sister chromatid recombination.
Collapse
Affiliation(s)
- Ganesh Nagaraju
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
22
|
Yandeau-Nelson MD, Zhou Q, Yao H, Xu X, Nikolau BJ, Schnable PS. MuDR transposase increases the frequency of meiotic crossovers in the vicinity of a Mu insertion in the maize a1 gene. Genetics 2005; 169:917-29. [PMID: 15489518 PMCID: PMC1449141 DOI: 10.1534/genetics.104.035089] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 10/19/2004] [Indexed: 01/15/2023] Open
Abstract
Although DNA breaks stimulate mitotic recombination in plants, their effects on meiotic recombination are not known. Recombination across a maize a1 allele containing a nonautonomous Mu transposon was studied in the presence and absence of the MuDR-encoded transposase. Recombinant A1' alleles isolated from a1-mum2/a1::rdt heterozygotes arose via either crossovers (32 CO events) or noncrossovers (8 NCO events). In the presence of MuDR, the rate of COs increased fourfold. This increase is most likely a consequence of the repair of MuDR-induced DNA breaks at the Mu1 insertion in a1-mum2. Hence, this study provides the first in vivo evidence that DNA breaks stimulate meiotic crossovers in plants. The distribution of recombination breakpoints is not affected by the presence of MuDR in that 19 of 24 breakpoints isolated from plants that carried MuDR mapped to a previously defined 377-bp recombination hotspot. This result is consistent with the hypothesis that the DNA breaks that initiate recombination at a1 cluster at its 5' end. Conversion tracts associated with eight NCO events ranged in size from <700 bp to >1600 bp. This study also establishes that MuDR functions during meiosis and that ratios of CO/NCO vary among genes and can be influenced by genetic background.
Collapse
|
23
|
Yu X, Gabriel A. Reciprocal translocations in Saccharomyces cerevisiae formed by nonhomologous end joining. Genetics 2004; 166:741-51. [PMID: 15020464 PMCID: PMC1470746 DOI: 10.1534/genetics.166.2.741] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reciprocal translocations are common in cancer cells, but their creation is poorly understood. We have developed an assay system in Saccharomyces cerevisiae to study reciprocal translocation formation in the absence of homology. We induce two specific double-strand breaks (DSBs) simultaneously on separate chromosomes with HO endonuclease and analyze the subsequent chromosomal rearrangements among surviving cells. Under these conditions, reciprocal translocations via nonhomologous end joining (NHEJ) occur at frequencies of approximately 2-7 x 10(-5)/cell exposed to the DSBs. Yku80p is a component of the cell's NHEJ machinery. In its absence, reciprocal translocations still occur, but the junctions are associated with deletions and extended overlapping sequences. After induction of a single DSB, translocations and inversions are recovered in wild-type and rad52 strains. In these rearrangements, a nonrandom assortment of sites have fused to the DSB, and their junctions show typical signs of NHEJ. The sites tend to be between open reading frames or within Ty1 LTRs. In some cases the translocation partner is formed by a break at a cryptic HO recognition site. Our results demonstrate that NHEJ-mediated reciprocal translocations can form in S. cerevisiae as a consequence of DSB repair.
Collapse
Affiliation(s)
- Xin Yu
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
24
|
Nakada D, Matsumoto K, Sugimoto K. ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev 2003; 17:1957-62. [PMID: 12923051 PMCID: PMC196250 DOI: 10.1101/gad.1099003] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In budding yeast, TEL1 encodes a protein closely related to ATM. Xrs2 is an Nbs1 homolog and forms a complex with Mre11 and Rad50. We show here that Tel1 associates with double-strand breaks (DSBs) through a mechanism dependent on the C terminus of Xrs2. Although Xrs2 is required for the DNA degradation at DSBs, the C-terminal Xrs2 truncation does not affect the degradation. Tel1 and the C terminus of Xrs2 are similarly involved in cell survival and Rad53 phosphorylation after DNA damage. Our findings suggest that the Tel1 association with DNA lesions is required for the activation of DNA damage responses.
