1
|
Sun J, Gui Y, Zhou S, Zheng XL. Unlocking the secrets of aging: Epigenetic reader BRD4 as the target to combatting aging-related diseases. J Adv Res 2024; 63:207-218. [PMID: 37956861 PMCID: PMC11379999 DOI: 10.1016/j.jare.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Aging, a complex and profound journey, leads us through a labyrinth of physiological and pathological transformations, rendering us increasingly susceptible to aging-related diseases. Emerging investigations have unveiled the function of bromodomain containing protein 4 (BRD4) in manipulating the aging process and driving the emergence and progression of aging-related diseases. AIM OF REVIEW This review aims to offer a comprehensive outline of BRD4's functions involved in the aging process, and potential mechanisms through which BRD4 governs the initiation and progression of various aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW BRD4 has a fundamental role in regulating the cell cycle, apoptosis, cellular senescence, the senescence-associated secretory phenotype (SASP), senolysis, autophagy, and mitochondrial function, which are involved in the aging process. Several studies have indicated that BRD4 governs the initiation and progression of various aging-related diseases, including Alzheimer's disease, ischemic cerebrovascular diseases, hypertension, atherosclerosis, heart failure, aging-related pulmonary fibrosis, and intervertebral disc degeneration (IVDD). Thus, the evidence from this review supports that BRD4 could be a promising target for managing various aging-related diseases, while further investigation is warranted to gain a thorough understanding of BRD4's role in these diseases.
Collapse
Affiliation(s)
- Jiaxing Sun
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada; Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Gui
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Shenghua Zhou
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada.
| |
Collapse
|
2
|
Chavez DR, Lee PC, Comizzoli P. Oocyte Meiotic Competence in the Domestic Cat Model: Novel Roles for Nuclear Proteins BRD2 and NPM1. Front Cell Dev Biol 2021; 9:670021. [PMID: 34012967 PMCID: PMC8126674 DOI: 10.3389/fcell.2021.670021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Abstract
To participate in fertilization and embryo development, oocytes stored within the mammalian female ovary must resume meiosis as they are arrested in meiotic prophase I. This ability to resume meiosis, known as meiotic competence, requires the tight regulation of cellular metabolism and chromatin configuration. Previously, we identified nuclear proteins associated with the transition from the pre-antral to the antral follicular stage, the time at which oocytes gain meiotic competence. In this study, the objective was to specifically investigate three candidate nuclear factors: bromodomain containing protein 2 (BRD2), nucleophosmin 1 (NPM1), and asparaginase-like 1 (ASRGL1). Although these three factors have been implicated with folliculogenesis or reproductive pathologies, their requirement during oocyte maturation is unproven in any system. Experiments were conducted using different stages of oocytes isolated from adult cat ovaries. The presence of candidate factors in developing oocytes was confirmed by immunostaining. While BRD2 and ASRGL1 protein increased between pre-antral and the antral stages, changes in NPM1 protein levels between stages were not observed. Using protein inhibition experiments, we found that most BRD2 or NPM1-inhibited oocytes were incapable of participating in fertilization or embryo development. Further exploration revealed that inhibition of BRD2 and NPM-1 in cumulus-oocyte-complexes prevented oocytes from maturing to the metaphase II stage. Rather, they remained at the germinal vesicle stage or arrested shortly after meiotic resumption. We therefore have identified novel factors playing critical roles in domestic cat oocyte meiotic competence. The identification of these factors will contribute to improvement of domestic cat assisted reproduction and could serve as biomarkers of meiotically competent oocytes in other species.
Collapse
Affiliation(s)
- Daniela R Chavez
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States
| | - Pei-Chih Lee
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States
| |
Collapse
|
3
|
Märker R, Blank-Landeshammer B, Beier-Rosberger A, Sickmann A, Kück U. Phosphoproteomic analysis of STRIPAK mutants identifies a conserved serine phosphorylation site in PAK kinase CLA4 to be important in fungal sexual development and polarized growth. Mol Microbiol 2020; 113:1053-1069. [PMID: 32022307 DOI: 10.1111/mmi.14475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
The highly conserved striatin-interacting phosphatases and kinases (STRIPAK) complex regulates phosphorylation/dephosphorylation of developmental proteins in eukaryotic microorganisms, animals and humans. To first identify potential targets of STRIPAK, we performed extensive isobaric tags for relative and absolute quantification-based proteomic and phosphoproteomic analyses in the filamentous fungus Sordaria macrospora. In total, we identified 4,193 proteins and 2,489 phosphoproteins, which are represented by 10,635 phosphopeptides. By comparing phosphorylation data from wild type and mutants, we identified 228 phosphoproteins to be regulated in all three STRIPAK mutants, thus representing potential targets of STRIPAK. To provide an exemplarily functional analysis of a STRIPAK-dependent phosphorylated protein, we selected CLA4, a member of the conserved p21-activated kinase family. Functional characterization of the ∆cla4 deletion strain showed that CLA4 controls sexual development and polarized growth. To determine the functional relevance of CLA4 phosphorylation and the impact of specific phosphorylation sites on development, we next generated phosphomimetic and -deficient variants of CLA4. This analysis identified (de)phosphorylation of a highly conserved serine (S685) residue in the catalytic domain of CLA4 as being important for fungal cellular development. Collectively, these analyses significantly contribute to the understanding of the mechanistic function of STRIPAK as a phosphatase and kinase signaling complex.
Collapse
Affiliation(s)
- Ramona Märker
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | | | - Anna Beier-Rosberger
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| |
Collapse
|
4
|
Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans. mBio 2018; 9:mBio.02048-18. [PMID: 30377286 PMCID: PMC6212825 DOI: 10.1128/mbio.02048-18] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Comprehensive understanding of an organism requires that we understand the contributions of most, if not all, of its genes. Classical genetic approaches to this issue have involved systematic deletion of each gene in the genome, with comprehensive sets of mutants available only for very-well-studied model organisms. We took a different approach, harnessing the power of in vivo transposition coupled with deep sequencing to identify >500,000 different mutations, one per cell, in the prevalent human fungal pathogen Candida albicans and to map their positions across the genome. The transposition approach is efficient and less labor-intensive than classic approaches. Here, we describe the production and analysis (aided by machine learning) of a large collection of mutants and the comprehensive identification of 1,610 C. albicans genes that are essential for growth under standard laboratory conditions. Among these C. albicans essential genes, we identify those that are also essential in two distantly related model yeasts as well as those that are conserved in all four major human fungal pathogens and that are not conserved in the human genome. This list of genes with functions important for the survival of the pathogen provides a good starting point for the development of new antifungal drugs, which are greatly needed because of the emergence of fungal pathogens with elevated resistance and/or tolerance of the currently limited set of available antifungal drugs. Knowing the full set of essential genes for a given organism provides important information about ways to promote, and to limit, its growth and survival. For many non-model organisms, the lack of a stable haploid state and low transformation efficiencies impede the use of conventional approaches to generate a genome-wide comprehensive set of mutant strains and the identification of the genes essential for growth. Here we report on the isolation and utilization of a highly stable haploid derivative of the human pathogenic fungus Candida albicans, together with a modified heterologous transposon and machine learning (ML) analysis method, to predict the degree to which all of the open reading frames are required for growth under standard laboratory conditions. We identified 1,610 C. albicans essential genes, including 1,195 with high “essentiality confidence” scores, thereby increasing the number of essential genes (currently 66 in the Candida Genome Database) by >20-fold and providing an unbiased approach to determine the degree of confidence in the determination of essentiality. Among the genes essential in C. albicans were 602 genes also essential in the model budding and fission yeasts analyzed by both deletion and transposon mutagenesis. We also identified essential genes conserved among the four major human pathogens C. albicans, Aspergillus fumigatus, Cryptococcus neoformans, and Histoplasma capsulatum and highlight those that lack homologs in humans and that thus could serve as potential targets for the design of antifungal therapies.
Collapse
|
5
|
Knockdown of epigenetic transcriptional co-regulator Brd2a disrupts apoptosis and proper formation of hindbrain and midbrain-hindbrain boundary (MHB) region in zebrafish. Mech Dev 2017; 146:10-30. [PMID: 28549975 DOI: 10.1016/j.mod.2017.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
Brd2 is a member of the bromodomain-extraterminal domain (BET) family of proteins and functions as an acetyl-histone-directed transcriptional co-regulator and recruitment scaffold in chromatin modification complexes affecting signal-dependent transcription. While Brd2 acts as a protooncogene in mammalian blood, developmental studies link it to regulation of neuronal apoptosis and epilepsy, and complete knockout of the gene is invariably embryonic lethal. In Drosophila, the Brd2 homolog acts as a maternal effect factor necessary for segment formation and identity and proper expression of homeotic loci, including Ultrabithorax and engrailed. To test the various roles attributed to Brd2 in a single developmental system representing a non-mammalian vertebrate, we conducted a phenotypic characterization of Brd2a deficient zebrafish embryos produced by morpholino knockdown and corroborated by Crispr-Cas9 disruption and small molecule inhibitor treatments. brd2aMO morphants exhibit reduced hindbrain with an ill-defined midbrain-hindbrain boundary (MHB) region; irregular notochord, neural tube, and somites; and abnormalities in ventral trunk and ventral nerve cord interneuron positioning. Using whole mount TUNEL and confocal microscopy, we uncover a significant decrease, then a dramatic increase, of p53-independent cell death at the start and end of segmentation, respectively. In contrast, using qualitative and quantitative analyses of BrdU incorporation, phosphohistone H3-tagging, and flow cytometry, we detect little effect of Brd2a knockdown on overall proliferation levels in embryos. RNA in situ hybridization shows reduced or absent expression of homeobox gene eng2a and paired box gene pax2a, in the hindbrain domain of the MHB region, and an overabundance of pax2a-positive kidney progenitors, in knockdowns. Together, these results suggest an evolutionarily conserved role for Brd2 in the proper formation and/or patterning of segmented tissues, including the vertebrate CNS, where it acts as a bi-modal regulator of apoptosis, and is necessary, directly or indirectly, for proper expression of genes that pattern the MHB and/or regulate differentiation in the anterior hindbrain.
Collapse
|
6
|
Frank-Bertoncelj M, Trenkmann M, Klein K, Karouzakis E, Rehrauer H, Bratus A, Kolling C, Armaka M, Filer A, Michel BA, Gay RE, Buckley CD, Kollias G, Gay S, Ospelt C. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat Commun 2017; 8:14852. [PMID: 28332497 PMCID: PMC5376654 DOI: 10.1038/ncomms14852] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 02/02/2017] [Indexed: 01/15/2023] Open
Abstract
A number of human diseases, such as arthritis and atherosclerosis, include characteristic pathology in specific anatomical locations. Here we show transcriptomic differences in synovial fibroblasts from different joint locations and that HOX gene signatures reflect the joint-specific origins of mouse and human synovial fibroblasts and synovial tissues. Alongside DNA methylation and histone modifications, bromodomain and extra-terminal reader proteins regulate joint-specific HOX gene expression. Anatomical transcriptional diversity translates into joint-specific synovial fibroblast phenotypes with distinct adhesive, proliferative, chemotactic and matrix-degrading characteristics and differential responsiveness to TNF, creating a unique microenvironment in each joint. These findings indicate that local stroma might control positional disease patterns not only in arthritis but in any disease with a prominent stromal component. Arthritis affects different joints variably despite systemic inflammatory cues. Here the authors show anatomical differences in the transcriptome, epigenome and function of synovial fibroblasts that might affect susceptibility to site-specific joint diseases.
