1
|
Malcı K, Santibáñez R, Jonguitud-Borrego N, Santoyo-Garcia JH, Kerkhoven EJ, Rios-Solis L. Improved production of Taxol ® precursors in S. cerevisiae using combinatorial in silico design and metabolic engineering. Microb Cell Fact 2023; 22:243. [PMID: 38031061 PMCID: PMC10687855 DOI: 10.1186/s12934-023-02251-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Integrated metabolic engineering approaches that combine system and synthetic biology tools enable the efficient design of microbial cell factories for synthesizing high-value products. In this study, we utilized in silico design algorithms on the yeast genome-scale model to predict genomic modifications that could enhance the production of early-step Taxol® in engineered Saccharomyces cerevisiae cells. RESULTS Using constraint-based reconstruction and analysis (COBRA) methods, we narrowed down the solution set of genomic modification candidates. We screened 17 genomic modifications, including nine gene deletions and eight gene overexpressions, through wet-lab studies to determine their impact on taxadiene production, the first metabolite in the Taxol® biosynthetic pathway. Under different cultivation conditions, most single genomic modifications resulted in increased taxadiene production. The strain named KM32, which contained four overexpressed genes (ILV2, TRR1, ADE13, and ECM31) involved in branched-chain amino acid biosynthesis, the thioredoxin system, de novo purine synthesis, and the pantothenate pathway, respectively, exhibited the best performance. KM32 achieved a 50% increase in taxadiene production, reaching 215 mg/L. Furthermore, KM32 produced the highest reported yields of taxa-4(20),11-dien-5α-ol (T5α-ol) at 43.65 mg/L and taxa-4(20),11-dien-5-α-yl acetate (T5αAc) at 26.2 mg/L among early-step Taxol® metabolites in S. cerevisiae. CONCLUSIONS This study highlights the effectiveness of computational and integrated approaches in identifying promising genomic modifications that can enhance the performance of yeast cell factories. By employing in silico design algorithms and wet-lab screening, we successfully improved taxadiene production in engineered S. cerevisiae strains. The best-performing strain, KM32, achieved substantial increases in taxadiene as well as production of T5α-ol and T5αAc. These findings emphasize the importance of using systematic and integrated strategies to develop efficient yeast cell factories, providing potential implications for the industrial production of high-value isoprenoids like Taxol®.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Rodrigo Santibáñez
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Nestor Jonguitud-Borrego
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | - Jorge H Santoyo-Garcia
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | - Eduard J Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- SciLifeLab, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Nickles GR, Oestereicher B, Keller NP, Drott M. Mining for a new class of fungal natural products: the evolution, diversity, and distribution of isocyanide synthase biosynthetic gene clusters. Nucleic Acids Res 2023; 51:7220-7235. [PMID: 37427794 PMCID: PMC10415135 DOI: 10.1093/nar/gkad573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
The products of non-canonical isocyanide synthase (ICS) biosynthetic gene clusters (BGCs) mediate pathogenesis, microbial competition, and metal-homeostasis through metal-associated chemistry. We sought to enable research into this class of compounds by characterizing the biosynthetic potential and evolutionary history of these BGCs across the Fungal Kingdom. We amalgamated a pipeline of tools to predict BGCs based on shared promoter motifs and located 3800 ICS BGCs in 3300 genomes, making ICS BGCs the fifth largest class of specialized metabolites compared to canonical classes found by antiSMASH. ICS BGCs are not evenly distributed across fungi, with evidence of gene-family expansions in several Ascomycete families. We show that the ICS dit1/2 gene cluster family (GCF), which was prior only studied in yeast, is present in ∼30% of all Ascomycetes. The dit variety ICS exhibits greater similarity to bacterial ICS than other fungal ICS, suggesting a potential convergence of the ICS backbone domain. The evolutionary origins of the dit GCF in Ascomycota are ancient and these genes are diversifying in some lineages. Our results create a roadmap for future research into ICS BGCs. We developed a website (https://isocyanides.fungi.wisc.edu/) that facilitates the exploration and downloading of all identified fungal ICS BGCs and GCFs.
