1
|
Kruse E, Voigt C, Leeder WM, Göringer HU. RNA helicases involved in U-insertion/deletion-type RNA editing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:835-41. [PMID: 23587716 DOI: 10.1016/j.bbagrm.2013.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
Mitochondrial pre-messenger RNAs in kinetoplastid protozoa such as the disease-causing African trypanosomes are substrates of a unique RNA editing reaction. The process is characterized by the site-specific insertion and deletion of exclusively U nucleotides and converts nonfunctional pre-mRNAs into translatable transcripts. Similar to other RNA-based metabolic pathways, RNA editing is catalyzed by a macromolecular protein complex, the editosome. Editosomes provide a reactive surface for the individual steps of the catalytic cycle and involve as key players a specific class of small, non-coding RNAs termed guide (g)RNAs. gRNAs basepair proximal to an editing site and act as quasi templates in the U-insertion/deletion reaction. Next to the editosome several accessory proteins and complexes have been identified, which contribute to different steps of the reaction. This includes matchmaking-type RNA/RNA annealing factors as well as RNA helicases of the archetypical DEAD- and DExH/D-box families. Here we summarize the current structural, genetic and biochemical knowledge of the two characterized "editing RNA helicases" and provide an outlook onto dynamic processes within the editing reaction cycle. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
|
2
|
Abstract
RNA editing describes a chemically diverse set of biomolecular reactions in which the nucleotide sequence of RNA molecules is altered. Editing reactions have been identified in many organisms and frequently contribute to the maturation of organellar transcripts. A special editing reaction has evolved within the mitochondria of the kinetoplastid protozoa. The process is characterized by the insertion and deletion of uridine nucleotides into otherwise nontranslatable messenger RNAs. Kinetoplastid RNA editing involves an exclusive class of small, noncoding RNAs known as guide RNAs. Furthermore, a unique molecular machinery, the editosome, catalyzes the process. Editosomes are megadalton multienzyme assemblies that provide a catalytic surface for the individual steps of the reaction cycle. Here I review the current mechanistic understanding and molecular inventory of kinetoplastid RNA editing and the editosome machinery. Special emphasis is placed on the molecular morphology of the editing complex in order to correlate structural features with functional characteristics.
Collapse
Affiliation(s)
- H Ulrich Göringer
- Department of Genetics, Darmstadt University of Technology, Germany.
| |
Collapse
|
3
|
Böhm C, Katari VS, Brecht M, Göringer HU. Trypanosoma brucei 20 S editosomes have one RNA substrate-binding site and execute RNA unwinding activity. J Biol Chem 2012; 287:26268-77. [PMID: 22661715 PMCID: PMC3406711 DOI: 10.1074/jbc.m112.365916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/10/2012] [Indexed: 12/30/2022] Open
Abstract
Editing of mitochondrial pre-mRNAs in African trypanosomes generates full-length transcripts by the site-specific insertion and deletion of uridylate nucleotides. The reaction is catalyzed by a 0.8 MDa multienzyme complex, the editosome. Although the binding of substrate pre-edited mRNAs and cognate guide RNAs (gRNAs) represents the first step in the reaction cycle, the biochemical and biophysical details of the editosome/RNA interaction are not understood. Here we show that editosomes bind full-length substrate mRNAs with nanomolar affinity in a nonselective fashion. The complexes do not discriminate-neither kinetically nor thermodynamically-between different mitochondrial pre-mRNAs or between edited and unedited versions of the same transcript. They also bind gRNAs and gRNA/pre-mRNA hybrid RNAs with similar affinities and association rate constants. Gold labeling of editosome-bound RNA in combination with transmission electron microscopy identified a single RNA-binding site per editosome. However, atomic force microscopy of individual pre-mRNA-editosome complexes revealed that multiple editosomes can interact with one pre-mRNA. Lastly, we demonstrate a so far unknown activity of the editing machinery: editosome-bound RNA becomes unfolded by a chaperone-type RNA unwinding activity.