Collapse
Affiliation(s)
- Mojca Frank-Bertoncelj
- Center of Experimental Rheumatology, University Hospital Zurich and University of Zurich, Wagistrasse 14, 8952 Schlieren, Zurich, Switzerland
| | - Michelle Trenkmann
- Center of Experimental Rheumatology, University Hospital Zurich and University of Zurich, Wagistrasse 14, 8952 Schlieren, Zurich, Switzerland
| | - Kerstin Klein
- Center of Experimental Rheumatology, University Hospital Zurich and University of Zurich, Wagistrasse 14, 8952 Schlieren, Zurich, Switzerland
| | - Emmanuel Karouzakis
- Center of Experimental Rheumatology, University Hospital Zurich and University of Zurich, Wagistrasse 14, 8952 Schlieren, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anna Bratus
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | - Maria Armaka
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', 34, Fleming Street, 16672 Vari, Attica, Greece
| | - Andrew Filer
- Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2WB, UK
| | - Beat A Michel
- Center of Experimental Rheumatology, University Hospital Zurich and University of Zurich, Wagistrasse 14, 8952 Schlieren, Zurich, Switzerland
| | - Renate E Gay
- Center of Experimental Rheumatology, University Hospital Zurich and University of Zurich, Wagistrasse 14, 8952 Schlieren, Zurich, Switzerland
| | - Christopher D Buckley
- Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2WB, UK
| | - George Kollias
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', 34, Fleming Street, 16672 Vari, Attica, Greece.,Department of Experimental Physiology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Goudi, Athens, Greece
| | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich and University of Zurich, Wagistrasse 14, 8952 Schlieren, Zurich, Switzerland.,Center of Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Caroline Ospelt
- Center of Experimental Rheumatology, University Hospital Zurich and University of Zurich, Wagistrasse 14, 8952 Schlieren, Zurich, Switzerland.,Center of Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Bdf1 Bromodomains Are Essential for Meiosis and the Expression of Meiotic-Specific Genes. PLoS Genet 2017; 13:e1006541. [PMID: 28068333 PMCID: PMC5261807 DOI: 10.1371/journal.pgen.1006541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/24/2017] [Accepted: 12/15/2016] [Indexed: 11/19/2022] Open
Abstract
Bromodomain and Extra-terminal motif (BET) proteins play a central role in transcription regulation and chromatin signalling pathways. They are present in unicellular eukaryotes and in this study, the role of the BET protein Bdf1 has been explored in Saccharomyces cerevisiae. Mutation of Bdf1 bromodomains revealed defects on both the formation of spores and the meiotic progression, blocking cells at the exit from prophase, before the first meiotic division. This phenotype is associated with a massive deregulation of the transcription of meiotic genes and Bdf1 bromodomains are required for appropriate expression of the key meiotic transcription factor NDT80 and almost all the Ndt80-inducible genes, including APC complex components. Bdf1 notably accumulates on the promoter of Ndt80 and its recruitment is dependent on Bdf1 bromodomains. In addition, the ectopic expression of NDT80 during meiosis partially bypasses this dependency. Finally, purification of Bdf1 partners identified two independent complexes with Bdf2 or the SWR complex, neither of which was required to complete sporulation. Taken together, our results unveil a new role for Bdf1 –working independently from its predominant protein partners Bdf2 and the SWR1 complex–as a regulator of meiosis-specific genes. Chromatin modifying proteins play a central role in transcription regulation and chromatin signalling. In this study we investigated the functional role of the bromodomains of the chromatin protein Bdf1 during yeast gametogenesis. Our results show that the bromodomains of Bdf1 are essential for meiotic progression and the formation of mature spores. Bdf1 bromodomains are required for the expression of key meiotic genes and the master regulator NDT80. Forced expression of NDT80 can partially rescue the formation of spores when Bdf1 bromodomains are mutated. The results presented here indicate that Bdf1 forms two exclusive complexes, with Bdf2 or with the SWR complex. However, none of these complexes are required for sporulation progression. To conclude, our findings suggest that Bdf1 is a new regulator of the meiotic transcription program and of the expression of the master regulator NDT80.
Collapse
|
8
|
A bromodomain-DNA interaction facilitates acetylation-dependent bivalent nucleosome recognition by the BET protein BRDT. Nat Commun 2016; 7:13855. [PMID: 27991587 PMCID: PMC5187433 DOI: 10.1038/ncomms13855] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/04/2016] [Indexed: 12/27/2022] Open
Abstract
Bromodomains are critical components of many chromatin modifying/remodelling proteins and are emerging therapeutic targets, yet how they interact with nucleosomes, rather than acetylated peptides, remains unclear. Using BRDT as a model, we characterized how the BET family of bromodomains interacts with site-specifically acetylated nucleosomes. Here we report that BRDT interacts with nucleosomes through its first (BD1), but not second (BD2) bromodomain, and that acetylated histone recognition by BD1 is complemented by a bromodomain-DNA interaction. Simultaneous DNA and histone recognition enhances BRDT's nucleosome binding affinity and specificity, and its ability to localize to acetylated chromatin in cells. Conservation of DNA binding in bromodomains of BRD2, BRD3 and BRD4, indicates that bivalent nucleosome recognition is a key feature of these bromodomains and possibly others. Our results elucidate the molecular mechanism of BRDT association with nucleosomes and identify structural features of the BET bromodomains that may be targeted for therapeutic inhibition.
Collapse
|
9
|
Taniguchi Y. The Bromodomain and Extra-Terminal Domain (BET) Family: Functional Anatomy of BET Paralogous Proteins. Int J Mol Sci 2016; 17:ijms17111849. [PMID: 27827996 PMCID: PMC5133849 DOI: 10.3390/ijms17111849] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
The Bromodomain and Extra-Terminal Domain (BET) family of proteins is characterized by the presence of two tandem bromodomains and an extra-terminal domain. The mammalian BET family of proteins comprises BRD2, BRD3, BRD4, and BRDT, which are encoded by paralogous genes that may have been generated by repeated duplication of an ancestral gene during evolution. Bromodomains that can specifically bind acetylated lysine residues in histones serve as chromatin-targeting modules that decipher the histone acetylation code. BET proteins play a crucial role in regulating gene transcription through epigenetic interactions between bromodomains and acetylated histones during cellular proliferation and differentiation processes. On the other hand, BET proteins have been reported to mediate latent viral infection in host cells and be involved in oncogenesis. Human BRD4 is involved in multiple processes of the DNA virus life cycle, including viral replication, genome maintenance, and gene transcription through interaction with viral proteins. Aberrant BRD4 expression contributes to carcinogenesis by mediating hyperacetylation of the chromatin containing the cell proliferation-promoting genes. BET bromodomain blockade using small-molecule inhibitors gives rise to selective repression of the transcriptional network driven by c-MYC These inhibitors are expected to be potential therapeutic drugs for a wide range of cancers. This review presents an overview of the basic roles of BET proteins and highlights the pathological functions of BET and the recent developments in cancer therapy targeting BET proteins in animal models.
Collapse
Affiliation(s)
- Yasushi Taniguchi
- Division of Basic Molecular Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
10
|
Úbeda-Manzanaro M, Ortiz-Delgado JB, Sarasquete C. The Bromodomain testis-specific gene (Brdt) characterization and expression in gilthead seabream, Sparus aurata, and European seabass, Dicentrarchus labrax. Eur J Histochem 2016; 60:2638. [PMID: 27349318 PMCID: PMC4933829 DOI: 10.4081/ejh.2016.2638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 11/25/2022] Open
Abstract
Multiple genes and transcription factors are involved in regulation and control of the complex process of sex determination and differentiation of fish species. Also more, several hormonal factors and some environmental conditions can also be adequate spawning strategies and stimuli for inducing reproduction of fish species. Brdt gene belongs to the bromodomain-extraterminal domain (BET) family of transcriptional coregulators. In mammals, Brdt gene is almost exclusively expressed in testis. Furthermore, Brdt protein is involved in elongating spermatids, and is required for proper spermatogenesis and male fertility. However, from our understanding of fish species, the role of this gene as key, during gametogenesis, still remains unknown. In this study, two Brdt mRNA transcripts were isolated from two teleostean fish species, gilt-head seabream and European seabass. In both species the shorter form lacked a functional C-terminal domain, which may involve a different function as transcriptional regulator. The pattern of Brdt expression showed that the highest levels occurred in the gonads. Significantly lower levels of expression were detected in brain, pituitary and different organ systems (heart, kidney, gills, among other somatic tissues) from both studied species. In situ hybridization approach evidenced that Brdt mRNA expression was restricted to specific cell-types of the germ line, during both oogenesis and spermatogenesis processes.
Collapse
|
11
|
Deeney JT, Belkina AC, Shirihai OS, Corkey BE, Denis GV. BET Bromodomain Proteins Brd2, Brd3 and Brd4 Selectively Regulate Metabolic Pathways in the Pancreatic β-Cell. PLoS One 2016; 11:e0151329. [PMID: 27008626 PMCID: PMC4805167 DOI: 10.1371/journal.pone.0151329] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/26/2016] [Indexed: 11/18/2022] Open
Abstract
Displacement of Bromodomain and Extra-Terminal (BET) proteins from chromatin has promise for cancer and inflammatory disease treatments, but roles of BET proteins in metabolic disease remain unexplored. Small molecule BET inhibitors, such as JQ1, block BET protein binding to acetylated lysines, but lack selectivity within the BET family (Brd2, Brd3, Brd4, Brdt), making it difficult to disentangle contributions of each family member to transcriptional and cellular outcomes. Here, we demonstrate multiple improvements in pancreatic β-cells upon BET inhibition with JQ1 or BET-specific siRNAs. JQ1 (50–400 nM) increases insulin secretion from INS-1 cells in a concentration dependent manner. JQ1 increases insulin content in INS-1 cells, accounting for increased secretion, in both rat and human islets. Higher concentrations of JQ1 decrease intracellular triglyceride stores in INS-1 cells, a result of increased fatty acid oxidation. Specific inhibition of both Brd2 and Brd4 enhances insulin transcription, leading to increased insulin content. Inhibition of Brd2 alone increases fatty acid oxidation. Overlapping yet discrete roles for individual BET proteins in metabolic regulation suggest new isoform-selective BET inhibitors may be useful to treat insulin resistant/diabetic patients. Results imply that cancer and diseases of chronic inflammation or disordered metabolism are related through shared chromatin regulatory mechanisms.