Collapse
Affiliation(s)
- Grant R Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | | | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Milton T Drott
- USDA-ARS Cereal Disease Lab (CDL), St. Paul, MN 55108, USA
| |
Collapse
|
3
|
Nickles GR, Oestereicher B, Keller NP, Drott MT. Mining for a New Class of Fungal Natural Products: The Evolution, Diversity, and Distribution of Isocyanide Synthase Biosynthetic Gene Clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537281. [PMID: 37131656 PMCID: PMC10153163 DOI: 10.1101/2023.04.17.537281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The products of non-canonical isocyanide synthase (ICS) biosynthetic gene clusters (BGCs) have notable bioactivities that mediate pathogenesis, microbial competition, and metal-homeostasis through metal-associated chemistry. We sought to enable research into this class of compounds by characterizing the biosynthetic potential and evolutionary history of these BGCs across the Fungal Kingdom. We developed the first genome-mining pipeline to identify ICS BGCs, locating 3,800 ICS BGCs in 3,300 genomes. Genes in these clusters share promoter motifs and are maintained in contiguous groupings by natural selection. ICS BGCs are not evenly distributed across fungi, with evidence of gene-family expansions in several Ascomycete families. We show that the ICS dit1 / 2 gene cluster family (GCF), which was thought to only exist in yeast, is present in ∼30% of all Ascomycetes, including many filamentous fungi. The evolutionary history of the dit GCF is marked by deep divergences and phylogenetic incompatibilities that raise questions about convergent evolution and suggest selection or horizontal gene transfers have shaped the evolution of this cluster in some yeast and dimorphic fungi. Our results create a roadmap for future research into ICS BGCs. We developed a website ( www.isocyanides.fungi.wisc.edu ) that facilitates the exploration, filtering, and downloading of all identified fungal ICS BGCs and GCFs.
Collapse
Affiliation(s)
- Grant R. Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | | | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | | |
Collapse
|
4
|
Liang L, Yang H, Wei S, Zhang S, Chen L, Hu Y, Lv Y. Putative C 2H 2 Transcription Factor AflZKS3 Regulates Aflatoxin and Pathogenicity in Aspergillus flavus. Toxins (Basel) 2022; 14:toxins14120883. [PMID: 36548780 PMCID: PMC9786134 DOI: 10.3390/toxins14120883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Aflatoxin is a carcinogenic secondary metabolite that poses a serious threat to human and animal health. Some C2H2 transcription factors are associated with fungal growth and secondary metabolic regulation. In this study, we characterized the role of AflZKS3, a putative C2H2 transcription factor based on genome annotation, in the growth and aflatoxin biosynthesis of A. flavus and explored its possible mechanisms of action. Surprisingly, the protein was found to be located in the cytoplasm, and gene deletion in A. flavus resulted in defective growth and conidia formation, as well as increased sensitivity to the fluorescent brightener Calcofluor white, Congo red, NaCl, and sorbitol stress. Notably, the biosynthesis of aflatoxin B1 was completely inhibited in the ΔAflZKS3 deletion strain, and its ability to infect peanut and corn seeds was also reduced. RNA sequencing showed that differentially expressed genes in the ΔAflZKS3 strain compared with the control and complementation strains were mainly associated with growth, aflatoxin biosynthesis, and oxidative stress. Thus, AflZKS3 likely contributes to growth, cell development, and aflatoxin synthesis in A. flavus. These findings lay the foundation for a deeper understanding of the roles of C2H2 transcription factors in A. flavus and provide a potential biocontrol target for preventing aflatoxin contamination.
Collapse
|
5
|
Amoiradaki K, Bunting KR, Paine KM, Ayre JE, Hogg K, Laidlaw KME, MacDonald C. The Rpd3-Complex Regulates Expression of Multiple Cell Surface Recycling Factors in Yeast. Int J Mol Sci 2021; 22:12477. [PMID: 34830359 PMCID: PMC8617818 DOI: 10.3390/ijms222212477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Intracellular trafficking pathways control residency and bioactivity of integral membrane proteins at the cell surface. Upon internalisation, surface cargo proteins can be delivered back to the plasma membrane via endosomal recycling pathways. Recycling is thought to be controlled at the metabolic and transcriptional level, but such mechanisms are not fully understood. In yeast, recycling of surface proteins can be triggered by cargo deubiquitination and a series of molecular factors have been implicated in this trafficking. In this study, we follow up on the observation that many subunits of the Rpd3 lysine deacetylase complex are required for recycling. We validate ten Rpd3-complex subunits in recycling using two distinct assays and developed tools to quantify both. Fluorescently labelled Rpd3 localises to the nucleus and complements recycling defects, which we hypothesised were mediated by modulated expression of Rpd3 target gene(s). Bioinformatics implicated 32 candidates that function downstream of Rpd3, which were over-expressed and assessed for capacity to suppress recycling defects of rpd3∆ cells. This effort yielded three hits: Sit4, Dit1 and Ldb7, which were validated with a lipid dye recycling assay. Additionally, the essential phosphatidylinositol-4-kinase Pik1 was shown to have a role in recycling. We propose recycling is governed by Rpd3 at the transcriptional level via multiple downstream target genes.