Collapse
MESH Headings
- Binding Sites
- Macromolecular Substances/chemistry
- Macromolecular Substances/ultrastructure
- Microscopy, Atomic Force
- Microscopy, Electron, Transmission
- Nucleic Acid Conformation
- Protein Binding
- Protozoan Proteins/chemistry
- Protozoan Proteins/ultrastructure
- RNA Processing, Post-Transcriptional
- RNA, Guide, Kinetoplastida/chemistry
- RNA, Guide, Kinetoplastida/ultrastructure
- RNA, Messenger/chemistry
- RNA, Messenger/ultrastructure
- RNA, Mitochondrial
- RNA, Protozoan/chemistry
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/ultrastructure
- Surface Plasmon Resonance
- Trypanosoma brucei brucei/enzymology
Collapse
Affiliation(s)
- Cordula Böhm
- From the Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Venkata Subbaraju Katari
- From the Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Michael Brecht
- From the Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - H. Ulrich Göringer
- From the Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
|
5
|
Göringer HU, Katari VS, Böhm C. The structural landscape of native editosomes in African trypanosomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:395-407. [PMID: 21957025 DOI: 10.1002/wrna.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The majority of mitochondrial pre-messenger RNAs in African trypanosomes are substrates of a U-nucleotide-specific insertion/deletion-type RNA editing reaction. The process converts nonfunctional pre-mRNAs into translation-competent molecules and can generate protein diversity by alternative editing. High molecular mass protein complexes termed editosomes catalyze the processing reaction. They stably interact with pre-edited mRNAs and small noncoding RNAs, known as guide RNAs (gRNAs), which act as templates in the reaction. Editosomes provide a molecular surface for the individual steps of the catalytic reaction cycle and although the protein inventory of the complexes has been studied in detail, a structural analysis of the processing machinery has only recently been accomplished. Electron microscopy in combination with single particle reconstruction techniques has shown that steady state isolates of editosomes contain ensembles of two classes of stable complexes with calculated apparent hydrodynamic sizes of 20S and 35-40S. 20S editosomes are free of substrate RNAs, whereas 35-40S editosomes are associated with endogenous mRNA and gRNA molecules. Both complexes are characterized by a diverse structural landscape, which include complexes that lack or possess defined subdomains. Here, we summarize the consensus models and structural landmarks of both complexes. We correlate structural features with functional characteristics and provide an outlook into dynamic aspects of the editing reaction cycle.
Collapse
Affiliation(s)
- H Ulrich Göringer
- Department of Microbiology and Genetics, Darmstadt University of Technology, Darmstadt, Germany.
| | | | | |
Collapse
|
6
|
Göringer HU, Brecht M, Böhm C, Kruse E. RNA Editing Accessory Factors — the Example of mHel61p. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2008. [DOI: 10.1007/978-3-540-73787-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Li P, Sergueeva ZA, Dobrikov M, Shaw BR. Nucleoside and Oligonucleoside Boranophosphates: Chemistry and Properties. Chem Rev 2007; 107:4746-96. [DOI: 10.1021/cr050009p] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ping Li
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Zinaida A. Sergueeva
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Mikhail Dobrikov
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Barbara Ramsay Shaw
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| |
Collapse
|
8
|
Worthey EA, Schnaufer A, Mian IS, Stuart K, Salavati R. Comparative analysis of editosome proteins in trypanosomatids. Nucleic Acids Res 2004; 31:6392-408. [PMID: 14602897 PMCID: PMC275564 DOI: 10.1093/nar/gkg870] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Detailed comparisons of 16 editosome proteins from Trypanosoma brucei, Trypanosoma cruzi and Leishmania major identified protein motifs associated with catalysis and protein or nucleic acid interactions that suggest their functions in RNA editing. Five related proteins with RNase III-like motifs also contain a U1-like zinc finger and either dsRBM or Pumilio motifs. These proteins may provide the endoribonuclease function in editing. Two other related proteins, at least one of which is associated with U-specific 3' exonuclease activity, contain two putative nuclease motifs. Thus, editosomes contain a plethora of nucleases or proteins presumably derived from nucleases. Five additional related proteins, three of which have zinc fingers, each contain a motif associated with an OB fold; the TUTases have C-terminal folds reminiscent of RNA binding motifs, thus indicating the presence of numerous nucleic acid and/or protein binding domains, as do the two RNA ligases and a RNA helicase, which provide for additional catalytic steps in editing. These data indicate that trypanosomatid RNA editing is orchestrated by a variety of domains for catalysis, molecular interaction and structure. These domains are generally conserved within other protein families, but some are found in novel combinations in the editosome proteins.