Collapse
Affiliation(s)
- Daisuke Nakada
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-0814, Japan
| | | | | |
Collapse
|
25
|
Palmer S, Schildkraut E, Lazarin R, Nguyen J, Nickoloff JA. Gene conversion tracts in Saccharomyces cerevisiae can be extremely short and highly directional. Nucleic Acids Res 2003; 31:1164-73. [PMID: 12582235 PMCID: PMC150237 DOI: 10.1093/nar/gkg219] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Revised: 12/17/2002] [Accepted: 12/17/2002] [Indexed: 11/12/2022] Open
Abstract
Gene conversion is a common outcome of double-strand break (DSB) repair in yeast. Prior studies revealed that DSB-induced gene conversion tracts are often short (<53 bp), unidirectional, and biased toward promoter-proximal (5') markers. In those studies, broken ends had short, non-homologous termini. For the present study we created plasmid x chromosome, chromosomal direct repeat and allelic recombination substrates in which donor alleles carried mutant HO sites (HOinc--not cleaved) at the same position as cleavable HO sites in recipient alleles. In these substrates, broken ends are almost completely homologous to donor alleles, differing only at the three HOinc mutations. These mutations serve as markers very close to, or within, the four-base overhang produced by HO nuclease. We identified extremely short tracts (<12 bp) and many tracts were highly directional, extending <2 bp on one side of the DSB. We thought that terminal homology would promote bidirectional tracts, but found instead that unidirectional tracts were more frequent. Interestingly, substrates with terminal homology displayed enhanced 3' conversion, and in several cases conversion bias was reversed toward 3' markers. These results are discussed in relation to factors that may influence tract length and directionality, including heteroduplex DNA formation, transcription, replication and mismatch repair.
Collapse
Affiliation(s)
- Sean Palmer
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
26
|
Aylon Y, Liefshitz B, Bitan-Banin G, Kupiec M. Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:1403-17. [PMID: 12556499 PMCID: PMC141147 DOI: 10.1128/mcb.23.4.1403-1417.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombination plays a central role in the repair of broken chromosomes in all eukaryotes. We carried out a systematic study of mitotic recombination. Using several assays, we established the chronological sequence of events necessary to repair a single double-strand break. Once a chromosome is broken, yeast cells become immediately committed to recombinational repair. Recombination is completed within an hour and exhibits two kinetic gaps. By using this kinetic framework we also characterized the role played by several proteins in the recombinational process. In the absence of Rad52, the broken chromosome ends, both 5' and 3', are rapidly degraded. This is not due to the inability to recombine, since the 3' single-stranded DNA ends are stable in a strain lacking donor sequences. Rad57 is required for two consecutive strand exchange reactions. Surprisingly, we found that the Srs2 helicase also plays an early positive role in the recombination process.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | |
Collapse
|
27
|
Chamnanpunt J, Shan WX, Tyler BM. High frequency mitotic gene conversion in genetic hybrids of the oomycete Phytophthora sojae. Proc Natl Acad Sci U S A 2001; 98:14530-5. [PMID: 11724938 PMCID: PMC64716 DOI: 10.1073/pnas.251464498] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Indexed: 11/18/2022] Open
Abstract
Microbial populations depend on genetic variation to respond to novel environmental challenges. Plant pathogens are notorious for their ability to overcome pesticides and host resistance genes as a result of genetic changes. We report here that in particular hybrid strains of Phytophthora sojae, an oomycete pathogen of soybean, high frequency mitotic gene conversion rapidly converts heterozygous loci to homozygosity, resulting in heterokaryons containing highly diverse populations of diploid nuclei. In hybrids involving strain P7076, conversion rates of up to 3 x 10(-2) per locus per nucleus per generation were observed. In other hybrids, rates were of the order of 5 x 10(-5). Independent gene conversion was observed within a selected linkage group including loci as close as 0.7 kb apart and in unlinked markers throughout the genome. Gene conversions continued throughout vegetative growth and were stimulated by further sexual reproduction. At many loci, conversion showed extreme disparity, with one allele always being lost, suggesting that conversion was initiated by allele-specific double-stranded breaks. Pedigree analysis indicated that individual loci undergo multiple independent conversions within the nuclei of a vegetative clone and that conversion may be preceded by a heritable "activation" state.
