1
|
Fang Y, Bateman JF, Mercer JF, Lamandé SR. Nonsense-mediated mRNA decay of collagen -emerging complexity in RNA surveillance mechanisms. J Cell Sci 2013; 126:2551-60. [PMID: 23729740 DOI: 10.1242/jcs.120220] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved mRNA surveillance system that degrades mRNA transcripts that harbour a premature translation-termination codon (PTC), thus reducing the synthesis of truncated proteins that would otherwise have deleterious effects. Although extensive research has identified a conserved repertoire of NMD factors, these studies have been performed with a restricted set of genes and gene constructs with relatively few exons. As a consequence, NMD mechanisms are poorly understood for genes with large 3' terminal exons, and the applicability of the current models to large multi-exon genes is not clear. In this Commentary, we present an overview of the current understanding of NMD and discuss how analysis of nonsense mutations in the collagen gene family has provided new mechanistic insights into this process. Although NMD of the collagen genes with numerous small exons is consistent with the widely accepted exon-junction complex (EJC)-dependent model, the degradation of Col10a1 transcripts with nonsense mutations cannot be explained by any of the current NMD models. Col10a1 NMD might represent a fail-safe mechanism for genes that have large 3' terminal exons. Defining the mechanistic complexity of NMD is important to allow us to understand the pathophysiology of the numerous genetic disorders caused by PTC mutations.
Collapse
Affiliation(s)
- Yiwen Fang
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia
| | | | | | | |
Collapse
|
2
|
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-coupled mechanism that eliminates mRNAs containing premature translation-termination codons (PTCs). In mammalian cells, NMD is also linked to pre-mRNA splicing, as in many instances strong mRNA reduction occurs only when the PTC is located upstream of an intron. It is proposed that in these systems, the exon junction complex (EJC) mediates the link between splicing and NMD. Recent studies have questioned the role of splicing and the EJC in initiating NMD. Instead, they put forward a general and evolutionarily conserved mechanism in which the main regulator of NMD is the distance between a PTC and the poly(A) tail of an mRNA. Here we discuss the limitations of the new NMD model and the EJC concept; we argue that neither satisfactorily accounts for all of the available data and offer a new model to test in future studies.
Collapse
Affiliation(s)
- Saverio Brogna
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham B15 2TT, UK.
| | | |
Collapse
|
3
|
Amrani N, Sachs MS, Jacobson A. Early nonsense: mRNA decay solves a translational problem. Nat Rev Mol Cell Biol 2006; 7:415-25. [PMID: 16723977 DOI: 10.1038/nrm1942] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene expression is highly accurate and rarely generates defective proteins. Several mechanisms ensure this fidelity, including specialized surveillance pathways that rid the cell of mRNAs that are incompletely processed or that lack complete open reading frames. One such mechanism, nonsense-mediated mRNA decay, is triggered when ribosomes encounter a premature translation-termination--or nonsense--codon. New evidence indicates that the specialized factors that are recruited for this process not only promote rapid mRNA degradation, but are also required to resolve a poorly dissociable termination complex.