Collapse
|
9
|
Cruz-Reyes J, Zhelonkina AG, Huang CE, Sollner-Webb B. Distinct functions of two RNA ligases in active Trypanosoma brucei RNA editing complexes. Mol Cell Biol 2002; 22:4652-60. [PMID: 12052873 PMCID: PMC133896 DOI: 10.1128/mcb.22.13.4652-4660.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosome RNA editing is a unique U insertion and U deletion process that involves cycles of pre-mRNA cleavage, terminal U addition or U removal, and religation. This editing can occur at massive levels and is directed by base pairing of trans-acting guide RNAs. Both U insertion and U deletion cycles are catalyzed by a single protein complex that contains only seven major proteins, band I through band VII. However, little is known about their catalytic functions, except that band IV and band V are RNA ligases and genetic analysis indicates that the former is important in U deletion. Here we establish biochemical approaches to distinguish the individual roles of these ligases, based on their distinctive ATP and pyrophosphate utilization. These in vitro analyses revealed that both ligases serve in RNA editing. Band V is the RNA editing ligase that functions very selectively to seal in U insertion (IREL), while band IV is the RNA editing ligase needed to seal in U deletion (DREL). In combination with our earlier findings about the cleavage and the U-addition/U-removal steps of U deletion and U insertion, these results show that all three steps of these editing pathways exhibit major differences and suggest that the editing complex could have physically separate regions for U deletion and U insertion.
Collapse
Affiliation(s)
- Jorge Cruz-Reyes
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
10
|
Igo RP, Weston DS, Ernst NL, Panigrahi AK, Salavati R, Stuart K. Role of uridylate-specific exoribonuclease activity in Trypanosoma brucei RNA editing. EUKARYOTIC CELL 2002; 1:112-8. [PMID: 12455977 PMCID: PMC118049 DOI: 10.1128/ec.1.1.112-118.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Editing of mitochondrial mRNAs in kinetoplastid protozoa occurs by a series of enzymatic steps that insert and delete uridylates (U's) as specified by guide RNAs (gRNAs). The characteristics of the 3' exonuclease activity that removes the U's following cleavage during deletion editing were determined by using an in vitro precleaved deletion assay that is based on ATPase subunit 6 pre-mRNA and gA6[14] gRNA. The exonuclease in partially purified editing complexes is specific for U's. The specificity occurs in the absence of gRNA, but its activity is enhanced by the presence of gRNA. The 3' pre-mRNA fragment enhances the specificity, but not the efficiency, of U removal. The activity is sensitive to the 5' phosphate of the 3' fragment, which is not required for U removal. The ability of the 3' U's to base pair with purines in the gRNA protects them from removal, suggesting that the U-specific 3' exonuclease (exoUase) is specific for U's which are not base paired. ExoUase is stereospecific and cannot remove (Rp)alpha-thio-U. The specificity of the exoUase activity thus contributes to the precision of RNA editing.
Collapse
Affiliation(s)
- Robert P Igo
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
11
|
Aphasizhev R, Simpson L. Isolation and characterization of a U-specific 3'-5'-exonuclease from mitochondria of Leishmania tarentolae. J Biol Chem 2001; 276:21280-4. [PMID: 11279235 DOI: 10.1074/jbc.m100297200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have purified a 3'-5'-exoribonuclease from mitochondrial extract of Leishmania tarentolae over 4000-fold through six column fractionations. This enzyme digested RNA in a distributive manner, showed a high level of specificity for 3'-terminal Us, and was blocked by a terminal dU; there was slight exonucleolytic activity on a 3'-terminal A or C but no activity on a 3'-terminal G residue. The enzyme preferred single-stranded 3'-oligo(U) overhangs and did not digest duplex RNA. Two other 3'-5'-exoribonuclease activities were also detected in the mitochondrial extract, one of which was stimulated by a 3'-phosphate and the other of which degraded RNAs with a 3'-OH to mononucleotides in a processive manner. The properties of the distributive U-specific 3'-5'-exoribonuclease suggest an involvement in the U-deletion RNA editing reaction that occurs in the mitochondrion of these cells.