Collapse
Affiliation(s)
- Jude T. Deeney
- Department of Medicine, Section of Endocrinology, Obesity Research Center, Evans Biomedical Research Center; Boston University School of Medicine, 650 Albany Street, X804, Boston, Massachusetts 02118, United States of America
| | - Anna C. Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, 650 Albany Street, X326, Boston, Massachusetts 02118, United States of America
| | - Orian S. Shirihai
- Department of Medicine, Section of Endocrinology, Obesity Research Center, Evans Biomedical Research Center; Boston University School of Medicine, 650 Albany Street, X804, Boston, Massachusetts 02118, United States of America
| | - Barbara E. Corkey
- Department of Medicine, Section of Endocrinology, Obesity Research Center, Evans Biomedical Research Center; Boston University School of Medicine, 650 Albany Street, X804, Boston, Massachusetts 02118, United States of America
| | - Gerald V. Denis
- Department of Pharmacology and Experimental Therapeutics, and Section of Hematology/ Oncology, Cancer Research Center; Boston University School of Medicine, 72 East Concord Street, K520, Boston, Massachusetts 02118, United States of America
- * E-mail:
| |
Collapse
|
12
|
Uppal T, Banerjee S, Sun Z, Verma SC, Robertson ES. KSHV LANA--the master regulator of KSHV latency. Viruses 2014; 6:4961-98. [PMID: 25514370 PMCID: PMC4276939 DOI: 10.3390/v6124961] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/16/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV), like other human herpes viruses, establishes a biphasic life cycle referred to as dormant or latent, and productive or lytic phases. The latent phase is characterized by the persistence of viral episomes in a highly ordered chromatin structure and with the expression of a limited number of viral genes. Latency Associated Nuclear Antigen (LANA) is among the most abundantly expressed proteins during latency and is required for various nuclear functions including the recruitment of cellular machineries for viral DNA replication and segregation of the replicated genomes to daughter cells. LANA achieves these functions by recruiting cellular proteins including replication factors, chromatin modifying enzymes and cellular mitotic apparatus assembly. LANA directly binds to the terminal repeat region of the viral genome and associates with nucleosomal proteins to tether to the host chromosome. Binding of LANA to TR recruits the replication machinery, thereby initiating DNA replication within the TR. However, other regions of the viral genome can also initiate replication as determined by Single Molecule Analysis of the Replicated DNA (SMARD) approach. Recent, next generation sequence analysis of the viral transcriptome shows the expression of additional genes during latent phase. Here, we discuss the newly annotated latent genes and the role of major latent proteins in KSHV biology.
Collapse
Affiliation(s)
- Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Sagarika Banerjee
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Zhiguo Sun
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Erle S Robertson
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Roy K, Chanfreau G. Stress-induced nuclear RNA degradation pathways regulate yeast bromodomain factor 2 to promote cell survival. PLoS Genet 2014; 10:e1004661. [PMID: 25232960 PMCID: PMC4169253 DOI: 10.1371/journal.pgen.1004661] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/11/2014] [Indexed: 11/23/2022] Open
Abstract
Bromodomain proteins are key regulators of gene expression. How the levels of these factors are regulated in specific environmental conditions is unknown. Previous work has established that expression of yeast Bromodomain factor 2 (BDF2) is limited by spliceosome-mediated decay (SMD). Here we show that BDF2 is subject to an additional layer of post-transcriptional control through RNase III-mediated decay (RMD). We found that the yeast RNase III Rnt1p cleaves a stem-loop structure within the BDF2 mRNA to down-regulate its expression. However, these two nuclear RNA degradation pathways play distinct roles in the regulation of BDF2 expression, as we show that the RMD and SMD pathways of the BDF2 mRNA are differentially activated or repressed in specific environmental conditions. RMD is hyper-activated by salt stress and repressed by hydroxyurea-induced DNA damage while SMD is inactivated by salt stress and predominates during DNA damage. Mutations of cis-acting signals that control SMD and RMD rescue numerous growth defects of cells lacking Bdf1p, and show that SMD plays an important role in the DNA damage response. These results demonstrate that specific environmental conditions modulate nuclear RNA degradation pathways to control BDF2 expression and Bdf2p-mediated gene regulation. Moreover, these results show that precise dosage of Bromodomain factors is essential for cell survival in specific environmental conditions, emphasizing their importance for controlling chromatin structure and gene expression in response to environmental stress. Cells adapt to changes in the environment through modulating gene expression at both the RNA and protein levels. RNA degradation plays a central role in this adaption response, by controlling the stability of specific mRNAs to optimize protein production in different conditions. In this study, we show that the gene encoding Bromodomain Factor 2 (BDF2) is tightly regulated according to environmental conditions by two distinct RNA degradation mechanisms. We show that these RNA degradation pathways are critical for cell growth in specific conditions. Our study suggests that environmental modulation of nuclear RNA degradation pathways is a previously unappreciated aspect of gene expression control.
Collapse
Affiliation(s)
- Kevin Roy
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Guillaume Chanfreau
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Shibata Y, Nishiwaki K. Maintenance of cell fates through acetylated histone and the histone variant H2A.z in C. elegans. WORM 2014; 3:e29048. [PMID: 25254151 DOI: 10.4161/worm.29048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 01/04/2023]
Abstract
Maintenance of cell fates is essential for the development and homeostasis of multicellular organisms and involves the preservation of the expression status of selector genes that control many target genes. Epigenetic marks have pivotal roles in the maintenance of gene expression status, as occurs with methylation on lysine 27 of histone H3 (H3K27me) for Hox gene regulation. In contrast, because the levels of histone acetylation decrease during the mitotic phase, acetylated histone has not been believed to contribute to the maintenance of cell fates. Because members of the bromodomain and extra terminal (BET) family bind to acetylated histones localized on mitotic chromosomes, it is possible that they may regulate the transcriptional status of genes throughout the cell cycle. In this commentary, we discuss the recent analyses of C. elegans BET family protein BET-1, which contributes to the maintenance of cell fates through the histone H2A variant HTZ-1/H2A.z. This mechanism represses transcription of selector genes in the genomic region where lysine 27 of histone H3 (H3K27) is demethylated by histone demethylase UTX-1. We discuss the possibility that BET-1 and HTZ-1 maintain the poised state of RNA polymerase II in the cell such that it is ready to respond to differentiation signals.
Collapse
Affiliation(s)
- Yukimasa Shibata
- Department of Bioscience; Kwansei Gakuin University; Sanda, Hyogo, Japan
| | - Kiyoji Nishiwaki
- Department of Bioscience; Kwansei Gakuin University; Sanda, Hyogo, Japan
| |
Collapse
|
15
|
Belkina AC, Blanton WP, Nikolajczyk BS, Denis GV. The double bromodomain protein Brd2 promotes B cell expansion and mitogenesis. J Leukoc Biol 2013; 95:451-60. [PMID: 24319289 DOI: 10.1189/jlb.1112588] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bromodomain-containing transcriptional regulators represent new epigenetic targets in different hematologic malignancies. However, bromodomain-mediated mechanisms that couple histone acetylation to transcription in lymphopoiesis and govern mature lymphocyte mitogenesis are poorly understood. Brd2, a transcriptional coregulator that contains dual bromodomains and an extraterminal domain (the BET family), couples chromatin to cell-cycle progression. We reported previously the first functional characterization of a BET protein as an effector of mammalian mitogenic signal transduction: Eμ-Brd2 Tg mice develop "activated B cell" diffuse large B cell lymphoma. No other animal models exist for genetic or lentiviral expression of BET proteins, hampering testing of novel anti-BET anticancer drugs, such as JQ1. We transduced HSCs with Brd2 lentivirus and reconstituted recipient mice to test the hypothesis that Brd2 regulates hematopoiesis in BM and mitogenesis in the periphery. Forced expression of Brd2 provides an expansion advantage to the donor-derived B cell compartment in BM and increases mature B cell mitogenic responsiveness in vitro. Brd2 binds the cyclin A promoter in B cells, shown by ChIP, and increases cyclin A mRNA and protein levels, and S-phase progression in vitro in mitogen-stimulated primary B cells, but not T cells, reinforcing results from Eμ-Brd2 mice. The small molecule BET inhibitor JQ1 reduces B cell mitogenesis, consistent with the interpretation that BET inhibitors are antiproliferative. Brd2-specific knockdown experiments show that Brd2 is also required for hematopoiesis. We conclude that Brd2 plays a critical, independent role in regulation of mitogenic response genes, particularly cyclin A, in B cells.
Collapse
Affiliation(s)
- Anna C Belkina
- 1.72 East Concord St., Rm. K520, Boston, MA 02118, USA. ; Twitter: http://www.twitter.com/GdenisBoston
| | | | | | | |
Collapse
|
16
|
Volanakis A, Passoni M, Hector RD, Shah S, Kilchert C, Granneman S, Vasiljeva L. Spliceosome-mediated decay (SMD) regulates expression of nonintronic genes in budding yeast. Genes Dev 2013; 27:2025-38. [PMID: 24065768 PMCID: PMC3792478 DOI: 10.1101/gad.221960.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We uncovered a novel role for the spliceosome in regulating mRNA expression levels that involves splicing coupled to RNA decay, which we refer to as spliceosome-mediated decay (SMD). Our transcriptome-wide studies identified numerous transcripts that are not known to have introns but are spliced by the spliceosome at canonical splice sites in Saccharomyces cerevisiae. Products of SMD are primarily degraded by the nuclear RNA surveillance machinery. We demonstrate that SMD can significantly down-regulate mRNA levels; splicing at canonical splice sites in the bromodomain factor 2 (BDF2) transcript reduced transcript levels roughly threefold by generating unstable products that are rapidly degraded by the nuclear surveillance machinery. Regulation of BDF2 mRNA levels by SMD requires Bdf1, a functionally redundant Bdf2 paralog that plays a role in recruiting the spliceosome to the BDF2 mRNA. Interestingly, mutating BDF2 5' splice site and branch point consensus sequences partially suppresses the bdf1Δ temperature-sensitive phenotype, suggesting that maintaining proper levels of Bdf2 via SMD is biologically important. We propose that the spliceosome can also repress protein-coding gene expression by promoting nuclear turnover of spliced RNA products and provide an insight for coordinated regulation of Bdf1 and Bdf2 levels in the cell.
Collapse
Affiliation(s)
- Adam Volanakis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
17
|
Berkovits BD, Wolgemuth DJ. The role of the double bromodomain-containing BET genes during mammalian spermatogenesis. Curr Top Dev Biol 2013; 102:293-326. [PMID: 23287038 DOI: 10.1016/b978-0-12-416024-8.00011-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The double bromodomain-containing BET (bromodomain and extra terminal) family of proteins is highly conserved from yeast to humans and consists not just of transcriptional regulators but also histone-interacting chromatin remodelers. The four mammalian BET genes are each expressed at unique times during spermatogenesis, and the testis-specific gene Brdt is essential for spermatogenesis. Loss of the first bromodomain of BRDT results in improper/incomplete spermatid elongation and severely morphologically defective sperm. The elongation defects observed in mutant spermatids can be directly tied to altered postmeiotic chromatin architecture. BRDT is required for creation/maintenance of the chromocenter of round spermatids, a structure that forms just after completion of meiosis. The chromocenter creates a defined topology in spermatids, and the presence of multiple chromocenters rather than a single intact chromocenter correlates with loss of spermatid polarity, loss of heterochromatin foci at the nuclear envelope, and loss of proper spermatid elongation. BRDT is not only essential for proper chromatin organization but also involved in regulation of transcription and in cotranscriptional processing. That is, transcription and alternative splicing are altered in spermatocytes and spermatids that lack full-length BRDT. Additionally, the transcription of mRNAs with short 3' UTRs, which is characteristic of round spermatids, is also altered. Examination of the genes regulated by BRDT yields many possible targets that could in part explain the morphologically abnormal sperm produced by the BRDT mutant testes. Thus, BRDT and possibly the other BET genes are required for proper spermatogenesis, which opens up the possibility that the recently discovered small molecule inhibitors of the BET family could be useful as reversible male contraceptives.