Collapse
Affiliation(s)
- J Chamnanpunt
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
28
|
Baker MD, Birmingham EC. Evidence for biased holliday junction cleavage and mismatch repair directed by junction cuts during double-strand-break repair in mammalian cells. Mol Cell Biol 2001; 21:3425-35. [PMID: 11313468 PMCID: PMC100264 DOI: 10.1128/mcb.21.10.3425-3435.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammalian cells, several features of the way homologous recombination occurs between transferred and chromosomal DNA are consistent with the double-strand-break repair (DSBR) model of recombination. In this study, we examined the segregation patterns of small palindrome markers, which frequently escape mismatch repair when encompassed within heteroduplex DNA formed in vivo during mammalian homologous recombination, to test predictions of the DSBR model, in particular as they relate to the mechanism of crossover resolution. According to the canonical DSBR model, crossover between the vector and chromosome results from cleavage of the joint molecule in two alternate sense modes. The two crossover modes lead to different predicted marker configurations in the recombinants, and assuming no bias in the mode of Holliday junction cleavage, the two types of recombinants are expected in equal frequency. However, we propose a revision to the canonical model, as our results suggest that the mode of crossover resolution is biased in favor of cutting the DNA strands upon which DNA synthesis is occurring during formation of the joint molecule. The bias in junction resolution permitted us to examine the potential consequences of mismatch repair acting on the DNA breaks generated by junction cutting. The combination of biased junction resolution with both early and late rounds of mismatch repair can explain the marker patterns in the recombinants.
Collapse
Affiliation(s)
- M D Baker
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | |
Collapse
|
29
|
Clikeman JA, Khalsa GJ, Barton SL, Nickoloff JA. Homologous recombinational repair of double-strand breaks in yeast is enhanced by MAT heterozygosity through yKU-dependent and -independent mechanisms. Genetics 2001; 157:579-89. [PMID: 11156980 PMCID: PMC1461527 DOI: 10.1093/genetics/157.2.579] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are repaired by homologous recombination (HR) and nonhomologous end-joining (NHEJ). NHEJ in yeast chromosomes has been observed only when HR is blocked, as in rad52 mutants or in the absence of a homologous repair template. We detected yKu70p-dependent imprecise NHEJ at a frequency of approximately 0.1% in HR-competent Rad+ haploid cells. Interestingly, yku70 mutation increased DSB-induced HR between direct repeats by 1.3-fold in a haploid strain and by 1.5-fold in a MAT homozygous (a/a) diploid, but yku70 had no effect on HR in a MAT heterozygous (a/alpha) diploid. yku70 might increase HR because it eliminates the competing precise NHEJ (religation) pathway and/or because yKu70p interferes directly or indirectly with HR. Despite the yku70-dependent increase in a/a cells, HR remained 2-fold lower than in a/alpha cells. Cell survival was also lower in a/a cells and correlated with the reduction in HR. These results indicate that MAT heterozygosity enhances DSB-induced HR by yKu-dependent and -independent mechanisms, with the latter mechanism promoting cell survival. Surprisingly, yku70 strains survived a DSB slightly better than wild type. We propose that this reflects enhanced HR, not by elimination of precise NHEJ since this pathway produces viable products, but by elimination of yKu-dependent interference of HR.