Collapse
Affiliation(s)
- R Aphasizhev
- Department of Microbiology, Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
12
|
Müller UF, Lambert L, Göringer H. Annealing of RNA editing substrates facilitated by guide RNA-binding protein gBP21. EMBO J 2001; 20:1394-404. [PMID: 11250905 PMCID: PMC145538 DOI: 10.1093/emboj/20.6.1394] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2000] [Revised: 01/22/2001] [Accepted: 01/30/2001] [Indexed: 11/15/2022] Open
Abstract
RNA editing within the mitochondria of African trypanosomes is characterized by the insertion and deletion of uridylate residues into otherwise incomplete primary transcripts. The reaction takes place in a high molecular mass ribonucleoprotein (RNP) complex of uncertain composition. Furthermore, factors that interact with the RNP complex during the reaction are by and large unknown. Here we present evidence for an editing-related biochemical activity of the gRNA-binding protein gBP21. Using recombinant gBP21 preparations, we show that the protein stimulates the annealing of gRNAs to cognate pre-mRNAs in vitro. This represents the presumed first step of the editing reaction. Kinetic data establish an enhancement of the second order rate constant for the gRNA- pre-mRNA interaction. gBP21-mediated annealing is not exclusive for RNA editing substrates since complementary RNAs, unrelated to the editing process, can also be hybridized. The gBP21-dependent RNA annealing activity was identified in mitochondrial extracts of trypanosomes and can be inhibited by immunoprecipitation of the polypeptide. The data suggest a factor-like contribution of gBP21 to the RNA editing process by accelerating the rate of gRNA-pre-mRNA anchor formation.
Collapse
Affiliation(s)
| | | | - H.Ulrich Göringer
- Department of Microbiology and Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
Corresponding author e-mail: U.F.Müller and L.Lambert contributed equally to this work
| |
Collapse
|
13
|
Abstract
RNA editing can be broadly defined as any site-specific alteration in an RNA sequence that could have been copied from the template, excluding changes due to processes such as RNA splicing and polyadenylation. Changes in gene expression attributed to editing have been described in organisms from unicellular protozoa to man, and can affect the mRNAs, tRNAs, and rRNAs present in all cellular compartments. These sequence revisions, which include both the insertion and deletion of nucleotides, and the conversion of one base to another, involve a wide range of largely unrelated mechanisms. Recent advances in the development of in vitro editing and transgenic systems for these varied modifications have provided a better understanding of similarities and differences between the biochemical strategies, regulatory sequences, and cellular factors responsible for such RNA processing events.
Collapse
Affiliation(s)
- J M Gott
- Center for RNA Molecular Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
14
|
Carrillo R, Thiemann OH, Alfonzo JD, Simpson L. Uridine insertion/deletion RNA editing in Leishmania tarentolae mitochondria shows cell cycle dependence. Mol Biochem Parasitol 2001; 113:175-81. [PMID: 11254966 DOI: 10.1016/s0166-6851(00)00385-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- R Carrillo
- Howard Hughes Medical Institute, UCLA School of Medicine, Los Angles, CA 90095-1662, USA
| | | | | | | |
Collapse
|
15
|
McManus MT, Adler BK, Pollard VW, Hajduk SL. Trypanosoma brucei guide RNA poly(U) tail formation is stabilized by cognate mRNA. Mol Cell Biol 2000; 20:883-91. [PMID: 10629045 PMCID: PMC85205 DOI: 10.1128/mcb.20.3.883-891.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/1999] [Accepted: 11/05/1999] [Indexed: 11/20/2022] Open