Collapse
Affiliation(s)
- Nadia Amrani
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA
| | | | | |
Collapse
|
4
|
Sherman F. The importance of mutation, then and now: studies with yeast cytochrome c. Mutat Res 2005; 589:1-16. [PMID: 15652223 DOI: 10.1016/j.mrrev.2004.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2004] [Indexed: 11/15/2022]
Abstract
The development of a genetic system based on the CYC1 gene was initiated over 40 years ago, primarily because of the anticipated ease of sequencing of the corresponding encoded protein, iso-1-cytochrome c from Saccharomyces cerevisiae. The success of the iso-cytochrome c system was dependent on the early development of methods for detecting and selecting cyc1 defective mutants and CYC1 functional revertants, and of methods for fine-structure genetic mapping using deletions and single-site mutations. The nonsense codons TAA and TAG, and the initiation codon ATG, were determined from the amino acid alterations of iso-1-cytochromes c from intragenic revertants; this represented the first assignments of such codons in a eukaryotic organism. The types of desired sequences were expanded by selecting recombinants from cyc1 x cyc1 nonfunctional mutants or CYC1 x CYC1 functional mutants, permitting the early determination of the rules of translation, which differed from those of prokaryotes by use of the most 5' AUG codon for initiation of translation. The sequence of 44 base pairs of CYC1 was determined with altered iso-1-cytochromes c from revertants of frameshift and initiation mutants, allowing the early cloning of the gene. A method was developed for transforming yeast directly with synthetic oligonucleotides, resulting in the convenient production of CYC1 mutants with defined sequences. At this point in time, Sherman and colleagues have published approximately 240 papers on or using the iso-cytochrome c system, dealing with such diverse topics as translation, informational suppressors, transcription and transcription termination, recombination, ectopic recombination, mutagen specificity, regulation by Ty1 elements, evolution of duplicated chromosomal segments, structure-function relationships of cytochrome c, protein stability and degradation, biosynthesis and mitochondrial import of cytochrome c, mitochondrial proteases, co- and post-translational modifications, and mRNA degradation. Current work on degradation of proteins in mitochondria, on degradation of mRNA in the nucleus, and on N-terminal acetylation stems from properties of CYC1 mutants isolated in early screens more than a decade ago.
Collapse
Affiliation(s)
- Fred Sherman
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Box 712, Rochester, NY 14642, USA.
| |
Collapse
|
5
|
Kebaara B, Nazarenus T, Taylor R, Forch A, Atkin AL. The Upf-dependent decay of wild-type PPR1 mRNA depends on its 5'-UTR and first 92 ORF nucleotides. Nucleic Acids Res 2003; 31:3157-65. [PMID: 12799443 PMCID: PMC162334 DOI: 10.1093/nar/gkg430] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
mRNAs containing premature translation termination codons (nonsense mRNAs) are targeted for deadenylation-independent degradation in a mechanism that depends on Upf1p, Upf2p and Upf3p. This decay pathway is often called nonsense- mediated mRNA decay (NMD). Nonsense mRNAs are decapped by Dcp1p and then degraded 5' to 3' by Xrn1p. In the yeast Saccharomyces cerevisiae, a significant number of wild-type mRNAs accumulate in upf mutants. Wild-type PPR1 mRNA is one of these mRNAs. Here we show that PPR1 mRNA degradation depends on the Upf proteins, Dcp1p, Xrn1p and Hrp1p. We have mapped an Upf1p-dependent destabilizing element to a region located within the 5'-UTR and the first 92 bases of the PPR1 ORF. This element targets PPR1 mRNA for Upf-dependent decay by a novel mechanism.
Collapse
Affiliation(s)
- B Kebaara
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA
| | | | | | | | | |
Collapse
|
6
|
Ruiz-Echevarría MJ, Peltz SW. The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames. Cell 2000; 101:741-51. [PMID: 10892745 DOI: 10.1016/s0092-8674(00)80886-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway functions to degrade transcripts containing nonsense codons. Transcripts containing mutations that insert an upstream open reading frame (uORF) in the 5'-UTR are degraded through NMD. However, several naturally occurring uORF-containing transcripts are resistant to NMD. Here we demonstrate that the GCN4 and YAP1 mRNAs, which contain uORFs, harbor a stabilizer element (STE) that prevents rapid NMD by interacting with the RNA binding protein Pub1. Conversely, a uORF-containing mRNA that lacks an STE, such as CPA1, is degraded by the NMD pathway. These results indicate that uORFs can play a pivotal role regulating both translation and turnover and that the Pub1p is a critical factor that modulates the stability of uORF-containing transcripts.