Collapse
Affiliation(s)
- Binyamin D Berkovits
- Department of Genetics and Development, Columbia University Medical Center, New York, USA
| | | |
Collapse
|
18
|
Abstract
The bromodomain is a highly conserved motif of 110 amino acids that is bundled into four anti-parallel α-helices and found in proteins that interact with chromatin, such as transcription factors, histone acetylases and nucleosome remodelling complexes. Bromodomain proteins are chromatin 'readers'; they recruit chromatin-regulating enzymes, including 'writers' and 'erasers' of histone modification, to target promoters and to regulate gene expression. Conventional wisdom held that complexes involved in chromatin dynamics are not 'druggable' targets. However, small molecules that inhibit bromodomain and extraterminal (BET) proteins have been described. We examine these developments and discuss the implications for small molecule epigenetic targeting of chromatin networks in cancer.
Collapse
Affiliation(s)
- Anna C Belkina
- Cancer Research Center, Nutrition Obesity Research Center, Departments of Medicine and Pharmacology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | | |
Collapse
|
19
|
Furdas SD, Carlino L, Sippl W, Jung M. Inhibition of bromodomain-mediated protein–protein interactions as a novel therapeutic strategy. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00201e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecule inhibitors of acetyl lysine–bromodomain interactions emerge as novel epigenetic tools with potential for therapeutic approaches.
Collapse
Affiliation(s)
- Silviya D. Furdas
- Institute of Pharmaceutical Sciences
- Albert-Ludwigs-University of Freiburg
- Freiburg
- Germany
| | - Luca Carlino
- Department of Pharmaceutical Chemistry
- Martin-Luther University of Halle-Wittenberg
- Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry
- Martin-Luther University of Halle-Wittenberg
- Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences
- Albert-Ludwigs-University of Freiburg
- Freiburg
- Germany
| |
Collapse
|
20
|
The double-bromodomain proteins Bdf1 and Bdf2 modulate chromatin structure to regulate S-phase stress response in Schizosaccharomyces pombe. Genetics 2011; 190:487-500. [PMID: 22095079 DOI: 10.1534/genetics.111.135459] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bromodomain proteins bind acetylated histones to regulate transcription. Emerging evidence suggests that histone acetylation plays an important role in DNA replication and repair, although its precise mechanisms are not well understood. Here we report studies of two double bromodomain-containing proteins, Bdf1 and Bdf2, in fission yeast. Loss of Bdf1 or Bdf2 led to a reduction in the level of histone H4 acetylation. Both bdf1Δ and bdf2Δ cells showed sensitivity to DNA damaging agents, including camptothecin, that cause replication fork breakage. Consistently, Bdf1 and Bdf2 were important for recovery of broken replication forks and suppression of DNA damage. Surprisingly, deletion of bdf1 or bdf2 partially suppressed sensitivity of various checkpoint mutants including swi1Δ, mrc1Δ, cds1Δ, crb2Δ, chk1Δ, and rad3Δ, to hydroxyurea, a compound that stalls replication forks and activates the Cds1-dependent S-phase checkpoint. This suppression was not due to reactivation of Cds1. Instead, we found that bdf2 deletion alleviates DNA damage accumulation caused by defects in the DNA replication checkpoint. We also show that hydroxyurea sensitivity of mrc1Δ and swi1Δ was suppressed by mutations in histone H4 acetyltransferase subunits or histone H4. These results suggest that the double bromodomain-containing proteins modulate chromatin structure to coordinate DNA replication and S-phase stress response.
Collapse
|
21
|
Berkovits BD, Wolgemuth DJ. The first bromodomain of the testis-specific double bromodomain protein Brdt is required for chromocenter organization that is modulated by genetic background. Dev Biol 2011; 360:358-68. [PMID: 22020252 DOI: 10.1016/j.ydbio.2011.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 09/27/2011] [Accepted: 10/04/2011] [Indexed: 12/27/2022]
Abstract
Mice homozygous for a mutation (Brdt(∆BD1/∆BD1)) lacking the first bromodomain of Brdt, a testis-specific member of the BET family of double-bromodomain containing proteins, are sterile and exhibit profound defects in chromatin remodeling during spermiogenesis. We have now observed that a prominent feature of the aberrant spermatid nuclei is a fragmented chromocenter, a structure comprised of peri-centromeric heterochromatin. There was a concomitant increase in the levels of heterochromatin protein 1 alpha (Hp1α), suggesting that the presence of multiple chromocenters was correlated with a spread of heterochromatin beyond the normal centromeric region. Brdt protein was normally present throughout the nucleus but was excluded from the chromocenter. A more densely staining region of Brdt protein appeared to separate sirtuin 1 (Sirt1) protein from contact with the chromocenter. Although still nuclear, this unique localization of Brdt protein was lost in Brdt(∆BD1/∆BD1) mutant spermatids and Brdt and Sirt1 overlapped around the chromocenters. There was also ectopic localization of the H1 histone family, member N, testis-specific (H1fnt) protein in Brdt(∆BD1/∆BD1) round spermatids, which may be linked to the previously reported loss of polarized localization of peri-nuclear heterochromatin foci. The extent of chromocenter fragmentation was more severe and penetrant in mutant testes on a pure 129Sv/Ev as compared to a pure C57Bl/6 background. Indeed, all aspects of the mutant phenotype were more severe on the 129Sv/Ev background. Contrary to previous studies in genetic models where fragmented chromocenters were observed in spermatids, the Brdt(∆BD1/∆BD1) mutant spermatids do not undergo apoptosis (on either background). These observations suggest that the first bromodomain of Brdt is critical in the formation and/or maintenance of an intact chromocenter and implicate this structure in proper remodeling of the chromatin architecture of the sperm head.
Collapse
Affiliation(s)
- Binyamin D Berkovits
- Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| | | |
Collapse
|
22
|
Genetic analysis implicates the Set3/Hos2 histone deacetylase in the deposition and remodeling of nucleosomes containing H2A.Z. Genetics 2011; 187:1053-66. [PMID: 21288874 DOI: 10.1534/genetics.110.125419] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Histone variants and histone modification complexes act to regulate the functions of chromatin. In Saccharomyces cerevisiae the histone variant H2A.Z is encoded by HTZ1. Htz1 is dispensable for viability in budding yeast, but htz1Δ is synthetic sick or lethal with the null alleles of about 200 nonessential genes. One of the strongest of these interactions is with the deletion of SET3, which encodes a subunit of the Set3/Hos2 histone deacetylase complex. Little is known about the functions of Set3, and interpreting these genetic interactions remains a highly challenging task. Here we report the results of a forward genetic screen to identify bypass suppressors of the synthetic slow-growth phenotype of htz1Δ set3Δ. Among the identified loss-of-function suppressors are genes encoding subunits of the HDA1 deacetylase complex, the SWR1 complex, the H2B deubiquitination module of SAGA, the proteasome, Set1, and Sir3. This constellation of suppressor genes is uncommon among the global set of htz1Δ synthetic interactions. BDF1, AHC1, RMR1, and CYC8 were identified as high-copy suppressors. We also identified interactions with SLX5 and SLX8, encoding the sumoylation-targeted ubiquitin ligase complex. In the context of htz1Δ set3Δ, suppressors in the SWR1 and the H2B deubiquitination complexes show strong functional similarity, as do suppressors in the silencing genes and the proteasome. Surprisingly, while both htz1Δ set3Δ and swr1Δ set3Δ have severe slow-growth phenotypes, the htz1Δ swr1Δ set3Δ triple mutant grows relatively well. We propose that Set3 has previously unrecognized functions in the dynamic deposition and remodeling of nucleosomes containing H2A.Z.
Collapse
|
23
|
Denis GV. Bromodomain coactivators in cancer, obesity, type 2 diabetes, and inflammation. DISCOVERY MEDICINE 2010; 10:489-499. [PMID: 21189220 PMCID: PMC3025494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Double bromodomain proteins bind to acetylated lysines in histones, bringing associated histone modification and nucleosome remodeling activity to chromatin. The ability of bromodomain regulators to alter chromatin status and control gene expression has long been appreciated to be important in the development of certain human cancers. However, bromodomain proteins have now been found also to be critical, non-redundant players in diverse, non-malignant phenotypes, directing transcriptional programs that control adipogenesis, energy metabolism and inflammation. The fact that such different processes are functionally linked by the same molecular machinery suggests a common epigenetic basis to understand and interpret the origins of several important co-morbidities, such as asthma or cancer that occurs in obesity, and complex inflammatory diseases like cardiovascular disease, systemic lupus erythematosus, rheumatoid arthritis and insulin resistance that may be built on a common pro-inflammatory foundation.
Collapse
Affiliation(s)
- Gerald V Denis
- Cancer Research Center, Boston University School of Medicine, 72 East Concord Street, K520, Boston, Massachusetts 02118, USA.
| |
Collapse
|
24
|
Govin J, Dorsey J, Gaucher J, Rousseaux S, Khochbin S, Berger SL. Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesis. Genes Dev 2010; 24:1772-86. [PMID: 20713519 DOI: 10.1101/gad.1954910] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Profound epigenetic differences exist between genomes derived from male and female gametes; however, the nature of these changes remains largely unknown. We undertook a systematic investigation of chromatin reorganization during gametogenesis, using the model eukaryote Saccharomyces cerevisiae to examine sporulation, which has strong similarities with higher eukaryotic spermatogenesis. We established a mutational screen of histones H3 and H4 to uncover substitutions that reduce sporulation efficiency. We discovered two patches of residues-one on H3 and a second on H4-that are crucial for sporulation but not critical for mitotic growth, and likely comprise interactive nucleosomal surfaces. Furthermore, we identified novel histone post-translational modifications that mark the chromatin reorganization process during sporulation. First, phosphorylation of H3T11 appears to be a key modification during meiosis, and requires the meiotic-specific kinase Mek1. Second, H4 undergoes amino tail acetylation at Lys 5, Lys 8, and Lys 12, and these are synergistically important for post-meiotic chromatin compaction, occurring subsequent to the post-meiotic transient peak in phosphorylation at H4S1, and crucial for recruitment of Bdf1, a bromodomain protein, to chromatin in mature spores. Strikingly, the presence and temporal succession of the new H3 and H4 modifications are detected during mouse spermatogenesis, indicating that they are conserved through evolution. Thus, our results show that investigation of gametogenesis in yeast provides novel insights into chromatin dynamics, which are potentially relevant to epigenetic modulation of the mammalian process.