Abstract
Guide RNAs (gRNAs) are small RNAs that provide specificity for uridine addition and deletion during mRNA editing in trypanosomes. Terminal uridylyl transferase (TUTase) adds uridines to pre-mRNAs during RNA editing and adds a poly(U) tail to the 3' end of gRNAs. The poly(U) tail may stabilize the association of gRNAs with cognate mRNA during editing. Both TUTase and gRNAs associate with two ribonucleoprotein complexes, I (19S) and II (35S to 40S). Complex II is believed to be the fully assembled active editing complex, since it contains pre-edited mRNA and enzymes thought necessary for editing. Purification of TUTase from mitochondrial extracts resulted in the identification of two chromatographically distinct TUTase activities. Stable single-uridine addition to different substrate RNAs is performed by the 19S complex, despite the presence of a uridine-specific 3' exonuclease within this complex. Multiple uridines are added to substrate RNAs by a 10S particle that may be an unstable subunit of complex I lacking the uridine-specific 3' exonuclease. Multiple uridines could be stably added onto gRNAs by complex I when the cognate mRNA is present. We propose a model in which the purine-rich region of the cognate mRNA protects the uridine tail from a uridine exonuclease activity that is present within the complex. To test this model, we have mutated the purine-rich region of the pre-mRNA to abolish base-pairing interaction with the poly(U) tail of the gRNA. This RNA fails to protect the uridine tail of the gRNA from exoribonucleolytic trimming and is consistent with a role for the purine-rich region of the mRNA in gRNA maturation.
Collapse
Affiliation(s)
- M T McManus
- Department of Biochemistry, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
16
|
Kapushoc ST, Simpson L. In vitro uridine insertion RNA editing mediated by cis-acting guide RNAs. RNA (NEW YORK, N.Y.) 1999; 5:656-69. [PMID: 10334336 PMCID: PMC1369793 DOI: 10.1017/s1355838299982250] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Uridine (U) insertion/deletion editing of mitochondrial mRNAs in kinetoplastid protozoa is a posttranscriptional process mediated by guide RNAs (gRNAs). The gRNAs direct the precise insertion and deletion of Us by a cleavage-ligation mechanism involving base pairing. We show that a cognate gRNA in cis at the 3' end of a preedited NADH dehydrogenase 7 (ND7) mRNA substrate can direct U insertions at editing site 1 when incubated with a mitochondrial lysate from Leishmania tarentolae. The efficiency of gRNA-dependent U insertion mediated by a cis-acting gRNA is greater on a molar basis than that for a trans-acting gRNA, as expected for a unimolecular gRNA:mRNA interaction. Blocking the 3' end of a cis-acting gRNA lacking a 3' oligo[U] tail has no effect on gRNA-dependent U insertions, nor does providing the gRNA in cis upstream of the mRNA, confirming the previous observation that the terminal 2'- and 3'-hydroxyls of the gRNA are not involved in U insertion activity. These results also establish that the oligo[U] tail is not required for U insertion in vitro. Increasing the extent of base pairing between the 3' end of the gRNA and the 5' end of the mRNA significantly increases in vitro gRNA-dependent U insertion at site 1, presumably by maintaining the mRNA 5' cleavage fragment within the editing complex. We speculate that, in vivo, protein:RNA and/or protein:protein interactions may be responsible for maintaining the mRNA 5' cleavage fragment in close proximity to the mRNA 3' cleavage fragment, and that such interactions may be rate limiting in vitro.
