1
|
Buchert F, Hamon M, Gäbelein P, Scholz M, Hippler M, Wollman FA. The labile interactions of cyclic electron flow effector proteins. J Biol Chem 2018; 293:17559-17573. [PMID: 30228184 PMCID: PMC6231120 DOI: 10.1074/jbc.ra118.004475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/05/2018] [Indexed: 12/16/2022] Open
Abstract
The supramolecular organization of membrane proteins (MPs) is sensitive to environmental changes in photosynthetic organisms. Isolation of MP supercomplexes from the green algae Chlamydomonas reinhardtii, which are believed to contribute to cyclic electron flow (CEF) between the cytochrome b6f complex (Cyt-b6f) and photosystem I (PSI), proved difficult. We were unable to isolate a supercomplex containing both Cyt-b6f and PSI because in our hands, most of Cyt-b6f did not comigrate in sucrose density gradients, even upon using chemical cross-linkers or amphipol substitution of detergents. Assisted by independent affinity purification and MS approaches, we utilized disintegrating MP assemblies and demonstrated that the algae-specific CEF effector proteins PETO and ANR1 are bona fide Cyt-b6f interactors, with ANR1 requiring the presence of an additional, presently unknown, protein. We narrowed down the Cyt-b6f interface, where PETO is loosely attached to cytochrome f and to a stromal region of subunit IV, which also contains phosphorylation sites for the STT7 kinase.
Collapse
Affiliation(s)
- Felix Buchert
- From the Institut de Biologie Physico-Chimique, UMR7141 CNRS-Sorbonne-Université, 13 Rue P et M Curie, 75005 Paris, France
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Marion Hamon
- the Institut de Biologie Physico-Chimique, UMR8226/FRC550 CNRS-Sorbonne-Université, 13 Rue P et M Curie, 75005 Paris, France
| | - Philipp Gäbelein
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Martin Scholz
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Michael Hippler
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Francis-André Wollman
- From the Institut de Biologie Physico-Chimique, UMR7141 CNRS-Sorbonne-Université, 13 Rue P et M Curie, 75005 Paris, France,
| |
Collapse
|
2
|
Cavaiuolo M, Kuras R, Wollman F, Choquet Y, Vallon O. Small RNA profiling in Chlamydomonas: insights into chloroplast RNA metabolism. Nucleic Acids Res 2017; 45:10783-10799. [PMID: 28985404 PMCID: PMC5737564 DOI: 10.1093/nar/gkx668] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/18/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022] Open
Abstract
In Chlamydomonas reinhardtii, regulation of chloroplast gene expression is mainly post-transcriptional. It requires nucleus-encoded trans-acting protein factors for maturation/stabilization (M factors) or translation (T factors) of specific target mRNAs. We used long- and small-RNA sequencing to generate a detailed map of the transcriptome. Clusters of sRNAs marked the 5' end of all mature mRNAs. Their absence in M-factor mutants reflects the protection of transcript 5' end by the cognate factor. Enzymatic removal of 5'-triphosphates allowed identifying those cosRNA that mark a transcription start site. We detected another class of sRNAs derived from low abundance transcripts, antisense to mRNAs. The formation of antisense sRNAs required the presence of the complementary mRNA and was stimulated when translation was inhibited by chloramphenicol or lincomycin. We propose that they derive from degradation of double-stranded RNAs generated by pairing of antisense and sense transcripts, a process normally hindered by the traveling of the ribosomes. In addition, chloramphenicol treatment, by freezing ribosomes on the mRNA, caused the accumulation of 32-34 nt ribosome-protected fragments. Using this 'in vivo ribosome footprinting', we identified the function and molecular target of two candidate trans-acting factors.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Richard Kuras
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Francis‐André Wollman
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Olivier Vallon
- Unité Mixte de Recherche 7141, CNRS/UPMC, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
3
|
Loizeau K, Qu Y, Depp S, Fiechter V, Ruwe H, Lefebvre-Legendre L, Schmitz-Linneweber C, Goldschmidt-Clermont M. Small RNAs reveal two target sites of the RNA-maturation factor Mbb1 in the chloroplast of Chlamydomonas. Nucleic Acids Res 2013; 42:3286-97. [PMID: 24335082 PMCID: PMC3950674 DOI: 10.1093/nar/gkt1272] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many chloroplast transcripts are protected against exonucleolytic degradation by RNA-binding proteins. Such interactions can lead to the accumulation of short RNAs (sRNAs) that represent footprints of the protein partner. By mining existing data sets of Chlamydomonas reinhardtii small RNAs, we identify chloroplast sRNAs. Two of these correspond to the 5′-ends of the mature psbB and psbH messenger RNAs (mRNAs), which are both stabilized by the nucleus-encoded protein Mbb1, a member of the tetratricopeptide repeat family. Accordingly, we find that the two sRNAs are absent from the mbb1 mutant. Using chloroplast transformation and site-directed mutagenesis to survey the psbB 5′ UTR, we identify a cis-acting element that is essential for mRNA accumulation. This sequence is also found in the 5′ UTR of psbH, where it plays a role in RNA processing. The two sRNAs are centered on these cis-acting elements. Furthermore, RNA binding assays in vitro show that Mbb1 associates with the two elements specifically. Taken together, our data identify a conserved cis-acting element at the extremity of the psbH and psbB 5′ UTRs that plays a role in the processing and stability of the respective mRNAs through interactions with the tetratricopeptide repeat protein Mbb1 and leads to the accumulation of protected sRNAs.