Collapse
Affiliation(s)
- M J Ruiz-Echevarría
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854, USA.
| | | |
Collapse
|
7
|
Das B, Guo Z, Russo P, Chartrand P, Sherman F. The role of nuclear cap binding protein Cbc1p of yeast in mRNA termination and degradation. Mol Cell Biol 2000; 20:2827-38. [PMID: 10733586 PMCID: PMC85501 DOI: 10.1128/mcb.20.8.2827-2838.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyc1-512 mutation in Saccharomyces cerevisiae causes a 90% reduction in the level of iso-1-cytochrome c because of the lack of a proper 3'-end-forming signal, resulting in low levels of eight aberrantly long cyc1-512 mRNAs which differ in length at their 3' termini. cyc1-512 can be suppressed by deletion of either of the nonessential genes CBC1 and CBC2, which encode the CBP80 and CBP20 subunits of the nuclear cap binding complex, respectively, or by deletion of the nonessential gene UPF1, which encodes a major component of the mRNA surveillance complex. The upf1-Delta deletion suppressed the cyc1-512 defect by diminishing degradation of the longer subset of cyc1-512 mRNAs, suggesting that downstream elements or structures occurred in the extended 3' region, similar to the downstream elements exposed by transcripts bearing premature nonsense mutations. On the other hand, suppression of cyc1-512 defects by cbc1-Delta occurred by two different mechanisms. The levels of the shorter cyc1-512 transcripts were enhanced in the cbc1-Delta mutants by promoting 3'-end formation at otherwise-weak sites, whereas the levels of the longer cyc1-512 transcripts, as well as of all mRNAs, were slightly enhanced by diminishing degradation. Furthermore, cbc1-Delta greatly suppressed the degradation of mRNAs and other phenotypes of a rat7-1 strain which is defective in mRNA export. We suggest that Cbc1p defines a novel degradation pathway that acts on mRNAs partially retained in nuclei.
Collapse
Affiliation(s)
- B Das
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
8
|
Galloway AM, Spencer CA, Anderson CW, Allalunis-Turner MJ. Differential stability of the DNA-activated protein kinase catalytic subunit mRNA in human glioma cells. Oncogene 1999; 18:1361-8. [PMID: 10022818 DOI: 10.1038/sj.onc.1202433] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA-dependent protein kinase (DNA-PK) functions in double-strand break repair and immunoglobulin [V(D)J] recombination. We previously established a radiation-sensitive human cell line, M059J, derived from a malignant glioma, which lacks the catalytic subunit (DNA-PKcs) of the DNA-PK multiprotein complex. Although previous Northern blot analysis failed to detect the DNA-PKcs transcript in these cells, we show here through quantitative studies that the transcript is present, albeit at greatly reduced (approximately 20x) levels. Sequencing revealed no genetic alteration in either the promoter region, the kinase domain, or the 3' untranslated region of the DNA-PKcs gene to account for the reduced transcript levels. Nuclear run-on transcription assays indicated that the rate of DNA-PKcs transcription in M059J and DNA-PKcs proficient cell lines was similar, but the stability of the DNA-PKcs message in the M059J cell line was drastically (approximately 20x) reduced. Furthermore, M059J cells lack an alternately spliced DNA-PKcs transcript that accounts for a minor (5-20%) proportion of the DNA-PKcs message in all other cell lines tested. Thus, alterations in DNA-PKcs mRNA stability and/or the lack of the alternate mRNA may result in the loss of DNA-PKcs activity. This finding has important implications as DNA-PKcs activity is essential to cells repairing damage induced by radiation or radiomimetric agents.