Collapse
Affiliation(s)
- S T Kapushoc
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, 90095-1606, USA
| | | |
Collapse
|
17
|
Alfonzo JD, Thiemann O, Simpson L. The Mechanism of U Insertion/Deletion RNA Editing in Kinetoplastid Mitochondria. Nucleic Acids Res 1997. [DOI: 10.1093/nar/25.19.3571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
18
|
Alfonzo JD, Thiemann O, Simpson L. The mechanism of U insertion/deletion RNA editing in kinetoplastid mitochondria. Nucleic Acids Res 1997; 25:3751-9. [PMID: 9380494 PMCID: PMC146959 DOI: 10.1093/nar/25.19.3751] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent advances in in vitrosystems and identification of putative enzymatic activities have led to the acceptance of a modified 'enzyme cascade' model for U insertion/deletion RNA editing in kinetoplastid mitochondria. Models involving the transfer of uridines (Us) from the 3'-end of gRNA to the editing site appear to be untenable. Two types of in vitrosystems have been reported: (i) a gRNA-independent U insertion activity that is dependent on the secondary structure of the mRNA; (ii) a gRNA-dependent U insertion activity that requires addition of a gRNA that can form an anchor duplex with the pre-edited mRNA and which contains guiding A and G nucleotides to base pair with the added Us. In the case of the gRNA-mediated reaction, the precise site of cleavage is at the end of the gRNA-mRNA anchor duplex, as predicted by the original model. The model has been modified to include the addition of multiple Us to the 3'-end of the 5'-cleavage fragment, followed by the formation of base pairs with the guiding nucleotides and trimming back of the single-stranded oligo(U) 3'-overhang. The two fragments, which are held together by the gRNA 'splint', are then ligated. Circumstantial in vitroevidence for involvement of an RNA ligase and an endoribonuclease, which are components of a 20S complex, was obtained. Efforts are underway in several laboratories to isolate and characterize specific components of the editing machinery.
Collapse
Affiliation(s)
- J D Alfonzo
- Howard Hughes Medical Institute and Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
19
|
Missel A, Souza AE, Nörskau G, Göringer HU. Disruption of a gene encoding a novel mitochondrial DEAD-box protein in Trypanosoma brucei affects edited mRNAs. Mol Cell Biol 1997; 17:4895-903. [PMID: 9271369 PMCID: PMC232342 DOI: 10.1128/mcb.17.9.4895] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The majority of mitochondrial pre-mRNAs in kinetoplastid protozoa such as Trypanosoma, Leishmania, and Crithidia are substrates of a posttranscriptional processing reaction referred to as RNA editing. The process results in the insertion and, to a lesser extent, deletion of uridylates, thereby completing the informational content of the mRNAs. The specificity of the RNA editing reaction is provided by guide RNAs (gRNAs), which serve as templates for the editing apparatus. In addition, the process relies on mitochondrial proteins, presumably acting within a high-molecular-mass ribonucleoprotein complex. Although several enzymatic activities have been implicated in the editing process, no protein has been identified to date. Here we report the identification of a novel mitochondrial DEAD-box protein, which we termed mHel61p. Disruption of the mHEL61 alleles in insect-stage Trypanosoma brucei cells resulted in a reduced growth rate phenotype. On a molecular level, the null mutant showed significantly reduced amounts of edited mRNAs, whereas never-edited and nuclear mRNAs were unaffected. Reexpression of mHel61p in the knockout cell line restored the ability to efficiently synthesize edited mRNAs. The results suggest an involvement of mHel61p in the control of the abundance of edited mRNAs and thus reveal a novel function for DEAD-box proteins.
Collapse
Affiliation(s)
- A Missel
- Laboratorium für molekulare Biologie, Genzentrum der Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | | | | |
Collapse
|
20
|
Bringaud F, Stripecke R, Frech GC, Freedland S, Turck C, Byrne EM, Simpson L. Mitochondrial glutamate dehydrogenase from Leishmania tarentolae is a guide RNA-binding protein. Mol Cell Biol 1997; 17:3915-23. [PMID: 9199326 PMCID: PMC232244 DOI: 10.1128/mcb.17.7.3915] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To identify specific proteins interacting with guide RNAs (gRNAs) in mitochondrial ribonucleoprotein complexes from Leishmania tarentolae, fractionated and unfractionated mitochondrial extracts were subjected to UV cross-linking with added labeled gRNA and also with [alpha-32P]UTP-labeled endogenous RNA. An abundant 110-kDa protein (p110) localized in the T-V complex, which sediments in glycerol gradients at the leading edge of the 10S terminal uridylyltransferase peak, was found to interact with both types of labeled RNAs. The p110 protein was gel isolated and subjected to microsequence analysis, and the gene was cloned. The sequence revealed significant similarity with mitochondrial glutamate dehydrogenases. A polyclonal antiserum was raised against a recombinant fragment of the p110 gene and was used to demonstrate a stable and specific gRNA-binding activity by coimmunoprecipitation and competitive gel shift analyses. Complex formation was strongly inhibited by competition with poly(U) or by deletion or substitution of the gRNA 3' oligo(U) tail. Also, addition of a 3' oligo(U) tail to an unrelated transcript was sufficient for p110 binding. Both the gRNA-binding activity of the p110 protein and in vitro gRNA-independent and gRNA-dependent uridine insertion activities in the mitochondrial extract were inhibited by high concentrations of dinucleotides.