Collapse
Affiliation(s)
- Jérôme Govin
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
25
|
Denis GV, Nikolajczyk BS, Schnitzler GR. An emerging role for bromodomain-containing proteins in chromatin regulation and transcriptional control of adipogenesis. FEBS Lett 2010; 584:3260-8. [PMID: 20493850 DOI: 10.1016/j.febslet.2010.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/16/2010] [Indexed: 12/11/2022]
Abstract
Transcriptional co-activators, co-repressors and chromatin remodeling machines are essential elements in the transcriptional programs directed by the master adipogenic transcription factor PPARgamma. Many of these components have orthologs in other organisms, where they play roles in development and pattern formation, suggesting new links between cell fate decision-making and adipogenesis. This review focuses on bromodomain-containing protein complexes recently shown to play a critical role in adipogenesis. Deeper understanding of these pathways is likely to have major impact on treatment of obesity-associated diseases, including metabolic syndrome, cardiovascular disease and Type 2 diabetes. The research effort is urgent because the obesity epidemic is serious; the medical community is ill prepared to cope with the anticipated excess morbidity and mortality associated with diet-induced obesity.
Collapse
Affiliation(s)
- Gerald V Denis
- Cancer Research Center, Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
26
|
Rafalska-Metcalf IU, Powers SL, Joo LM, LeRoy G, Janicki SM. Single cell analysis of transcriptional activation dynamics. PLoS One 2010; 5:e10272. [PMID: 20422051 PMCID: PMC2858074 DOI: 10.1371/journal.pone.0010272] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/27/2010] [Indexed: 12/20/2022] Open
Abstract
Background Gene activation is thought to occur through a series of temporally defined regulatory steps. However, this process has not been completely evaluated in single living mammalian cells. Methodology/Principal Findings To investigate the timing and coordination of gene activation events, we tracked the recruitment of GCN5 (histone acetyltransferase), RNA polymerase II, Brd2 and Brd4 (acetyl-lysine binding proteins), in relation to a VP16-transcriptional activator, to a transcription site that can be visualized in single living cells. All accumulated rapidly with the VP16 activator as did the transcribed RNA. RNA was also detected at significantly more transcription sites in cells expressing the VP16-activator compared to a p53-activator. After α-amanitin pre-treatment, the VP16-activator, GCN5, and Brd2 are still recruited to the transcription site but the chromatin does not decondense. Conclusions/Significance This study demonstrates that a strong activator can rapidly overcome the condensed chromatin structure of an inactive transcription site and supercede the expected requirement for regulatory events to proceed in a temporally defined order. Additionally, activator strength determines the number of cells in which transcription is induced as well as the extent of chromatin decondensation. As chromatin decondensation is significantly reduced after α-amanitin pre-treatment, despite the recruitment of transcriptional activation factors, this provides further evidence that transcription drives large-scale chromatin decondensation.
Collapse
Affiliation(s)
- Ilona U. Rafalska-Metcalf
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Sara Lawrence Powers
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Lucy M. Joo
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Gary LeRoy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Susan M. Janicki
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
27
|
Airoldi CA, Rovere FD, Falasca G, Marino G, Kooiker M, Altamura MM, Citterio S, Kater MM. The Arabidopsis BET bromodomain factor GTE4 is involved in maintenance of the mitotic cell cycle during plant development. PLANT PHYSIOLOGY 2010; 152:1320-34. [PMID: 20032077 PMCID: PMC2832235 DOI: 10.1104/pp.109.150631] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bromodomain and Extra Terminal domain (BET) proteins are characterized by the presence of two types of domains, the bromodomain and the extra terminal domain. They bind to acetylated lysines present on histone tails and control gene transcription. They are also well known to play an important role in cell cycle regulation. In Arabidopsis (Arabidopsis thaliana), there are 12 BET genes; however, only two of them, IMBIBITION INDUCIBLE1 and GENERAL TRANSCRIPTION FACTOR GROUP E6 (GTE6), were functionally analyzed. We characterized GTE4 and show that gte4 mutant plants have some characteristic features of cell cycle mutants. Their size is reduced, and they have jagged leaves and a reduced number of cells in most organs. Moreover, cell size is considerably increased in the root, and, interestingly, the root quiescent center identity seems to be partially lost. Cell cycle analyses revealed that there is a delay in activation of the cell cycle during germination and a premature arrest of cell proliferation, with a switch from mitosis to endocycling, leading to a statistically significant increase in ploidy levels in the differentiated organs of gte4 plants. Our results point to a role of GTE4 in cell cycle regulation and specifically in the maintenance of the mitotic cell cycle.
Collapse
|
28
|
Zhang Q, Chakravarty S, Ghersi D, Zeng L, Plotnikov AN, Sanchez R, Zhou MM. Biochemical profiling of histone binding selectivity of the yeast bromodomain family. PLoS One 2010; 5:e8903. [PMID: 20126658 PMCID: PMC2811197 DOI: 10.1371/journal.pone.0008903] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 01/05/2010] [Indexed: 11/21/2022] Open
Abstract
Background It has been shown that molecular interactions between site-specific chemical modifications such as acetylation and methylation on DNA-packing histones and conserved structural modules present in transcriptional proteins are closely associated with chromatin structural changes and gene activation. Unlike methyl-lysine that can interact with different protein modules including chromodomains, Tudor and MBT domains, as well as PHD fingers, acetyl-lysine (Kac) is known thus far to be recognized only by bromodomains. While histone lysine acetylation plays a crucial role in regulation of chromatin-mediated gene transcription, a high degree of sequence variation of the acetyl-lysine binding site in the bromodomains has limited our understanding of histone binding selectivity of the bromodomain family. Here, we report a systematic family-wide analysis of 14 yeast bromodomains binding to 32 lysine-acetylated peptides derived from known major acetylation sites in four core histones that are conserved in eukaryotes. Methodology The histone binding selectivity of purified recombinant yeast bromodomains was assessed by using the native core histones in an overlay assay, as well as N-terminally biotinylated lysine-acetylated histone peptides spotted on streptavidin-coated nitrocellulose membrane in a dot blot assay. NMR binding analysis further validated the interactions between histones and selected bromodomain. Structural models of all yeast bromodomains were built using comparative modeling to provide insights into the molecular basis of their histone binding selectivity. Conclusions Our study reveals that while not all members of the bromodomain family are privileged to interact with acetylated-lysine, identifiable sequence features from those that bind histone emerge. These include an asparagine residue at the C-terminus of the third helix in the 4-helix bundle, negatively charged residues around the ZA loop, and preponderance of aromatic amino acid residues in the binding pocket. Further, while bromodomains exhibit selectivity for different sites in histones, individual interactions are of modest affinity. Finally, electrostatic interactions appear to be a primary determining factor that guides productive association between a bromodomain and a lysine-acetylated histone.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Suvobrata Chakravarty
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Dario Ghersi
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lei Zeng
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Alexander N. Plotnikov
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Roberto Sanchez
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Chiang CM. Brd4 engagement from chromatin targeting to transcriptional regulation: selective contact with acetylated histone H3 and H4. F1000 BIOLOGY REPORTS 2009; 1:98. [PMID: 20495683 PMCID: PMC2873783 DOI: 10.3410/b1-98] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bromodomain-containing protein 4 (Brd4) contains two tandem bromodomains (BD1 and BD2) that bind preferentially to acetylated lysine residues found in histones and nonhistone proteins. This molecular recognition allows Brd4 to associate with acetylated chromatin throughout the cell cycle and regulates transcription at targeted loci. Recruitment of positive transcription elongation factor b, and possibly the general initiation cofactor Mediator as well, plays an important role in Brd4-regulated transcription. Selective contacts with acetyl-lysines in nucleosomal histones and chromatin-binding factors likely provide a molecular switch modulating the steps from chromatin targeting to transcriptional regulation, thus further expanding the ‘acetylation code’ for combinatorial regulation in eukaryotes.
Collapse
Affiliation(s)
- Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Biochemistry, and Department of Pharmacology, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas, Texas 75390 USA
| |
Collapse
|
30
|
Abstract
Certain human subpopulations are metabolically healthy but obese, or metabolically obese but normal weight; such mutations uncouple obesity from glucose intolerance, revealing pathways implicated in Type 2 diabetes. Current searches for relevant genes consume significant effort. We have reported previously a novel double bromodomain protein called Brd2, which is a transcriptional co-activator/co-repressor with SWI/SNF (switch mating type/sucrose non-fermenting)-like functions that regulates chromatin. In the present study, we show that wholebody disruption of Brd2, an unusual MHC gene, causes lifelong severe obesity in mice with pancreatic islet expansion, hyperinsulinaemia, hepatosteatosis and elevated pro-inflammatory cytokines, but, surprisingly, enhanced glucose tolerance, elevated adiponectin, increased weight of brown adipose tissue, heat production and expression of mitochondrial uncoupling proteins in brown adipose tissue, reduced macrophage infiltration in white adipose tissue, and lowered blood glucose, leading to an improved metabolic profile and avoiding eventual Type 2 diabetes. Brd2 is highly expressed in pancreatic beta-cells, where it normally inhibits beta-cell mitosis and insulin transcription. In 3T3-L1 pre-adipocytes, Brd2 normally co-represses PPAR-gamma (peroxisome-proliferator-activated receptor-gamma) and inhibits adipogenesis. Brd2 knockdown protects 3T3-L1 adipocytes from TNF-alpha (tumour necrosis factor-alpha)-induced insulin resistance, thereby decoupling inflammation from insulin resistance. Thus hypomorphic Brd2 shifts energy balance toward storage without causing glucose intolerance and may provide a novel model for obese metabolically healthy humans.
Collapse
|
31
|
Vollmuth F, Blankenfeldt W, Geyer M. Structures of the dual bromodomains of the P-TEFb-activating protein Brd4 at atomic resolution. J Biol Chem 2009; 284:36547-36556. [PMID: 19828451 DOI: 10.1074/jbc.m109.033712] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Brd4 is a member of the bromodomains and extra terminal domain (BET) family of proteins that recognize acetylated chromatin structures through their bromodomains and act as transcriptional activators. Brd4 functions as an associated factor and positive regulator of P-TEFb, a Cdk9-cyclin T heterodimer that stimulates transcriptional elongation by RNA polymerase II. Here, the crystal structures of the two bromodomains of Brd4 (BD1 and BD2) were determined at 1.5 and 1.2 A resolution, respectively. Complex formation of BD1 with a histone H3 tail polypeptide encompassing residues 12-19 showed binding of the Nzeta-acetylated lysine 14 to the conserved asparagine 140 of Brd4. In contrast, in BD2 the N-terminal linker sequence was found to interact with the binding site for acetylated lysines of the adjacent molecule to form continuous strings in the crystal lattice. This assembly shows for the first time a different binding ligand than acetylated lysine indicating that also other sequence compositions may be able to form similar interaction networks. Isothermal titration calorimetry revealed best binding of BD1 to H3 and of BD2 to H4 acetylated lysine sequences, suggesting alternating histone recognition specificities. Intriguingly, an acetylated lysine motif from cyclin T1 bound similarly well to BD2. Whereas the structure of Brd2 BD1 suggested its dimer formation, both Brd4 bromodomains appeared monomeric in solution as shown by size exclusion chromatography and mutational analyses.