Collapse
Affiliation(s)
- A M Galloway
- Experimental Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
9
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
10
|
Weng Y, Czaplinski K, Peltz SW. ATP is a cofactor of the Upf1 protein that modulates its translation termination and RNA binding activities. RNA (NEW YORK, N.Y.) 1998; 4:205-214. [PMID: 9570320 PMCID: PMC1369609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nonsense-mediated mRNA decay pathway decreases the abundance of mRNAs that contain premature termination codons and prevents suppression of nonsense alleles. The UPF1 gene in the yeast Saccharomyces cerevisiae was shown to be a trans-acting factor in this decay pathway. The Upf1p demonstrates RNA-dependent ATPase, RNA helicase, and RNA binding activities. The results presented here investigate the binding affinity of the Upf1p for ATP and the consequences of ATP binding on its affinity for RNA. The results demonstrate that the Upf1p binds ATP in the absence of RNA. Consistent with this result, the TR800AA mutant form of the Upf1p still bound ATP, although it does not bind RNA. ATP binding also modulates the affinity of Upf1p for RNA. The RNA binding activity of the DE572AA mutant form of the Upf1p, which lacks ATPase activity, still bound ATP as efficiently as the wild-type Upf1p and destabilized the Upf1p-RNA complex. Similarly, ATPgammaS, a nonhydrolyzable analogue of ATP, interacted with Upf1p and promoted disassociation of the Upf1p-RNA complex. The conserved lysine residue (K436) in the helicase motif Ia in the Upf1p was shown to be critical for ATP binding. Taken together, these findings formally prove that ATP can bind Upf1p in the absence of RNA and that this interaction has consequences on the formation of the Upf1p-RNA complex. Further, the results support the genetic evidence indicating that ATP binding is important for the Upf1p to increase the translation termination efficiency at a nonsense codon. Based on these findings, a model describing how the Upf1p functions in modulating translation and turnover and the potential insights into the mechanism of the Upf1p helicase will be discussed.
Collapse
Affiliation(s)
- Y Weng
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Rutgers University, Piscataway 08854, USA
| | | | | |
Collapse
|
11
|
Ruiz-Echevarría MJ, González CI, Peltz SW. Identifying the right stop: determining how the surveillance complex recognizes and degrades an aberrant mRNA. EMBO J 1998; 17:575-89. [PMID: 9430648 PMCID: PMC1170407 DOI: 10.1093/emboj/17.2.575] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway functions by checking whether translation termination has occurred prematurely and subsequently degrading the aberrant mRNAs. In Saccharomyces cerevisiae, it has been proposed that a surveillance complex scans 3' of the premature termination codon and searches for the downstream element (DSE), whose recognition by the complex identifies the transcript as aberrant and promotes its rapid decay. The results presented here suggest that translation termination is important for assembly of the surveillance complex. Neither the activity of the initiation ternary complex after premature translation termination has occurred nor the elongation phase of translation are essential for the activity of the NMD pathway. Once assembled, the surveillance complex is active for searching and recognizing a DSE for approximately 200 nt 3' of the stop codon. We have also identified a stabilizer sequence (STE) in the GCN4 leader region that inactivates the NMD pathway. Inactivation of the NMD pathway, as a consequence of either the DSE being too far from a stop codon or the presence of the STE, can be circumvented by inserting sequences containing a new translation initiation/termination cycle immediately 5' of the DSE. Further, the results indicate that the STE functions in the context of the GCN4 transcript to inactivate the NMD pathway.
Collapse
Affiliation(s)
- M J Ruiz-Echevarría
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School-UMDNJ, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
12
|
Linz B, Koloteva N, Vasilescu S, McCarthy JE. Disruption of ribosomal scanning on the 5'-untranslated region, and not restriction of translational initiation per se, modulates the stability of nonaberrant mRNAs in the yeast Saccharomyces cerevisiae. J Biol Chem 1997; 272:9131-40. [PMID: 9083042 DOI: 10.1074/jbc.272.14.9131] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Translation and mRNA decay constitute key players in the post-transcriptional control of gene expression. We examine the mechanisms by which the 5'-untranslated region (UTR) of nonaberrant mRNAs acts to modulate both these processes in Saccharomyces cerevisiae. Two classes of functional relationship between ribosome-5'-UTR interactions and mRNA decay are identifiable. In the first of these, elements in the main open reading frame (ORF) dictate how the decay process reacts to inhibitory structures in the 5'-UTR. The same types of stability modulation can be elicited by trans-regulation of translation via inducible binding of the iron-regulatory protein to an iron-responsive element located 9 nucleotides from the 5' cap. A eukaryotic translational repressor can therefore modulate mRNA decay via the 5'-UTR. In contrast, translational regulation mediated via changes in the activity of the cap-binding eukaryotic translation initiation factor eIF-4E bypasses translation-dependent pathways of mRNA degradation. Thus modulation of mRNA stability via the 5'-UTR depends on disruption of the scanning process, rather than changes in translational initiation efficiency per se. In the second class of pathway, an upstream ORF (uORF) functions as a powerful destabilizing element, inducing termination-dependent degradation that is apparently independent of any main ORF determinants but influenced by the efficiencies of ribosomal recognition of the uORF start and stop codons. This latter mechanism provides a regulatable means to modulate the stability of nonaberrant mRNAs via a UPF-dependent pathway.