Collapse
Affiliation(s)
- F Bringaud
- Howard Hughes Medical Institute, UCLA School of Medicine, University of California Los Angeles, 90024, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The editing of the mitochondrial RNAs of kinetoplastid protozoa is a bizarre form of transcript maturation that involves insertion and deletion of uridylate residues. Editing leads to the formation of translational initiation and termination codons, the correction of gene-encoded reading frame shifts and the creation of complete reading frames in mRNAs. It is therefore an essential step in mitochondrial gene expression.
Collapse
Affiliation(s)
- P Sloof
- Dept of Biochemistry, University of Amsterdam, The Netherlands
| | | |
Collapse
|
22
|
Abstract
Mitochondrial transcripts in kinetoplastids undergo remarkable posttranscriptional editing by uridylate insertion and deletion. The often dramatic remodeling of pre-mRNA sequences is directed by small guide RNAs (gRNAs) to produce mature mRNAs. In vitro analyses of editing have been used to determine the mechanism of editing and show that editing occurs by a series of enzyme-catalyzed steps. They also show that chimeric gRNA/mRNA molecules are not editing intermediates as proposed but are aberrant end products of editing. The complexes and molecules that catalyze editing are now being identified and characterized. The origin of editing, its developmental regulation which helps control the switching between terminal respiratory systems during the life cycle of trypanosomes, and other areas for future study are discussed.
Collapse
Affiliation(s)
- K Stuart
- Seattle Biomedical Research Institute, Washington 98109-1651, USA.
| | | | | | | |
Collapse
|
23
|
Peris M, Simpson AM, Grunstein J, Liliental JE, Frech GC, Simpson L. Native gel analysis of ribonucleoprotein complexes from a Leishmania tarentolae mitochondrial extract. Mol Biochem Parasitol 1997; 85:9-24. [PMID: 9108545 DOI: 10.1016/s0166-6851(96)02795-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two polypeptides of 50 and 45 kDa were adenylated by incubation of a mitochondrial extract from Leishmania tarentolae with [alpha-32P]ATP. These proteins were components of a complex that sedimented at 20S in glycerol gradients and migrated as a single band of approximately 1800 kDa in a native gel. The facts that RNA ligase activity cosedimented at 20S and that the ATP-labeled p45 and p50 polypeptides were deadenylated upon incubation with a ligatable RNA substrate suggested that these proteins may represent charged intermediates of a mitochondrial RNA ligase. Hybridization of native gel blots with guide RNA (gRNA) probes showed the presence of gRNA in the previously identified T-IV complexes that sedimented in glycerol at 10S and contained terminal uridylyl transferase (TUTase) activity, and also in a previously unidentified class of heterodisperse complexes that sedimented throughout the gradient. gRNAs were not detected in the p45 + p50-containing 1800 kDa complex. The heterodisperse gRNA-containing complexes were sensitive to incubation at 27 degrees C and appear to represent complexes of T-IV subunits with mRNA. Polyclonal antiserum to a 70 kDa protein that purified with terminal uridylyl transferase activity was generated, and the antiserum was used to show that this p70 polypeptide was a component of both the T-IV and the heterodisperse gRNA-containing complexes. We propose that the p45 + p50-containing 1800 kDa complex and the p70 + gRNA-containing heterodisperse complexes interact in the editing process. Further characterization of these various complexes should increase our knowledge of the biochemical mechanisms involved in RNA editing.
Collapse
Affiliation(s)
- M Peris
- Department of Biology, University of California, Los Angeles 90095-662, USA
| | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- B Sollner-Webb
- Biological Chemistry Department, Johns Hopkins University School of Medicine, Baltimore, MD 22105, USA
| |
Collapse
|