Collapse
Affiliation(s)
- Karen Loizeau
- Department of Botany and Plant Biology and Institute of Genetics and Genomics in Geneva University of Geneva, CH-1211 Geneva 4, Switzerland and Institute of Biology, Molecular Genetics, Humboldt University of Berlin, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
4
|
del Campo EM. Post-transcriptional control of chloroplast gene expression. GENE REGULATION AND SYSTEMS BIOLOGY 2009; 3:31-47. [PMID: 19838333 PMCID: PMC2758277 DOI: 10.4137/grsb.s2080] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chloroplasts contain their own genome, organized as operons, which are generally transcribed as polycistronic transcriptional units. These primary transcripts are processed into smaller RNAs, which are further modified to produce functional RNAs. The RNA processing mechanisms remain largely unknown and represent an important step in the control of chloroplast gene expression. Such mechanisms include RNA cleavage of pre-existing RNAs, RNA stabilization, intron splicing, and RNA editing. Recently, several nuclear-encoded proteins that participate in diverse plastid RNA processing events have been characterised. Many of them seem to belong to the pentatricopeptide repeat (PPR) protein family that is implicated in many crucial functions including organelle biogenesis and plant development. This review will provide an overview of current knowledge of the post-transcriptional processing in chloroplasts.
Collapse
Affiliation(s)
- Eva M del Campo
- Department of Plant Biology, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|
5
|
Loiselay C, Gumpel NJ, Girard-Bascou J, Watson AT, Purton S, Wollman FA, Choquet Y. Molecular identification and function of cis- and trans-acting determinants for petA transcript stability in Chlamydomonas reinhardtii chloroplasts. Mol Cell Biol 2008; 28:5529-42. [PMID: 18573878 PMCID: PMC2519735 DOI: 10.1128/mcb.02056-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 02/25/2008] [Accepted: 06/13/2008] [Indexed: 11/20/2022] Open
Abstract
In organelles, the posttranscriptional steps of gene expression are tightly controlled by nucleus-encoded factors, most often acting in a gene-specific manner. Despite the molecular identification of a growing number of factors, their mode of action remains largely unknown. In the green alga Chlamydomonas reinhardtii, expression of the chloroplast petA gene, which codes for cytochrome f, depends on two specific nucleus-encoded factors. MCA1 controls the accumulation of the transcript, while TCA1 is required for its translation. We report here the cloning of MCA1, the first pentatricopeptide repeat protein functionally identified in this organism. By chloroplast transformation with modified petA genes, we investigated the function of MCA1 in vivo. We demonstrate that MCA1 acts on the very first 21 nucleotides of the petA 5' untranslated region to protect the whole transcript from 5'-->3' degradation but does not process the 5' end of the petA mRNA. MCA1 and TCA1 recognize adjacent targets and probably interact together for efficient expression of petA mRNA. MCA1, although not strictly required for translation, shows features of a translational enhancer, presumably by assisting the binding of TCA1 to its own target. Conversely, TCA1 participates to the full stabilization of the transcript through its interaction with MCA1.