Collapse
Affiliation(s)
- B Linz
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | | | | | |
Collapse
|
13
|
Abstract
Messenger RNA (mRNA) degradation is a process that plays an important role in the regulation of gene expression and can be linked to translation. Study of the nonsense-mediated mRNA decay pathway has greatly aided our understanding of the link between these processes. Evidence indicates that this pathway regulates the abundance of both aberrant and wild-type transcripts. Factors involved in this pathway have been identified and recent results indicate that they might also be involved in modulating translation. Here, we discuss the mechanism of nonsense-mediated mRNA decay in the yeast Saccharomyces cerevisiae and the potential role that this pathway can have on the regulation of gene expression.
Collapse
Affiliation(s)
- M J Ruiz-Echevarria
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | |
Collapse
|
14
|
Weng Y, Czaplinski K, Peltz SW. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol Cell Biol 1996; 16:5477-90. [PMID: 8816461 PMCID: PMC231548 DOI: 10.1128/mcb.16.10.5477] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
mRNA degradation is an important control point in the regulation of gene expression and has been linked to the process of translation. One clear example of this linkage is the nonsense-mediated mRNA decay pathway, in which nonsense mutations in a gene can reduce the abundance of the mRNA transcribed from that gene. For the yeast Saccharomyces cerevisiae, the Upf1 protein (Upf1p), which contains a cysteine- and histidine-rich region and nucleoside triphosphate hydrolysis and helicase motifs, was shown to be a trans-acting factor in this decay pathway. Biochemical analysis of the wild-type Upf1p demonstrates that it has RNA-dependent ATPase, RNA helicase, and RNA binding activities. A UPF1 gene disruption results in stabilization of nonsense-containing mRNAs, leading to the production of enough functional product to overcome an auxotrophy resulting from a nonsense mutation. A genetic and biochemical study of the UPF1 gene was undertaken in order to understand the mechanism of Upf1p function in the nonsense-mediated mRNA decay pathway. Our analysis suggests that Upf1p is a multifunctional protein with separable activities that can affect mRNA turnover and nonsense suppression. Mutations in the conserved helicase motifs of Upf1p that inactivate its mRNA decay function while not allowing suppression of leu2-2 and tyr7-1 nonsense alleles have been identified. In particular, one mutation located in the ATP binding and hydrolysis motif of Upf1p that changed the aspartic and glutamic acid residues to alanine residues (DE572AA) lacked ATPase and helicase activities, and the mutant formed a Upf1p:RNA complex in the absence of ATP; surprisingly, however, the Upf1p:RNA complex dissociated as a consequence of ATP binding. This result suggests that ATP binding, independent of its hydrolysis, can modulate Upf1p:RNA complex formation for this mutant protein. The role of the RNA binding activity of Upf1p in modulating nonsense suppression is discussed.