Collapse
Affiliation(s)
- Friederike Vollmuth
- Abteilung Physikalische Biochemie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | - Wulf Blankenfeldt
- Abteilung Physikalische Biochemie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | - Matthias Geyer
- Abteilung Physikalische Biochemie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany.
| |
Collapse
|
32
|
Abstract
The EBNA1 protein of Epstein-Barr virus (EBV) is essential for EBV latent infection in ensuring the replication and stable segregation of the EBV genomes and in activating the transcription of other EBV latency genes. We have tested the ability of four host proteins (Brd2, Brd4, DEK, and MeCP2) implicated in the segregation of papillomavirus and Kaposi's sarcoma-associated herpesvirus to support EBNA1-mediated segregation of EBV-based plasmids in Saccharomyces cerevisiae. We found that Brd4 enabled EBNA1-mediated segregation while Brd2 and MeCP2 had a general stimulatory effect on plasmid maintenance. EBNA1 interacted with Brd4 in both yeast and human cells through N-terminal sequences previously shown to mediate transcriptional activation but not segregation. In keeping with this interaction site, silencing of Brd4 in human cells decreased transcriptional activation by EBNA1 but not the mitotic chromosome attachment of EBNA1 that is required for segregation. In addition, Brd4 was found to be preferentially localized to the FR enhancer element regulated by EBNA1, over other EBV sequences, in latently EBV-infected cells. The results indicate that EBNA1 can functionally interact with Brd4 in native and heterologous systems and that this interaction facilitates transcriptional activation by EBNA1 from the FR element.
Collapse
|
33
|
Toyama R, Rebbert ML, Dey A, Ozato K, Dawid IB. Brd4 associates with mitotic chromosomes throughout early zebrafish embryogenesis. Dev Dyn 2008; 237:1636-44. [PMID: 18498094 DOI: 10.1002/dvdy.21576] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brd4 is a member of the BET (bromodomains and extraterminal) subfamily of bromodomain proteins that includes chromatin-modifying proteins and transcriptional regulators. Brd4 has a role in cell cycle progression, making it indispensable in mouse embryos and cultured cells. The N-terminal domain of Brd4 participates in a fusion oncogene. Brd4 associates with acetylated histones in chromatin, and this association persists during mitosis implicating Brd4 in epigenetic memory. Brd4 sequence, particularly the bromodomains and ET domain, is conserved in the zebrafish and Xenopus laevis proteins reported here. Brd4 is expressed and localized on mitotic chromosomes in early zebrafish embryos before and after the midblastula transition (MBT), indicating that the Brd4-chromosome association is a conserved property that is maintained even before zygotic transcription. The association of Brd4 with acetylated histones may also be conserved in early embryos as we found that histones H3 and H4 are already acetylated during pre-MBT stages.
Collapse
Affiliation(s)
- Reiko Toyama
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
34
|
Zeng L, Zhang Q, Gerona-Navarro G, Moshkina N, Zhou MM. Structural basis of site-specific histone recognition by the bromodomains of human coactivators PCAF and CBP/p300. Structure 2008; 16:643-52. [PMID: 18400184 DOI: 10.1016/j.str.2008.01.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 12/10/2007] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Histone lysine acetylation is central to epigenetic control of gene transcription. Bromodomains of chromosomal proteins function as acetyl-lysine (Kac) binding domains. However, how bromodomains recognize site-specific histones remains unanswered. Here, we report three three-dimensional solution structures of the bromodomains of the human transcriptional coactivators CREB-binding protein (CBP) and p300/CBP-associated factor (PCAF) bound to peptides derived from histone acetylation sites at lysines 36 and 9 in H3, and lysine 20 in H4. From structural and biochemical binding analyses, we determine consensus histone recognition by the bromodomains of PCAF and CBP, which represent two different subgroups of the bromodomain family. Through bromodomain residues in the ZA and BC loops, PCAF prefers acetylation sites with a hydrophobic residue at (Kac+2) position and a positively charged or aromatic residue at (Kac+3), whereas CBP favors bulky hydrophobic residues at (Kac+1) and (Kac+2), a positively charged residue at (Kac-1), and an aromatic residue at (Kac-2).
Collapse
Affiliation(s)
- Lei Zeng
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York University, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
35
|
Florence BL, Faller DV. Drosophila female sterile (1) homeotic is a multifunctional transcriptional regulator that is modulated by Ras signaling. Dev Dyn 2008; 237:554-64. [PMID: 18264999 DOI: 10.1002/dvdy.21432] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Drosophila (fs(1)h) gene encodes small (Fs(1)hS) and large (Fs(1)hL) chromatin-binding BET protein transcription factor isoforms. Zygotic mutations cause either lethality or female sterility, whereas maternal mutations cause segmental deletions and thoracic homeotic transformations. Here, we describe novel fs(1)h embryonic phenotypes: homeosis of the head in zygotic mutants and deletion of head and tail regions in maternal mutants, similar to those caused by dominant torso (tor(D)) alleles. tor activates transcription of tailless (tll) and hückebein (hkb) by means of a canonical Ras pathway, through inactivation of Groucho (Gro), Capicua (Cic) and, possibly, Grainy-head (Grh) repressors. Expression of both tailless and hückebein are de-repressed in fs(1)h maternal mutants, as in tor(D), gro, grh, and cic mutant animals, indicating fs(1)h is also necessary for tll and hkb repression. These data link Ras signaling with modulation of a chromatin-binding transcription factor, Fs(1)h, suggesting a novel mechanism by which Ras can modulate gene expression.
Collapse
Affiliation(s)
- Brian L Florence
- Science Applications International Corporation, Congressionally Directed Medical Research Programs, Fort Detrick, Maryland 21702, USA.
| | | |
Collapse
|
36
|
DiBenedetto AJ, Guinto JB, Ebert TD, Bee KJ, Schmidt MM, Jackman TR. Zebrafish brd2a and brd2b are paralogous members of the bromodomain-ET (BET) family of transcriptional coregulators that show structural and expression divergence. BMC DEVELOPMENTAL BIOLOGY 2008; 8:39. [PMID: 18402692 PMCID: PMC2373290 DOI: 10.1186/1471-213x-8-39] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 04/10/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Brd2 belongs to the bromodomain-extraterminal domain (BET) family of transcriptional co-regulators, and functions as a pivotal histone-directed recruitment scaffold in chromatin modification complexes affecting signal-dependent transcription. Brd2 facilitates expression of genes promoting proliferation and is implicated in apoptosis and in egg maturation and meiotic competence in mammals; it is also a susceptibility gene for juvenile myoclonic epilepsy (JME) in humans. The brd2 ortholog in Drosophila is a maternal effect, embryonic lethal gene that regulates several homeotic loci, including Ultrabithorax. Despite its importance, there are few systematic studies of Brd2 developmental expression in any organism. To help elucidate both conserved and novel gene functions, we cloned and characterized expression of brd2 cDNAs in zebrafish, a vertebrate system useful for genetic analysis of development and disease, and for study of the evolution of gene families and functional diversity in chordates. RESULTS We identify cDNAs representing two paralogous brd2 loci in zebrafish, brd2a on chromosome 19 and brd2b on chromosome 16. By sequence similarity, syntenic and phylogenetic analyses, we present evidence for structural divergence of brd2 after gene duplication in fishes. brd2 paralogs show potential for modular domain combinations, and exhibit distinct RNA expression patterns throughout development. RNA in situ hybridizations in oocytes and embryos implicate brd2a and brd2b as maternal effect genes involved in egg polarity and egg to embryo transition, and as zygotic genes important for development of the vertebrate nervous system and for morphogenesis and differentiation of the digestive tract. Patterns of brd2 developmental expression in zebrafish are consistent with its proposed role in Homeobox gene regulation. CONCLUSION Expression profiles of zebrafish brd2 paralogs support a role in vertebrate developmental patterning and morphogenesis. Our study uncovers both maternal and zygotic contributions of brd2, the analysis of which may provide insight into the earliest events in vertebrate development, and the etiology of some forms of epilepsy, for which zebrafish is an important model. Knockdowns of brd2 paralogs in zebrafish may now test proposed function and interaction with homeotic loci in vertebrates, and help reveal the extent to which functional novelty or partitioning has occurred after gene duplication.
Collapse
Affiliation(s)
| | - Jake B Guinto
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Katharine J Bee
- Center for Molecular Cardiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Michael M Schmidt
- Department of Biological Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Todd R Jackman
- Department of Biology, Villanova University, Villanova, PA, USA
| |
Collapse
|
37
|
Abstract
Histone lysine acetylation is central to epigenetic control of gene transcription. The bromodomain, found in chromatin-associated proteins and histone acetyltranferases, functions as the sole protein module known to bind acetyl-lysine motifs. Recent structural and functional analyses of bromodomains' recognition of lysine-acetylated peptides derived from major acetylation sites in histones and cellular proteins provide new insights into differences in ligand binding selectivity as well as unifying features of histone recognition by the bromodomains. These new findings highlight the functional importance of bromodomain/acetyl-lysine binding as a pivotal mechanism for regulating protein-protein interactions in histone-directed chromatin remodeling and gene transcription. These new studies also support the notion that functional diversity of a conserved bromodomain structural fold is achieved by evolutionary changes of structurally flexible amino-acid sequences in the ligand binding site such as the ZA and BC loops.
Collapse
Affiliation(s)
- S Mujtaba
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
38
|
Huang H, Zhang J, Shen W, Wang X, Wu J, Wu J, Shi Y. Solution structure of the second bromodomain of Brd2 and its specific interaction with acetylated histone tails. BMC STRUCTURAL BIOLOGY 2007; 7:57. [PMID: 17848202 PMCID: PMC2065866 DOI: 10.1186/1472-6807-7-57] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 09/12/2007] [Indexed: 11/26/2022]
Abstract
Background Brd2 is a transcriptional regulator and belongs to BET family, a less characterized novel class of bromodomain-containing proteins. Brd2 contains two tandem bromodomains (BD1 and BD2, 46% sequence identity) in the N-terminus and a conserved motif named ET (extra C-terminal) domain at the C-terminus that is also present in some other bromodomain proteins. The two bromodomains have been shown to bind the acetylated histone H4 and to be responsible for mitotic retention on chromosomes, which is probably a distinctive feature of BET family proteins. Although the crystal structure of Brd2 BD1 is reported, no structure features have been characterized for Brd2 BD2 and its interaction with acetylated histones. Results Here we report the solution structure of human Brd2 BD2 determined by NMR. Although the overall fold resembles the bromodomains from other proteins, significant differences can be found in loop regions, especially in the ZA loop in which a two amino acids insertion is involved in an uncommon π-helix, termed πD. The helix πD forms a portion of the acetyl-lysine binding site, which could be a structural characteristic of Brd2 BD2 and other BET bromodomains. Unlike Brd2 BD1, BD2 is monomeric in solution. With NMR perturbation studies, we have mapped the H4-AcK12 peptide binding interface on Brd2 BD2 and shown that the binding was with low affinity (2.9 mM) and in fast exchange. Using NMR and mutational analysis, we identified several residues important for the Brd2 BD2-H4-AcK12 peptide interaction and probed the potential mechanism for the specific recognition of acetylated histone codes by Brd2 BD2. Conclusion Brd2 BD2 is monomeric in solution and dynamically interacts with H4-AcK12. The additional secondary elements in the long ZA loop may be a common characteristic of BET bromodomains. Surrounding the ligand-binding cavity, five aspartate residues form a negatively charged collar that serves as a secondary binding site for H4-AcK12. We suggest that Brd2 BD1 and BD2 may possess distinctive roles and cooperate to regulate Brd2 functions. The structure basis of Brd2 BD2 will help to further characterize the functions of Brd2 and its BET members.