Collapse
Affiliation(s)
- Christelle Loiselay
- UMR 7141 CNRS/UPMC, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Cui L, Leebens-Mack J, Wang LS, Tang J, Rymarquis L, Stern DB, dePamphilis CW. Adaptive evolution of chloroplast genome structure inferred using a parametric bootstrap approach. BMC Evol Biol 2006; 6:13. [PMID: 16469102 PMCID: PMC1421436 DOI: 10.1186/1471-2148-6-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 02/09/2006] [Indexed: 11/29/2022] Open
Abstract
Background Genome rearrangements influence gene order and configuration of gene clusters in all genomes. Most land plant chloroplast DNAs (cpDNAs) share a highly conserved gene content and with notable exceptions, a largely co-linear gene order. Conserved gene orders may reflect a slow intrinsic rate of neutral chromosomal rearrangements, or selective constraint. It is unknown to what extent observed changes in gene order are random or adaptive. We investigate the influence of natural selection on gene order in association with increased rate of chromosomal rearrangement. We use a novel parametric bootstrap approach to test if directional selection is responsible for the clustering of functionally related genes observed in the highly rearranged chloroplast genome of the unicellular green alga Chlamydomonas reinhardtii, relative to ancestral chloroplast genomes. Results Ancestral gene orders were inferred and then subjected to simulated rearrangement events under the random breakage model with varying ratios of inversions and transpositions. We found that adjacent chloroplast genes in C. reinhardtii were located on the same strand much more frequently than in simulated genomes that were generated under a random rearrangement processes (increased sidedness; p < 0.0001). In addition, functionally related genes were found to be more clustered than those evolved under random rearrangements (p < 0.0001). We report evidence of co-transcription of neighboring genes, which may be responsible for the observed gene clusters in C. reinhardtii cpDNA. Conclusion Simulations and experimental evidence suggest that both selective maintenance and directional selection for gene clusters are determinants of chloroplast gene order.
Collapse
Affiliation(s)
- Liying Cui
- Department of Biology, Institute of Molecular Evolutionary Genetics, and Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jim Leebens-Mack
- Department of Biology, Institute of Molecular Evolutionary Genetics, and Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Li-San Wang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Linda Rymarquis
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - David B Stern
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Claude W dePamphilis
- Department of Biology, Institute of Molecular Evolutionary Genetics, and Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Murakami S, Kuehnle K, Stern DB. A spontaneous tRNA suppressor of a mutation in the Chlamydomonas reinhardtii nuclear MCD1 gene required for stability of the chloroplast petD mRNA. Nucleic Acids Res 2005; 33:3372-80. [PMID: 15947135 PMCID: PMC1148173 DOI: 10.1093/nar/gki651] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Numerous nuclear gene products are required for the correct expression of organellar genes. One such gene in the green alga Chlamydomonas reinhardtii is MCD1, whose product is required for stability of the chloroplast-encoded petD mRNA. In mcd1 mutants, which are non-photosynthetic, petD mRNA is degraded by a 5′–3′ exonuclease activity, resulting in a failure to synthesize its product, subunit IV of the cytochrome b6/f complex. Here, we report the sequence of the wild-type MCD1 gene, which encodes a large and novel putative protein. Analysis of three mutant alleles showed that two harbored large deletions, but that one allele, mcd1-2, had a single base change resulting in a nonsense codon near the N-terminus. This same mutant allele can be suppressed by a second-site mutation in the nuclear MCD2 gene, whereas mcd2-1 cannot suppress the deletion in mcd1-1 (Esposito,D. Higgs,D.C. Drager,R.G. Stern, D.B. and Girard-Bascou,J. (2001) Curr. Genet., 39, 40–48). We report the cloning of mcd2-1, and show that the mutation lies in a tRNASer(CGA), which has been modified to translate the nonsense codon in mcd1-2. We discuss how the existence of a large tRNASer gene family may permit this suppression without pleiotropic consequences.
Collapse
Affiliation(s)
| | | | - David B. Stern
- To whom correspondence should be addressed. Tel: +1 607 254 1306; Fax: +1 607 255 6695;
| |
Collapse
|
8
|
Jiao HS, Hicks A, Simpson C, Stern DB. Short dispersed repeats in the Chlamydomonas chloroplast genome are collocated with sites for mRNA 3' end formation. Curr Genet 2004; 45:311-22. [PMID: 14760508 DOI: 10.1007/s00294-004-0487-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 12/26/2003] [Accepted: 12/31/2003] [Indexed: 10/26/2022]
Abstract
The Chlamydomonas reinhardtii chloroplast genome possesses thousands of small dispersed repeats (SDRs), which are of unknown function. Here, we used the petA gene as a model to investigate the role of SDRs in mRNA 3' end formation. In wild-type cells, petA mRNA accumulated as a major 1.3-kb transcript, whose 3' end was mapped to the distal end of a predicted stem-loop structure. To determine whether this stem-loop was required for petA mRNA stability, a series of deletions was constructed. These deletion strains accumulated a variety of petA mRNAs, for which approximate 3' ends were deduced. These 3' ends were found to flank stem-loop structures, many of which were formed partially or completely from inverted copies of SDRs. All strains accumulated wild-type levels of cytochrome f, demonstrating that alternative 3' termini are compatible with efficient translation. The ability to form alternative mRNA termini using SDRs lends additional flexibility to the chloroplast gene expression apparatus and thus could confer an evolutionary advantage.