Collapse
Affiliation(s)
- Y Weng
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854, USA
| | | | | |
Collapse
|
15
|
Yun DF, Sherman F. Degradation of CYC1 mRNA in the yeast Saccharomyces cerevisiae does not require translation. Proc Natl Acad Sci U S A 1996; 93:8895-900. [PMID: 8799124 PMCID: PMC38565 DOI: 10.1073/pnas.93.17.8895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Several studies have indicated that degradation of certain mRNAs is tightly coupled to their translation, whereas, in contrast, other observations suggested that translation can be inhibited without changing the stability of the mRNA. We have addressed this question with the use of altered CYC1 alleles, which encode iso-1-cytochrome c in the yeast Saccharomyces cerevisiae. The cyc1-1249 mRNA, which lacks all in-frame and out-of-frame AUG triplets, was as stable as the normal mRNA. This finding established that translation is not required for the degradation of CYC1 mRNAs. Furthermore, poly(G)18 tracks were introduced within the CYC1 mRNA translated regions to block exonuclease degradation. The recovery of 3' fragments revealed that the translatable and the AUG-deficient mRNAs are both degraded 5'-->3'. Also, the increased stability of CYC1 mRNAs in xrn1-delta strains lacking Xrn1p, the major 5'-->3' exonuclease, established that the normal and AUG-deficient mRNAs are degraded by the same pathway. In addition, deadenylylation, which activates the action of Xrn1p, occurred at equivalent rates in both normal and AUG-deficient mRNAs. We conclude that translation is not required for the normal degradation of CYC1 mRNAs, and that translatable and untranslated mRNAs are degraded by the same pathway.
Collapse
Affiliation(s)
- D F Yun
- Department of Biochemistry, University of Rochester, School of Medicine and Dentistry, NY 14642, USA
| | | |
Collapse
|
16
|
Kessler O, Chasin LA. Effects of nonsense mutations on nuclear and cytoplasmic adenine phosphoribosyltransferase RNA. Mol Cell Biol 1996; 16:4426-35. [PMID: 8754843 PMCID: PMC231441 DOI: 10.1128/mcb.16.8.4426] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have analyzed Chinese hamster ovary (CHO) cell mutants bearing nonsense codons in four of the five exons of the adenine phosphoribosyltransferase (aprt) gene and have found a pattern of mRNA reduction similar to that seen in systems studied previously: a decrease in steady-state mRNA levels of 5- to 10-fold for mutations in exons 1, 2, and 4 but little effect for mutations in the 3'-most exon (exon 5). Nuclear aprt mRNA levels showed a similar decrease. Nonsense-containing aprt mRNA decayed at the same rate as wild-type mRNA in these cell lines after inhibition of transcription with actinomycin D. Nonsense-containing aprt mRNA is associated with polysomes, ruling out a model in which stable residual mRNA escapes degradation by avoiding translation initiation. A tetracycline-responsive form of the aprt gene was used to compare the stability of nonsense-containing and wild-type aprt mRNAs without globally inhibiting transcription. In contrast to measurements made in the presence of actinomycin D, after inhibition of aprt transcription with tetracycline, a nonsense-mediated destabilization of aprt mRNA was indeed demonstrable. The increased rate of decay of cytoplasmic aprt mRNA seen here could account for the nonsense-mediated reduction in steady-state levels of aprt mRNA. However, the low levels of nonsense-bearing aprt mRNA in the nucleus suggest a sensibility of mRNA to translation or translatability before it exits that compartment. Quantitation of the steady-state levels of transcripts containing introns revealed no accumulation of partially spliced aprt RNA and hence no indication of nonsense-mediated aberrancies in splicing. Our results are consistent with a model in which translation facilitates the export of mRNA through a nuclear pore. However, the mechanism of this intriguing nucleocytoplasmic communication remains to be determined.