Collapse
Affiliation(s)
- Konstantina Amoiradaki
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK; (K.A.); (K.R.B.); (K.M.P.); (J.E.A.); (K.M.E.L.)
| | - Kate R. Bunting
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK; (K.A.); (K.R.B.); (K.M.P.); (J.E.A.); (K.M.E.L.)
| | - Katherine M. Paine
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK; (K.A.); (K.R.B.); (K.M.P.); (J.E.A.); (K.M.E.L.)
| | - Josephine E. Ayre
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK; (K.A.); (K.R.B.); (K.M.P.); (J.E.A.); (K.M.E.L.)
| | - Karen Hogg
- Imaging and Cytometry Laboratory, Bioscience Technology Facility, University of York, York YO10 5DD, UK;
| | - Kamilla M. E. Laidlaw
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK; (K.A.); (K.R.B.); (K.M.P.); (J.E.A.); (K.M.E.L.)
| | - Chris MacDonald
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK; (K.A.); (K.R.B.); (K.M.P.); (J.E.A.); (K.M.E.L.)
| |
Collapse
|
6
|
Taiwo AO, Harper LA, Derbyshire MC. Impacts of fludioxonil resistance on global gene expression in the necrotrophic fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics 2021; 22:91. [PMID: 33516198 PMCID: PMC7847169 DOI: 10.1186/s12864-021-07402-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/21/2021] [Indexed: 01/23/2023] Open
Abstract
Background The fungicide fludioxonil over-stimulates the fungal response to osmotic stress, leading to over-accumulation of glycerol and hyphal swelling and bursting. Fludioxonil-resistant fungal strains that are null-mutants for osmotic stress response genes are easily generated through continual sub-culturing on sub-lethal fungicide doses. Using this approach combined with RNA sequencing, we aimed to characterise the effects of mutations in osmotic stress response genes on the transcriptional profile of the important agricultural pathogen Sclerotinia sclerotiorum under standard laboratory conditions. Our objective was to understand the impact of disruption of the osmotic stress response on the global transcriptional regulatory network in an important agricultural pathogen. Results We generated two fludioxonil-resistant S. sclerotiorum strains, which exhibited growth defects and hypersensitivity to osmotic stressors. Both had missense mutations in the homologue of the Neurospora crassa osmosensing two component histidine kinase gene OS1, and one had a disruptive in-frame deletion in a non-associated gene. RNA sequencing showed that both strains together differentially expressed 269 genes relative to the parent during growth in liquid broth. Of these, 185 (69%) were differentially expressed in both strains in the same direction, indicating similar effects of the different point mutations in OS1 on the transcriptome. Among these genes were numerous transmembrane transporters and secondary metabolite biosynthetic genes. Conclusions Our study is an initial investigation into the kinds of processes regulated through the osmotic stress pathway in S. sclerotiorum. It highlights a possible link between secondary metabolism and osmotic stress signalling, which could be followed up in future studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07402-x.
Collapse
Affiliation(s)
- Akeem O Taiwo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Lincoln A Harper
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia.
| |
Collapse
|
7
|
Matsuyama T. Recent developments in terminator technology in Saccharomyces cerevisiae. J Biosci Bioeng 2019; 128:655-661. [PMID: 31324384 DOI: 10.1016/j.jbiosc.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 11/26/2022]
Abstract
Metabolically engineered microorganisms that produce useful organic compounds will be helpful for realizing a sustainable society. The budding yeast Saccharomyces cerevisiae has high utility as a metabolic engineering platform because of its high fermentation ability, non-pathogenicity, and ease of handling. When producing yeast strains that produce exogenous compounds, it is a prerequisite to control the expression of exogenous enzyme-encoding genes. Terminator region in a gene expression cassette, as well as promoter region, could be used to improve metabolically engineered yeasts by increasing or decreasing the expression of the target enzyme-encoding genes. The findings on terminators have grown rapidly in the last decade, so an overview of these findings should provide a foothold for new developments.