Collapse
Affiliation(s)
- Henry S Jiao
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
9
|
Wostrikoff K, Choquet Y, Wollman FA, Girard-Bascou J. TCA1, a single nuclear-encoded translational activator specific for petA mRNA in Chlamydomonas reinhardtii chloroplast. Genetics 2001; 159:119-32. [PMID: 11560891 PMCID: PMC1461801 DOI: 10.1093/genetics/159.1.119] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We isolated seven allelic nuclear mutants of Chlamydomonas reinhardtii specifically blocked in the translation of cytochrome f, a major chloroplast-encoded subunit of the photosynthetic electron transport chain encoded by the petA gene. We recovered one chloroplast suppressor in which the coding region of petA was now expressed under the control of a duplicated 5' untranslated region from another open reading frame of presently unknown function. Since we also recovered 14 nuclear intragenic suppressors, we ended up with 21 alleles of a single nuclear gene we called TCA1 for translation of cytochrome b(6)f complex petA mRNA. The high number of TCA1 alleles, together with the absence of genetic evidence for other nuclear loci controlling translation of the chloroplast petA gene, strongly suggests that TCA1 is the only trans-acting factor. We studied the assembly-dependent regulation of cytochrome f translation--known as the CES process--in TCA1-mutated contexts. In the presence of a leaky tca1 allele, we observed that the regulation of cytochrome f translation was now exerted within the limits of the restricted translational activation conferred by the altered version of TCA1 as predicted if TCA1 was the ternary effector involved in the CES process.
Collapse
Affiliation(s)
- K Wostrikoff
- UPR/CNRS 1261, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | | | | |
Collapse
|
10
|
Higgs DC, Shapiro RS, Kindle KL, Stern DB. Small cis-acting sequences that specify secondary structures in a chloroplast mRNA are essential for RNA stability and translation. Mol Cell Biol 1999; 19:8479-91. [PMID: 10567573 PMCID: PMC84957 DOI: 10.1128/mcb.19.12.8479] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleus-encoded proteins interact with cis-acting elements in chloroplast transcripts to promote RNA stability and translation. We have analyzed the structure and function of three such elements within the Chlamydomonas petD 5' untranslated region; petD encodes subunit IV of the cytochrome b(6)/f complex. These elements were delineated by linker-scanning mutagenesis, and RNA secondary structures were investigated by mapping nuclease-sensitive sites in vitro and by in vivo dimethyl sulfate RNA modification. Element I spans a maximum of 8 nucleotides (nt) at the 5' end of the mRNA; it is essential for RNA stability and plays a role in translation. This element appears to form a small stem-loop that may interact with a previously described nucleus-encoded factor to block 5'-->3' exoribonucleolytic degradation. Elements II and III, located in the center and near the 3' end of the 5' untranslated region, respectively, are essential for translation, but mutations in these elements do not affect mRNA stability. Element II is a maximum of 16 nt in length, does not form an obvious secondary structure, and appears to bind proteins that protect it from dimethyl sulfate modification. Element III spans a maximum of 14 nt and appears to form a stem-loop in vivo, based on dimethyl sulfate modification and the sequences of intragenic suppressors of element III mutations. Furthermore, mutations in element II result in changes in the RNA structure near element III, consistent with a long-range interaction that may promote translation.