Collapse
Affiliation(s)
- O Kessler
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
17
|
Hennigan AN, Jacobson A. Functional mapping of the translation-dependent instability element of yeast MATalpha1 mRNA. Mol Cell Biol 1996; 16:3833-43. [PMID: 8668201 PMCID: PMC231380 DOI: 10.1128/mcb.16.7.3833] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The determinants of mRNA stability include specific cis-acting destabilizing sequences located within mRNA coding and noncoding regions. We have developed an approach for mapping coding-region instability sequences in unstable yeast mRNAs that exploits the link between mRNA translation and turnover and the dependence of nonsense-mediated mRNA decay on the activity of the UPF1 gene product. This approach, which involves the systematic insertion of in-frame translational termination codons into the coding sequence of a gene of interest in a upf1delta strain, differs significantly from conventional methods for mapping cis-acting elements in that it causes minimal perturbations to overall mRNA structure. Using the previously characterized MATalpha1 mRNA as a model, we have accurately localized its 65-nucleotide instability element (IE) within the protein coding region. Termination of translation 5' to this element stabilized the MATalpha1 mRNA two- to threefold relative to wild-type transcripts. Translation through the element was sufficient to restore an unstable decay phenotype, while internal termination resulted in different extents of mRNA stabilization dependent on the precise location of ribosome stalling. Detailed mutagenesis of the element's rare-codon/AU-rich sequence boundary revealed that the destabilizing activity of the MATalpha1 IE is observed when the terminal codon of the element's rare-codon interval is translated. This region of stability transition corresponds precisely to a MATalpha1 IE sequence previously shown to be complementary to 18S rRNA. Deletion of three nucleotides 3' to this sequence shifted the stability boundary one codon 5' to its wild-type location. Conversely, constructs containing an additional three nucleotides at this same location shifted the transition downstream by an equivalent sequence distance. Our results suggest a model in which the triggering of MATalpha1 mRNA destabilization results from establishment of an interaction between translating ribosomes and a downstream sequence element. Furthermore, our data provide direct molecular evidence for a relationship between mRNA turnover and mRNA translation.
Collapse
Affiliation(s)
- A N Hennigan
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, 01655-0122, USA
| | | |
Collapse
|
18
|
Ruiz-Echevarria MJ, Peltz SW. Utilizing the GCN4 leader region to investigate the role of the sequence determinants in nonsense-mediated mRNA decay. EMBO J 1996; 15:2810-9. [PMID: 8654378 PMCID: PMC450218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, premature translation termination promotes rapid degradation of mRNAs. Accelerated decay requires the presence of specific cis-acting sequences which have been defined as downstream elements. It has been proposed that the role of the downstream element may be to promote translational reinitiation or ribosomal pausing. The GCN4 gene produces an mRNA that contains four short upstream open reading frames (uORFs) preceding the GCN4 protein-coding region in which translational initiation and reinitiation events occur. It was anticipated that these uORFs would function in a manner analogous to nonsense codons, promoting rapid degradation of the mRNA. However, the GCN4 transcript was not degraded by the nonsense-mediated mRNA decay pathway. We have investigated the role of the leader region of the GCN4 transcript in an effort to identify possible sequence elements that inactivate this decay pathway. We show that the GCN4 leader region does not harbor a downstream element needed to promote mRNA decay. In addition, using hybrid GCN4-PGK1 transcripts, we demonstrate that if a translational reinitiation signal precedes a downstream element, the mRNA will no longer be sensitive to nonsense-mediated decay. Furthermore, we demonstrate that the downstream element is functional only after a translational initiation and termination cycle has been completed but is unable to promote nonsense-mediated mRNA decay if it is situated 5' of a translational initiation site. Based on these results, the role of the downstream element will be discussed.