Collapse
Affiliation(s)
- Hongda Huang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Weiqun Shen
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xingsheng Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jiawen Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
39
|
Shang E, Nickerson HD, Wen D, Wang X, Wolgemuth DJ. The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation. Development 2007; 134:3507-15. [PMID: 17728347 DOI: 10.1242/dev.004481] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brdt is a testis-specific member of the distinctive BET sub-family of bromodomain motif-containing proteins, a motif that binds acetylated lysines and is implicated in chromatin remodeling. Its expression is restricted to the germ line, specifically to pachytene and diplotene spermatocytes and early spermatids. Targeted mutagenesis was used to generate mice carrying a mutant allele of Brdt, Brdt(Delta)(BD1), which lacks only the first of the two bromodomains that uniquely characterize BET proteins. Homozygous Brdt(Delta)(BD1/)(Delta)(BD1) mice were viable but males were sterile, producing fewer and morphologically abnormal sperm. Aberrant morphogenesis was first detected in step 9 elongating spermatids, and those elongated spermatids that were formed lacked the distinctive foci of heterochromatin at the peri-nuclear envelope. Quantitative reverse transcription (RT)-PCR showed threefold increased levels of histone H1t (Hist1h1t) in Brdt(Delta)(BD1/)(Delta)(BD1) testes and chromatin immunoprecipitation revealed that Brdt protein, but not Brdt(DeltaBD1) protein, was associated with the promoter of H1t. Intracytoplasmic sperm injection suggested that the DNA in the Brdt(Delta)(BD1) mutant sperm could support early embryonic development and yield functional embryonic stem cells. This is the first demonstration that deletion of just one of the two bromodomains in members of the BET sub-family of bromodomain-containing proteins has profound effects on in vivo differentiation.
Collapse
Affiliation(s)
- Enyuan Shang
- The Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
40
|
Liu X, Zhang X, Wang C, Liu L, Lei M, Bao X. Genetic and comparative transcriptome analysis of bromodomain factor 1 in the salt stress response of Saccharomyces cerevisiae. Curr Microbiol 2007; 54:325-30. [PMID: 17334841 DOI: 10.1007/s00284-006-0525-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
The Saccharomyces cerevisiae BDF1 gene, which encodes a bromodomain-containing transcription factor, was previously isolated by transposon mutugenesis in a screen for salt-sensitive mutants. However, the salt stress response mechanism regulated by bromodomain transcription factor 1 protein (Bdf1p) remains poorly understood. In this report, genetic analysis indicated that the salt sensitivity of the BDF1 deletion mutant was suppressed by increased gene dosage of its homologous gene BDF2. Furthermore, comparative transcriptome analysis revealed that the differences in transcriptional response between the wild type and the bdf1Delta mutant in the presence of salt stress (0.6 mol/L NaCl, 45 min) were mainly related to cell-wall biosynthesis, the mitochondria, and several unknown genes. Our results provided further information about the regulatory mechanism involved in the salt stress response and adds new insight for understanding the biological functional of bromdomain-containing proteins in cellular processes.
Collapse
Affiliation(s)
- Xiangyong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, P.R. China,
| | | | | | | | | | | |
Collapse
|
41
|
Wu SY, Chiang CM. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem 2007; 282:13141-5. [PMID: 17329240 DOI: 10.1074/jbc.r700001200] [Citation(s) in RCA: 501] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Brd4 is a double bromodomain-containing protein that binds preferentially to acetylated chromatin. It belongs to the BET (bromodomains and extraterminal) family that includes mammalian Brd2, Brd3, Brd4, Brdt, Drosophila Fsh, yeast Bdf1, Bdf2, and corresponding homologues in other species. Brd4 is essential for cellular growth and has been implicated in cell cycle control, DNA replication, and gene rearrangement found in t(15;19)-associated carcinomas. Recently, Brd4 has been found in several transcription complexes, including the general cofactor Mediator and the P-TEFb elongation factor, and is capable of stimulating HIV-1 transcription in a Tat-independent manner. In addition, Brd4 is used as a cellular adaptor by some animal and human papillomaviruses (HPV) for anchoring viral genomes to mitotic chromosomes. This tethering, mediated by Brd4 interaction with virus-encoded E2 protein, facilitates viral genome segregation during mitosis. Interestingly, Brd4 is also identified in a transcriptional silencing complex assembled by HPV E2 and turns out to be the long sought cellular corepressor that inhibits the expression of HPV-encoded E6 and E7 oncoproteins that antagonize p53 and pRB tumor suppressor activity, respectively. The dual role of Brd4 in gene activation and repression illustrates how a dynamic chromatin-binding adaptor is able to recruit distinct transcriptional regulators to modulate promoter activity through cell cycle progression.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 19/genetics
- Drosophila
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- Genome, Viral/genetics
- HIV-1/genetics
- HIV-1/metabolism
- Humans
- Mitosis
- Neoplasms/genetics
- Neoplasms/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Papillomaviridae/genetics
- Papillomaviridae/metabolism
- Positive Transcriptional Elongation Factor B/genetics
- Positive Transcriptional Elongation Factor B/metabolism
- Protein Binding/genetics
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Homology, Amino Acid
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Translocation, Genetic
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Shwu-Yuan Wu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
42
|
Nagashima T, Maruyama T, Furuya M, Kajitani T, Uchida H, Masuda H, Ono M, Arase T, Ozato K, Yoshimura Y. Histone acetylation and subcellular localization of chromosomal protein BRD4 during mouse oocyte meiosis and mitosis. Mol Hum Reprod 2007; 13:141-8. [PMID: 17267518 DOI: 10.1093/molehr/gal115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most specific and general transcription factors (TFs) become dissociated from hypoacetylated mitotic chromosomes, which may contribute to transcriptional silencing during mitosis. Only some chromosomal proteins, such as bromodomain containing protein 4 (BRD4), have a potential to associate with mitotic chromosomes in a histone acetylation-dependent manner. It remains to be fully demonstrated whether similar displacement of nuclear factors takes place in meiotic oocytes whose chromosomes become globally deacetylated. To address this, we here examined the subcellular localization of BRD4 in conjunction with the acetylation status of histones in mouse oocytes. Immunofluorescence studies revealed that BRD4 preferentially localized to mitotic chromosomes in early embryos. In contrast, not only endogenous BRD4 but also exogenous BRD4 overexpressed by mRNA microinjection were displaced from meiotic chromosomes whose histones H3 and H4 were deacetylated. Treatment with trichostatin A (TSA), an inhibitor of histone deacetylases, induced histone hyperacetylation of meiotic chromosomes from which endogenous BRD4, however, remained dissociated. Finally, meiotic chromosomal localization of BRD4 could be achieved by BRD4 overexpression together with TSA-induced histone hyperacetylation. These results indicate that, unlike mitosis, histone acetylation is necessary but not sufficient for chromosomal localization of BRD4 during meiosis, suggesting that meiotic oocytes may have additional mechanism(s) for displacement of chromosomal proteins and TFs.
Collapse
Affiliation(s)
- Takashi Nagashima
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Peng J, Dong W, Chen L, Zou T, Qi Y, Liu Y. Brd2 is a TBP-associated protein and recruits TBP into E2F-1 transcriptional complex in response to serum stimulation. Mol Cell Biochem 2006; 294:45-54. [PMID: 17111193 DOI: 10.1007/s11010-006-9223-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/01/2006] [Indexed: 10/23/2022]
Abstract
Brd2 is a novel protein kinase and plays a role in cell cycle-responsive transcription. Recent studies show that Brd2 contributes to E2F-1 regulated cell cycle progression. In this process, Brd2 exhibits scaffold or transcriptional adapter functions and mediates recruitment of both E2F-1 transcription factors and chromatin-remodelling activity to the E2F-1-resposive promoter. In the present study, we show that Brd2 is also a TBP-associated protein and a 26 amino acids peptide in the first bromodomain of Brd2 is essential for Brd2-TBP interaction. We found that serum stimulation of serum starved NIH/3T3 cells efficiently induces the formation of the Brd2-E2F-1-TBP complex in vivo. In this process, Brd2 plays a pivotal role in the recruitment of TBP into a E2F-1 transcriptional complex, as tested in overexpression assay and at the endogenous level. Furthermore, the 26 amino acid peptide that mediates Brd2-TBP interaction is proved to be critical for Brd2-dependent transactivation on E2F-1-responsive promoters, and moreover, Brd2 and E2F-1 may cooperatively participate in various serum-induced transactivation processes in Luciferase-reporter assays. Thus taken together, because Brd2 may recruit a HAT in its transactivational complex and E2F-1 has been found to stimulate transcription by recruiting acetyltransferase and cofactors GCN5, we predict that Brd2 and E2F-1 may act in a cooperative way to introduce an optimal environment for TBP binding to the TATA-element of gene promoters.
Collapse
Affiliation(s)
- Jinhong Peng
- National Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | | | | | | | | | | |
Collapse
|
44
|
Krishnamoorthy T, Chen X, Govin J, Cheung WL, Dorsey J, Schindler K, Winter E, Allis CD, Guacci V, Khochbin S, Fuller MT, Berger SL. Phosphorylation of histone H4 Ser1 regulates sporulation in yeast and is conserved in fly and mouse spermatogenesis. Genes Dev 2006; 20:2580-92. [PMID: 16980586 PMCID: PMC1578680 DOI: 10.1101/gad.1457006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sporulation in Saccharomyces cerevisiae is a highly regulated process wherein a diploid cell gives rise to four haploid gametes. In this study we show that histone H4 Ser1 is phosphorylated (H4 S1ph) during sporulation, starting from mid-sporulation and persisting to germination, and is temporally distinct from earlier meiosis-linked H3 S10ph involved in chromosome condensation. A histone H4 S1A substitution mutant forms aberrant spores and has reduced sporulation efficiency. Deletion of sporulation-specific yeast Sps1, a member of the Ste20 family of kinases, nearly abolishes the sporulation-associated H4 S1ph modification. H4 S1ph may promote chromatin compaction, since deletion of SPS1 increases accessibility to antibody immunoprecipitation; furthermore, either deletion of Sps1 or an H4 S1A substitution results in increased DNA volume in nuclei within spores. We find H4 S1ph present during Drosophila melanogaster and mouse spermatogenesis, and similar to yeast, this modification extends late into sperm differentiation relative to H3 S10ph. Thus, H4 S1ph may be an evolutionarily ancient histone modification to mark the genome for gamete-associated packaging.