Collapse
Affiliation(s)
- D C Higgs
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
11
|
Sturm NR, Yu MC, Campbell DA. Transcription termination and 3'-End processing of the spliced leader RNA in kinetoplastids. Mol Cell Biol 1999; 19:1595-604. [PMID: 9891092 PMCID: PMC116087 DOI: 10.1128/mcb.19.2.1595] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/1998] [Accepted: 11/06/1998] [Indexed: 12/18/2022] Open
Abstract
Addition of a 39-nucleotide (nt) spliced leader (SL) by trans splicing is a basic requirement for all trypanosome nuclear mRNAs. The SL RNA in Leishmania tarentolae is a 96-nt precursor transcript synthesized by a polymerase that resembles polymerase II most closely. To analyze SL RNA genesis, we mutated SL RNA intron structures and sequence elements: stem-loops II and III, the Sm-binding site, and the downstream T tract. Using an exon-tagged SL RNA gene, we examined the phenotypes produced by a second-site 10-bp linker scan mutagenic series and directed mutagenesis. Here we report that transcription is terminated by the T tract, which is common to the 3' end of all kinetoplastid SL RNA genes, and that more than six T's are required for efficient termination in vivo. We describe mutants whose SL RNAs end in the T tract or appear to lack efficient termination but can generate wild-type 3' ends. Transcriptionally active nuclear extracts show staggered products in the T tract, directed by eight or more T's. The in vivo and in vitro data suggest that SL RNA transcription termination is staggered in the T tract and is followed by nucleolytic processing to generate the mature 3' end. We show that the Sm-binding site and stem-loop III structures are necessary for correct 3'-end formation. Thus, we have defined the transcription termination element for the SL RNA gene. The termination mechanism differs from that of vertebrate small nuclear RNA genes and the SL RNA homologue in Ascaris.
Collapse
Affiliation(s)
- N R Sturm
- Department of Microbiology and Immunology, University of California Los Angeles School of Medicine, Los Angeles, California 90095-1747, USA
| | | | | |
Collapse
|
12
|
Choquet Y, Stern DB, Wostrikoff K, Kuras R, Girard-Bascou J, Wollman FA. Translation of cytochrome f is autoregulated through the 5' untranslated region of petA mRNA in Chlamydomonas chloroplasts. Proc Natl Acad Sci U S A 1998; 95:4380-5. [PMID: 9539745 PMCID: PMC22497 DOI: 10.1073/pnas.95.8.4380] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A process that we refer to as control by epistasy of synthesis (CES process) occurs during chloroplast protein biogenesis in Chlamydomonas reinhardtii: the synthesis of some chloroplast-encoded subunits, the CES subunits, is strongly attenuated when some other subunits from the same complex, the dominant subunits, are missing. Herein we investigate the molecular basis of the CES process for the biogenesis of the cytochrome b6f complex and show that negative autoregulation of cytochrome f translation occurs in the absence of other complex subunits. This autoregulation is mediated by an interaction, either direct or indirect, between the 5' untranslated region of petA mRNA, which encodes cytochrome f, and the C-terminal domain of the unassembled protein. This model for the regulation of cytochrome f translation explains both the decreased rate of cytochrome f synthesis in vivo in the absence of its assembly partners and its increase in synthesis when significant accumulation of the C-terminal domain of the protein is prevented. When expressed from a chimeric mRNA containing the atpA 5' untranslated region, cytochrome f no longer showed an assembly-dependent regulation of translation. Conversely, the level of antibiotic resistance conferred by a chimeric petA-aadA-rbcL gene was shown to depend on the state of assembly of cytochrome b6f complexes and on the accumulation of the C-terminal domain of cytochrome f. We discuss the possible ubiquity of the CES process in organellar protein biogenesis.
Collapse
Affiliation(s)
- Y Choquet
- Unité Propre de Recherche 9072/Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, 13, rue P. et M. Curie, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
13
|
Rott R, Drager RG, Stern DB, Schuster G. The 3' untranslated regions of chloroplast genes in Chlamydomonas reinhardtii do not serve as efficient transcriptional terminators. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:676-83. [PMID: 8917310 DOI: 10.1007/bf02173973] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A general characteristic of the 3' untranslated regions of plastid mRNAs is an inverted repeat sequence that can fold into a stem-loop structure. These stem-loops are superficially similar to structures involved in prokaryotic transcription termination, but were found instead to serve as RNA 3' end processing signals in spinach chloroplasts, and in the atpB mRNA of Chlamydomonas reinhardtii chloroplasts. In order to carry out a broad study of the efficiency of the untranslated sequences at the 3' ends of chloroplast genes in Chlamydomonas to function as transcription terminators, we performed in vivo run-on transcription experiments using Chlamydomonas chloroplast transformants in which different 3' ends were inserted into the chloroplast genome between a petD promoter and a reporter gene. The results showed that none of the 3' ends that were tested, in either sense or antisense orientation, prevented readthrough transcription, and thus were not highly efficient transcription terminators. Therefore, we suggest that most or all of the 3' ends of mature mRNAs in Chlamydomonas chloroplasts are formed by 3' end processing of longer precursors.
Collapse
Affiliation(s)
- R Rott
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|