Collapse
Affiliation(s)
- M J Ruiz-Echevarria
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, NJ 08854, USA
| | | |
Collapse
|
19
|
Yun DF, Laz TM, Clements JM, Sherman F. mRNA sequences influencing translation and the selection of AUG initiator codons in the yeast Saccharomyces cerevisiae. Mol Microbiol 1996; 19:1225-39. [PMID: 8730865 DOI: 10.1111/j.1365-2958.1996.tb02468.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The secondary structure and sequences influencing the expression and selection of the AUG initiator codon in the yeast Saccharomyces cerevisiae were investigated with two fused genes, which were composed of either the CYC7 or CYC1 leader regions, respectively, linked to the lacZ coding region. In addition, the strains contained the upf1-delta disruption, which stabilized mRNAs that had premature termination codons, resulting in wild-type levels. The following major conclusions were reached by measuring beta-galactosidase activities in yeast strains having integrated single copies of the fused genes with various alterations in the 89 and 38 nucleotide-long untranslated CYC7 and CYC1 leader regions, respectively. The leader region adjacent to the AUG initiator codon was dispensable, but the nucleotide preceding the AUG initiator at position -3 modified the efficiency of translation by less than twofold, exhibiting an order of preference A > G > C > U. Upstream out-of-frame AUG triplets diminished initiation at the normal site, from essentially complete inhibition to approximately 50% inhibition, depending on the position of the upstream AUG triplet and on the context (-3 position nucleotides) of the two AUG triplets. In this regard, complete inhibition occurred when the upstream and downstream AUG triplets were closer together, and when the upstream and downstream AUG triplets had, respectively, optimal and suboptimal contexts. Thus, leaky scanning occurs in yeast, similar to its occurrence in higher eukaryotes. In contrast, termination codons between two AUG triplets causes reinitiation at the downstream AUG in higher eukaryotes, but not generally in yeast. Our results and the results of others with GCN4 mRNA and its derivatives indicate that reinitiation is not a general phenomenon in yeast, and that special sequences are required.
Collapse
Affiliation(s)
- D F Yun
- Department of Biochemistry, University of Rochester, School of Medicine and Dentistry, New York 14642, USA
| | | | | | | |
Collapse
|
20
|
Das S, Kenan DJ, Bocskai D, Keene JD, Dasgupta A. Sequences within a small yeast RNA required for inhibition of internal initiation of translation: interaction with La and other cellular proteins influences its inhibitory activity. J Virol 1996; 70:1624-32. [PMID: 8627683 PMCID: PMC189986 DOI: 10.1128/jvi.70.3.1624-1632.1996] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We recently reported purification, determination of the nucleotide sequence, and cloning of a 60-nucleotide RNA (I-RNA) from the yeast Saccharomyces cerevisiae which preferentially blocked cap-independent, internal ribosome entry site (IRES)-mediated translation programmed by the poliovirus (PV) 5' untranslated region (UTR). The I-RNA appeared to inhibit IRES-mediated translation by virtue of its ability to bind a 52-kDa polypeptide which interacts with the 5' UTR of viral RNA. We demonstrate here that the HeLa 52-kDa I-RNA-binding protein is immunologically identical to human La autoantigen. Moreover, I-RNA-mediated purified La protein. By using I-RNAs with defined deletions, we have identified sequences of I-RNA required for inhibition of internal initiation of translation. Two smaller fragments of I-RNA (16 and 25 nucleotides) inhibited PV UTR-mediated translation from both monocistronic and bicistronic RNAs. When transfected into HeLa cells, these derivatives of I-RNA inhibited translation of PV RNA. A comparison of protein binding by active and inactive I-RNA mutants demonstrates that in addition to the La protein, three other polypeptides with apparent molecular masses of 80, 70, and 37 kDa may influence the translation-inhibitory activity of I-RNA.
Collapse
Affiliation(s)
- S Das
- Department of Microbiology and Immunology, UCLA School of Medicine 90024-1747, USA
| | | | | | | | | |
Collapse
|
21
|
Maquat LE. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA (NEW YORK, N.Y.) 1995; 1:453-465. [PMID: 7489507 PMCID: PMC1482424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It appears that no organism is immune to the effects of nonsense codons on mRNA abundance. The study of how nonsense codons alter RNA metabolism is still at an early stage, and our current understanding derives more from incidental vignettes than from experimental undertakings that address molecular mechanisms. Challenges for the future include identifying the gene products and RNA sequences that function in nonsense mediated RNA loss, resolving the cause and consequences of there apparently being more than one cellular site and mechanism for nonsense-mediated RNA loss, and understanding how these sites and mechanisms are related to both constitutive and specialized pathways of pre-mRNA processing and mRNA decay.
Collapse
Affiliation(s)
- L E Maquat
- Department of Human Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| |
Collapse
|