Collapse
Affiliation(s)
- J A Clikeman
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
30
|
Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999; 63:349-404. [PMID: 10357855 PMCID: PMC98970 DOI: 10.1128/mmbr.63.2.349-404.1999] [Citation(s) in RCA: 1655] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.
Collapse
Affiliation(s)
- F Pâques
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
31
|
Inbar O, Kupiec M. Homology search and choice of homologous partner during mitotic recombination. Mol Cell Biol 1999; 19:4134-42. [PMID: 10330153 PMCID: PMC104372 DOI: 10.1128/mcb.19.6.4134] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1999] [Accepted: 03/08/1999] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination is an important DNA repair mechanism in vegetative cells. During the repair of double-strand breaks, genetic information is transferred between the interacting DNA sequences (gene conversion). This event is often accompanied by a reciprocal exchange between the homologous molecules, resulting in crossing over. The repair of DNA damage by homologous recombination with repeated sequences dispersed throughout the genome might result in chromosomal aberrations or in the inactivation of genes. It is therefore important to understand how the suitable homologous partner for recombination is chosen. We have developed a system in the yeast Saccharomyces cerevisiae that can monitor the fate of a chromosomal double-strand break without the need to select for recombinants. The broken chromosome is efficiently repaired by recombination with one of two potential partners located elsewhere in the genome. One of the partners has homology to the broken ends of the chromosome, whereas the other is homologous to sequences distant from the break. Surprisingly, a large proportion of the repair is carried out by recombination involving the sequences distant from the broken ends. This repair is very efficient, despite the fact that it requires the processing of a large chromosomal region flanking the break. Our results imply that the homology search involves extensive regions of the broken chromosome and is not carried out exclusively by sequences adjacent to the double-strand break. We show that the mechanism that governs the choice of homologous partners is affected by the length and sequence divergence of the interacting partners, as well as by mutations in the mismatch repair genes. We present a model to explain how the suitable homologous partner is chosen during recombinational repair. The model provides a mechanism that may guard the integrity of the genome by preventing recombination between dispersed repeated sequences.
Collapse
Affiliation(s)
- O Inbar
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
32
|
Nunes A, Thathy V, Bruderer T, Sultan AA, Nussenzweig RS, Ménard R. Subtle mutagenesis by ends-in recombination in malaria parasites. Mol Cell Biol 1999; 19:2895-902. [PMID: 10082556 PMCID: PMC84083 DOI: 10.1128/mcb.19.4.2895] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent advent of gene-targeting techniques in malaria (Plasmodium) parasites provides the means for introducing subtle mutations into their genome. Here, we used the TRAP gene of Plasmodium berghei as a target to test whether an ends-in strategy, i.e., targeting plasmids of the insertion type, may be suitable for subtle mutagenesis. We analyzed the recombinant loci generated by insertion of linear plasmids containing either base-pair substitutions, insertions, or deletions in their targeting sequence. We show that plasmid integration occurs via a double-strand gap repair mechanism. Although sequence heterologies located close (less than 450 bp) to the initial double-strand break (DSB) were often lost during plasmid integration, mutations located 600 bp and farther from the DSB were frequently maintained in the recombinant loci. The short lengths of gene conversion tracts associated with plasmid integration into TRAP suggests that an ends-in strategy may be widely applicable to modify plasmodial genes and perform structure-function analyses of their important products.