Collapse
Affiliation(s)
- Thanuja Krishnamoorthy
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ottinger M, Christalla T, Nathan K, Brinkmann MM, Viejo-Borbolla A, Schulz TF. Kaposi's sarcoma-associated herpesvirus LANA-1 interacts with the short variant of BRD4 and releases cells from a BRD4- and BRD2/RING3-induced G1 cell cycle arrest. J Virol 2006; 80:10772-86. [PMID: 16928766 PMCID: PMC1641788 DOI: 10.1128/jvi.00804-06] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen 1 (LANA-1) is required for the replication of episomal viral genomes. Regions in its N-terminal and C-terminal domains mediate the interaction with host cell chromatin. Several cellular nuclear proteins, e.g., BRD2/RING3, histones H2A and H2B, MeCP2, DEK, and HP1alpha, have been suggested to mediate this interaction. In this work, we identify the double-bromodomain proteins BRD4 and BRD3/ORFX as additional LANA-1 interaction partners. The carboxy-terminal region of the short variant of BRD4 (BRD4S) containing the highly conserved extraterminal domain directly interacts with an element in the LANA-1 carboxy-terminal domain. We show that ectopically expressed BRD4S and BRD2/RING3 delay progression into the S phase of the cell cycle in epithelial and B-cell lines and increase cyclin E promoter activity. LANA-1 partly releases epithelial and B cells from a BRD4S- and BRD2/RING3-induced G1 cell cycle arrest and also promotes S-phase entry in the presence of BRD4S and BRD2/RING3. This is accompanied by a reduction in BRD4S-mediated cyclin E promoter activity. Our data are in keeping with the notion that the direct interaction of KSHV LANA-1 with BRD4 and other BRD proteins could play a role in the G1/S phase-promoting functions of KSHV LANA-1. Further, our data support a model in which the LANA-1 C terminus contributes to a functional attachment to acetylated histones H3 and H4 via BRD4 and BRD2, in addition to the recently demonstrated direct interaction (A. J. Barbera, J. V. Chodaparambil, B. Kelley-Clarke, V. Joukov, J. C. Walter, K. Luger, and K. M. Kaye, Science 311:856-861, 2006) of the LANA-1 N terminus with histones H2A and H2B.
Collapse
MESH Headings
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/physiology
- Baculoviridae/genetics
- Base Sequence
- Binding Sites
- Cell Cycle Proteins
- Cell Line
- Chromobox Protein Homolog 5
- Cyclin E/genetics
- DNA Primers/genetics
- G1 Phase/physiology
- Genetic Variation
- HeLa Cells
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/immunology
- Herpesvirus 8, Human/pathogenicity
- Herpesvirus 8, Human/physiology
- Humans
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/immunology
- Nuclear Proteins/physiology
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases/physiology
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- S Phase/physiology
- Transcription Factors
- Transcriptional Activation
Collapse
Affiliation(s)
- Matthias Ottinger
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Chua YL, Channelière S, Mott E, Gray JC. The bromodomain protein GTE6 controls leaf development in Arabidopsis by histone acetylation at ASYMMETRIC LEAVES1. Genes Dev 2005; 19:2245-54. [PMID: 16166385 PMCID: PMC1221894 DOI: 10.1101/gad.352005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transition from the juvenile to the mature phase during vegetative development in plants is characterized by changes in leaf shape. We show that GENERAL TRANSCRIPTION FACTOR GROUP E6 (GTE6) regulates differences in leaf patterning between juvenile and mature leaves in Arabidopsis. GTE6 encodes a novel small bromodomain-containing protein unique to plants. Mutations in GTE6 disrupt the formation of elliptical leaf laminae in mature leaves, whereas overexpression of GTE6 resulted in elongated juvenile leaves. GTE6 positively regulates the expression of ASYMMETRIC LEAVES1 (AS1), which encodes a myb-domain protein that controls proximodistal patterning of leaves. Using chromatin immunoprecipitation (ChIP) assays, we show that GTE6 is associated with the promoter and the start of the transcribed region of AS1 and up-regulates expression of AS1 through acetylation of histones H3 and H4. Genetic studies demonstrated that AS1 is epistatic to GTE6, indicating that GTE6 regulates AS1 during leaf morphogenesis. Chromatin remodeling at AS1 is a key regulatory mechanism in leaf development, which ensures the continual production of mature leaves following juvenile-adult transition, thereby maintaining the identity of the mature vegetative phase.
Collapse
Affiliation(s)
- Yii Leng Chua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | | | |
Collapse
|
47
|
Sinha A, Faller D, Denis G. Bromodomain analysis of Brd2-dependent transcriptional activation of cyclin A. Biochem J 2005; 387:257-69. [PMID: 15548137 PMCID: PMC1134954 DOI: 10.1042/bj20041793] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyclin A is regulated primarily through transcription control during the mammalian cell cycle. A dual mechanism of cyclin A transcriptional repression involves, on the one hand, promoter-bound inhibitory complexes of E2F transcription factors and RB (retinoblastoma) family proteins, and on the other, chromatin-directed histone deacetylase activity that is recruited to the cyclin A promoter early in the cell cycle in association with these RB proteins. This dual regulation maintains transcriptional silence of the cyclin A locus until its transcription is required in S-phase. At that time, RB family members dissociate from E2F proteins and nucleosomal restructuring of the locus takes place, to permit transcriptional activation and resultant S-phase progression to proceed. We have identified a double bromo-domain-containing protein Brd2, which exhibits apparent 'scaffold' or transcriptional adapter functions and mediates recruitment of both E2F transcription factors and chromatin-remodelling activity to the cyclin A promoter. We have shown previously that Brd2-containing nuclear, multiprotein complexes contain E2F-1 and -2. In the present study, we show that, in S-phase, they also contain histone H4-directed acetylase activity. Overexpression of Brd2 in fibroblasts accelerates the cell cycle through increased expression of cyclin A and its associated cyclin-dependent kinase activity. Chromatin immunoprecipitation studies show that Brd2 is physically present at the cyclin A promoter and its overexpression promotes increased histone H4 acetylation at the promoter as it becomes transcriptionally active, suggesting a new model for the dual regulation of cyclin A.
Collapse
Affiliation(s)
- Anupama Sinha
- Cancer Research Center, Boston University School of Medicine, 80 East Concord Street, K521, Boston, MA 02118, U.S.A
| | - Douglas V. Faller
- Cancer Research Center, Boston University School of Medicine, 80 East Concord Street, K521, Boston, MA 02118, U.S.A
| | - Gerald V. Denis
- Cancer Research Center, Boston University School of Medicine, 80 East Concord Street, K521, Boston, MA 02118, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
48
|
Shang E, Salazar G, Crowley TE, Wang X, Lopez RA, Wang X, Wolgemuth DJ. Identification of unique, differentiation stage-specific patterns of expression of the bromodomain-containing genes Brd2, Brd3, Brd4, and Brdt in the mouse testis. Gene Expr Patterns 2005; 4:513-9. [PMID: 15261828 DOI: 10.1016/j.modgep.2004.03.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 03/01/2004] [Accepted: 03/03/2004] [Indexed: 10/26/2022]
Abstract
The bromodomain, an evolutionarily conserved motif that binds acetyl-lysine on histones, is found in many chromatin-associated proteins, transcription factors, and in nearly all known histone acetyltransferases. The BET subclass of bromodomain-containing proteins contains two bromodomains and one ET domain and consists of at least four members in mouse and human, Brd2, Brd3, Brd4, and Brdt. We isolated mouse cDNAs for these genes and studied their expression patterns with particular focus on the testis. Northern hybridization revealed that Brd3 is most abundant in testis, ovary, placenta, uterus, and brain; that Brd4 is rather ubiquitously expressed but is most abundant in mid-gestation embryo, testis, ovary, and brain; and that Brdt is specifically expressed in testis. In situ hybridization and immunostaining on histological sections of mouse testes revealed a strikingly specific and dynamic change of cellular specificity in the germ line during the progression of spermatogenesis. Brd4 is expressed in spermatogonia, Brdt is only expressed in mid- to late-spermatocytes, Brd2 is expressed in diplotene spermatocytes and round spermatids and at low levels in spermatogonia, and Brd3 is expressed in round spermatids. This unique expression pattern suggests that genes in this subclass are not simply redundant. Rather, their expression is tightly regulated in the male germ cell lineage, suggesting that they likely have specific roles in different developmental stages and/or cell types.
Collapse
Affiliation(s)
- Enyuan Shang
- The Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Brannon AR, Maresca JA, Boeke JD, Basrai MA, McBride AA. Reconstitution of papillomavirus E2-mediated plasmid maintenance in Saccharomyces cerevisiae by the Brd4 bromodomain protein. Proc Natl Acad Sci U S A 2005; 102:2998-3003. [PMID: 15710895 PMCID: PMC549465 DOI: 10.1073/pnas.0407818102] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 01/18/2005] [Indexed: 01/06/2023] Open
Abstract
The papillomavirus E2 protein functions in viral transcriptional regulation, DNA replication, and episomal genome maintenance. Viral genomes are maintained in dividing cells by attachment to mitotic chromosomes by means of the E2 protein. To investigate the chromosomal tethering function of E2, plasmid stability assays were developed in Saccharomyces cerevisiae to determine whether the E2 protein could maintain plasmids containing the yeast autonomous replication sequence replication element but with the centromeric element replaced by E2-binding sites. E2 expression was not sufficient to maintain such plasmids, but plasmid stability could be rescued by expression of the mammalian protein Brd4. In the presence of both Brd4 and E2 proteins, plasmids with multiple E2-binding sites were stable without selection. S. cerevisiae encodes a homolog of Brd4 named Bdf1 that does not contain the C-terminal domain that interacts with the E2 protein. A fusion protein of Bdf1 and the Brd4 C-terminal "tail" could support E2-mediated plasmid maintenance in yeast. Using a panel of mutated E2 proteins, we determined that plasmid stability required the ability of E2 to bind DNA and to interact with Brd4 and mammalian mitotic chromosomes but did not require its replication initiation and transactivation functions. The S. cerevisiae-based plasmid maintenance assays described here are invaluable tools for dissecting mechanisms of episomal viral genome replication and screening for additional host protein factors involved in plasmid maintenance.
Collapse
Affiliation(s)
- Angela R Brannon
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0455, USA
| | | | | | | | | |
Collapse
|
50
|
Farina A, Hattori M, Qin J, Nakatani Y, Minato N, Ozato K. Bromodomain protein Brd4 binds to GTPase-activating SPA-1, modulating its activity and subcellular localization. Mol Cell Biol 2004; 24:9059-69. [PMID: 15456879 PMCID: PMC517877 DOI: 10.1128/mcb.24.20.9059-9069.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brd4 is a mammalian protein that contains a double bromodomain. It binds to chromatin and regulates cell cycle progression at multiple stages. By immunopurification and mass spectrometry, we identified a Rap GTPase-activating protein (GAP), signal-induced proliferation-associated protein 1 (SPA-1), as a factor that interacts with Brd4. SPA-1 localizes to the cytoplasm and to a lesser degree in the nucleus, while Brd4 resides in the nucleus. Bifluorescence complementation revealed that Brd4 and SPA-1 interact with each other in the nucleus of living cells. Supporting the functional importance of the interaction, Brd4 enhanced Rap GAP activity of SPA-1. Furthermore ectopic expression of SPA-1 and Brd4 redirected subcellular localization of the partner and disrupted normal cell cycle progression. These effects were, however, reversed by coexpression of the two proteins, indicating that a proper balance between Brd4 and SPA-1 in G2 is required for cell division. This work reveals a novel link between Brd4 and a GTPase-dependent mitogenic signaling pathway.
Collapse
Affiliation(s)
- Andrea Farina
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | | | | | | | |
Collapse
|