Collapse
Affiliation(s)
- A Nunes
- Department of Pathology, Kaplan Cancer Center, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
33
|
Chen W, Jinks-Robertson S. Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast. Mol Cell Biol 1998; 18:6525-37. [PMID: 9774668 PMCID: PMC109238 DOI: 10.1128/mcb.18.11.6525] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1998] [Accepted: 08/19/1998] [Indexed: 11/20/2022] Open
Abstract
Mismatch repair (MMR) proteins actively inhibit recombination between diverged sequences in both prokaryotes and eukaryotes. Although the molecular basis of the antirecombination activity exerted by MMR proteins is unclear, it presumably involves the recognition of mismatches present in heteroduplex recombination intermediates. This recognition could be exerted during the initial stage of strand exchange, during the extension of heteroduplex DNA, or during the resolution of recombination intermediates. We previously used an assay system based on 350-bp inverted-repeat substrates to demonstrate that MMR proteins strongly inhibit mitotic recombination between diverged sequences in Saccharomyces cerevisiae. The assay system detects only those events that reverse the orientation of the region between the recombination substrates, which can occur as a result of either intrachromatid crossover or sister chromatid conversion. In the present study we sequenced the products of mitotic recombination between 94%-identical substrates in order to map gene conversion tracts in wild-type versus MMR-defective yeast strains. The sequence data indicate that (i) most recombination occurs via sister chromatid conversion and (ii) gene conversion tracts in an MMR-defective strain are significantly longer than those in an isogenic wild-type strain. The shortening of conversion tracts observed in a wild-type strain relative to an MMR-defective strain suggests that at least part of the antirecombination activity of MMR proteins derives from the blockage of heteroduplex extension in the presence of mismatches.
Collapse
Affiliation(s)
- W Chen
- Graduate Program in Genetics and Molecular Biology and Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
34
|
Elliott B, Richardson C, Winderbaum J, Nickoloff JA, Jasin M. Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol 1998; 18:93-101. [PMID: 9418857 PMCID: PMC121458 DOI: 10.1128/mcb.18.1.93] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mammalian cells are able to repair chromosomal double-strand breaks (DSBs) both by homologous recombination and by mechanisms that require little or no homology. Although spontaneous homologous recombination is rare, DSBs will stimulate recombination by 2 to 3 orders of magnitude when homology is provided either from exogenous DNA in gene-targeting experiments or from a repeated chromosomal sequence. Using a gene-targeting assay in mouse embryonic stem cells, we now investigate the effect of heterology on recombinational repair of DSBs. Cells were cotransfected with an endonuclease expression plasmid to induce chromosomal DSBs and with substrates containing up to 1.2% heterology from which to repair the DSBs. We find that heterology decreases the efficiency of recombinational repair, with 1.2% sequence divergence resulting in an approximately sixfold reduction in recombination. Gene conversion tract lengths were examined in 80 recombinants. Relatively short gene conversion tracts were observed, with 80% of the recombinants having tracts of 58 bp or less. These results suggest that chromosome ends in mammalian cells are generally protected from extensive degradation prior to recombination. Gene conversion tracts that were long (up to 511 bp) were continuous, i.e., they contained an uninterrupted incorporation of the silent mutations. This continuity suggests that these long tracts arose from extensive degradation of the ends or from formation of heteroduplex DNA which is corrected with a strong bias in the direction of the unbroken strand.
Collapse
Affiliation(s)
- B Elliott
- Cell Biology Program, Sloan-Kettering Institute and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
35
|
Taghian DG, Nickoloff JA. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol Cell Biol 1997; 17:6386-93. [PMID: 9343400 PMCID: PMC232490 DOI: 10.1128/mcb.17.11.6386] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Double-strand breaks (DSBs) stimulate chromosomal and extrachromosomal recombination and gene targeting. Transcription also stimulates spontaneous recombination by an unknown mechanism. We used Saccharomyces cerevisiae I-SceI to stimulate recombination between neo direct repeats in Chinese hamster ovary (CHO) cell chromosomal DNA. One neo allele was controlled by the dexamethasone-inducible mouse mammary tumor virus promoter and inactivated by an insertion containing an I-SceI site at which DSBs were introduced in vivo. The other neo allele lacked a promoter but carried 12 phenotypically silent single-base mutations that create restriction sites (restriction fragment length polymorphisms). This system allowed us to generate detailed conversion tract spectra for recipient alleles transcribed at high or low levels. Transient in vivo expression of I-SceI increased homologous recombination 2,000- to 10,000-fold, yielding recombinants at frequencies as high as 1%. Strikingly, 97% of these products arose by gene conversion. Most products had short, bidirectional conversion tracts, and in all cases, donor neo alleles (i.e., those not suffering a DSB) remained unchanged, indicating that conversion was fully nonreciprocal. DSBs in exogenous DNA are usually repaired by end joining requiring little or no homology or by nonconservative homologous recombination (single-strand annealing). In contrast, we show that chromosomal DSBs are efficiently repaired via conservative homologous recombination, principally gene conversion without associated crossing over. For DSB-induced events, similar recombination frequencies and conversion tract spectra were found under conditions of low and high transcription. Thus, transcription does not further stimulate DSB-induced recombination, nor does it appear to affect the mechanism(s) by which DSBs induce gene conversion.
Collapse
Affiliation(s)
- D G Taghian
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
36
|
Leung W, Malkova A, Haber JE. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc Natl Acad Sci U S A 1997; 94:6851-6. [PMID: 9192655 PMCID: PMC21248 DOI: 10.1073/pnas.94.13.6851] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To study targeted recombination, a single linear 2-kb fragment of LEU2 DNA was liberated from a chromosomal site within the nucleus of Saccharomyces cerevisiae, by expression of the site-specific HO endonuclease. Gene targeting was scored by gene conversion of a chromosomal leu2 mutant allele by the liberated LEU2 fragment. This occurred at a frequency of only 2 x 10(-4), despite the fact that nearly all cells successfully repaired, by single-strand annealing, the chromosome break created by liberating the fragment. The frequency of Leu+ recombinants was 6- to 25-fold higher in pms1 strains lacking mismatch repair. In 70% of these cases, the colony was sectored for Leu+/Leu-. Similar results were obtained when a 4. 1-kb fragment containing adjacent LEU2 and ADE1 genes was liberated, to convert adjacent leu2 and ade1 mutations on the chromosome. These results suggest that a linear fragment is not assimilated into the recipient chromosome by two crossovers each close to the end of the fragment; rather, heteroduplex DNA between the fragment and the chromosome is apparently formed over the entire region, by the assimilation of one of the two strands of the linear duplex DNA. Moreover, the recovery of Leu+ transformants is frequently defeated by the cell's mismatch repair machinery; more than 85% of mismatches in heteroduplex DNA are corrected in favor of the resident, unbroken (mutant) strand.
Collapse
Affiliation(s)
- W Leung
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, MA 02254-9110, USA
| | | | | |
Collapse
|
37
|
Nelson HH, Sweetser DB, Nickoloff JA. Effects of terminal nonhomology and homeology on double-strand-break-induced gene conversion tract directionality. Mol Cell Biol 1996; 16:2951-7. [PMID: 8649406 PMCID: PMC231289 DOI: 10.1128/mcb.16.6.2951] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Double-strand breaks (DSBs) greatly enhance gene conversion in the yeast Saccharomyces cerevisiae. In prior plasmid x chromosome crosses, conversion tracts were often short ( < 53 bp) and usually extended in only one direction from a DSB in an HO recognition sequence inserted into ura3. To allow fine-structure analysis of short and unidirectional tracts, phenotypically silent markers were introduced at 3- and 6-bp intervals flanking the HO site. These markers, which created a 70-bp homeologous region (71% homology), greatly increased the proportion of bidirectional tracts. Among products with short or unidirectional tracts, 85% were highly directional, converting markers on only one side (the nearest marker being 6 bp from the HO site). A DSB in an HO site insertion creates terminal nonhomologies. The high degree of directionality is a likely consequence of the precise cleavage at homology/nonhomology borders in hybrid DNA by Rad1/10 endonuclease. In contrast, terminal homeology alone yielded mostly unidirectional tracts. Thus, nonhomology flanked by homeology yields primarily bidirectional tracts, but terminal homeology or nonhomology alone yields primarily unidirectional tracts. These results are inconsistent with uni- and bidirectional tracts arising from one- and two-ended invasion mechanisms, respectively, as reduced homology would be expected to favor one-ended events. Tract spectra with terminal homeology alone with similar in RAD1 and rad1 cells, indicating that the high proportion of bidirectional tracts seen with homeology flanking nonhomology is not a consequence of Rad1/10 cleavage at homology/homeology boundaries. Instead, tract directionality appears to reflect the influence of the degree of broken-end homology on mismatch repair.
Collapse
Affiliation(s)
- H H Nelson
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts, USA
| | | | | |
Collapse
|
38
|
Ferguson DO, Holloman WK. Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc Natl Acad Sci U S A 1996; 93:5419-24. [PMID: 8643590 PMCID: PMC39261 DOI: 10.1073/pnas.93.11.5419] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recombinational repair of double-stranded DNA gaps was investigated in Ustilago maydis. The experimental system was designed for analysis of repair of an autonomously replicating plasmid containing a cloned gene disabled by an internal deletion. It was discovered that crossing over rarely accompanied gap repair. The strong bias against crossing over was observed in three different genes regardless of gap size. These results indicate that gap repair in U. maydis is unlikely to proceed by the mechanism envisioned in the double-stranded break repair model of recombination, which was developed to account for recombination in Saccharomyces cerevisiae. Experiments aimed at exploring processing of DNA ends were performed to gain understanding of the mechanism responsible for the observed bias. A heterologous insert placed within a gap in the coding sequence of two different marker genes strongly inhibited repair if the DNA was cleaved at the promoter-proximal junction joining the insert and coding sequence but had little effect on repair if the DNA was cleaved at the promoter-distal junction. Gene conversion of plasmid restriction fragment length polymorphism markers engineered in sequences flanking both sides of a gap accompanied repair but was directionally biased. These results are interpreted to mean that the DNA ends flanking a gap are subject to different types of processing. A model featuring a single migrating D-loop is proposed to explain the bias in gap repair outcome based on the observed asymmetry in processing the DNA ends.
Collapse
Affiliation(s)
- D O Ferguson
- Hearst Microbiology Research Center, Department of Microbiology, Cornell University Medical College, New York, NY 10021, USA
| | | |
Collapse
|
39
|
Weng YS, Whelden J, Gunn L, Nickoloff JA. Double-strand break-induced mitotic gene conversion: examination of tract polarity and products of multiple recombinational repair events. Curr Genet 1996; 29:335-43. [PMID: 8598054 DOI: 10.1007/bf02208614] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Double-strand break (DSB)-induced gene conversion in yeast was studied in crosses between ura3 heteroalleles carrying phenotypically silent markers at approximately 100-bp intervals, which allow high-resolution analyses of tract structures. DSBs were introduced in vivo by HO nuclease at sites within shared homology and were repaired using information donated by unbroken alleles. Previous studies with these types of crosses showed that most tracts of Ura+ products are continuous, unidirectional, and extend away from frameshift mutations in donor alleles. Here we demonstrate that biased tract directionality is a consequence of selection pressure against Ura- products that results when frameshift mutations in donor alleles are transferred to recipient alleles. We also performed crosses in which frameshift mutations in recipient and donor alleles were arranged such that events initiated at DSBs could not convert broken alleles to Ura+ via a single gap repair event or a single long-tract mismatch repair event in heteroduplex DNA. This constraint led to low recombination frequencies relative to unconstrained crosses, and inhibited preferential conversion of broken alleles. Physical analysis of 51 DSB-induced products arising from multiple recombinational repair events suggested that hDNA formation is generally limiting, but that some hDNA regions may extend more than 600 bp. Among these products, markers separated by 20 bp were independently repaired about 40% of the time.
Collapse
Affiliation(s)
- Y S Weng
- Department of Cancer Biology, Harvard University School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|