Collapse
|
8
|
Enhancement of protein production via the strong DIT1 terminator and two RNA-binding proteins in Saccharomyces cerevisiae. Sci Rep 2016; 6:36997. [PMID: 27845367 PMCID: PMC5109538 DOI: 10.1038/srep36997] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/20/2016] [Indexed: 11/10/2022] Open
Abstract
Post-transcriptional upregulation is an effective way to increase the expression of transgenes and thus maximize the yields of target chemicals from metabolically engineered organisms. Refractory elements in the 3′ untranslated region (UTR) that increase mRNA half-life might be available. In Saccharomyces cerevisiae, several terminator regions have shown activity in increasing the production of proteins by upstream coding genes; among these terminators the DIT1 terminator has the highest activity. Here, we found in Saccharomyces cerevisiae that two resident trans-acting RNA-binding proteins (Nab6p and Pap1p) enhance the activity of the DIT1 terminator through the cis element GUUCG/U within the 3′-UTR. These two RNA-binding proteins could upregulate a battery of cell-wall–related genes. Mutagenesis of the DIT1 terminator improved its activity by a maximum of 500% of that of the standard PGK1 terminator. Further understanding and improvement of this system will facilitate inexpensive and stable production of complicated organism-derived drugs worldwide.
Collapse
|
9
|
Abstract
Plant reproduction is initiated by the specification of sporocytes that form haploid spores through meiosis. A new study in Arabidopsis published in Cell Research shows how the product of sporocyteless/nozzle, a key gene in this process, partners with co-repressors and transcription factors to promote spore formation, and draws interesting parallels with fungi.
Collapse
Affiliation(s)
- Li Yuan
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| | - Venkatesan Sundaresan
- 1] Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA [2] Department of Plant Biology and Plant Sciences, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
The molecular mechanism of sporocyteless/nozzle in controlling Arabidopsis ovule development. Cell Res 2014; 25:121-34. [PMID: 25378179 PMCID: PMC4650584 DOI: 10.1038/cr.2014.145] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/09/2022] Open
Abstract
Ovules are essential for plant reproduction and develop into seeds after fertilization. Sporocyteless/nozzle (SPL/NZZ) has been known for more than 15 years as an essential factor for ovule development in Arabidopsis, but the biochemical nature of SPL function has remained unsolved. Here, we demonstrate that SPL functions as an adaptor-like transcriptional repressor. We show that SPL recruits topless/topless-related (TPL/TPR) co-repressors to inhibit the Cincinnata (CIN)-like Teosinte branched1/cycloidea/PCF (TCP) transcription factors. We reveal that SPL uses its EAR motif at the C-terminal end to recruit TPL/TPRs and its N-terminal part to bind and inhibit the TCPs. We demonstrate that either disruption of TPL/TPRs or overexpression of TCPs partially phenocopies the defects of megasporogenesis in spl. Moreover, disruption of TCPs causes phenotypes that resemble spl-D gain-of-function mutants. These results define the action mechanism for SPL, which along with TPL/TPRs controls ovule development by repressing the activities of key transcription factors. Our findings suggest that a similar gene repression strategy is employed by both plants and fungi to control sporogenesis.
Collapse
|
11
|
Valdés-Santiago L, Ruiz-Herrera J. Stress and polyamine metabolism in fungi. Front Chem 2014; 1:42. [PMID: 24790970 PMCID: PMC3982577 DOI: 10.3389/fchem.2013.00042] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022] Open
Abstract
Fungi, as well as the rest of living organisms must deal with environmental challenges such as stressful stimuli. Fungi are excellent models to study the general mechanisms of the response to stress, because of their simple, but conserved, signal-transduction and metabolic pathways that are often equivalent to those present in other eukaryotic systems. A factor that has been demonstrated to be involved in these responses is polyamine metabolism, essentially of the three most common polyamines: putrescine, spermidine and spermine. The gathered evidences on this subject suggest that polyamines are able to control cellular signal transduction, as well as to modulate protein-protein interactions. In the present review, we will address the recent advances on the study of fungal metabolism of polyamines, ranging from mutant characterization to potential mechanism of action during different kinds of stress in selected fungal models.
Collapse
Affiliation(s)
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, México
| |
Collapse
|
12
|
Ito Y, Yamanishi M, Ikeuchi A, Imamura C, Tokuhiro K, Kitagawa T, Matsuyama T. Characterization of five terminator regions that increase the protein yield of a transgene in Saccharomyces cerevisiae. J Biotechnol 2013; 168:486-92. [DOI: 10.1016/j.jbiotec.2013.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/30/2013] [Accepted: 09/30/2013] [Indexed: 01/26/2023]
|
13
|
Abstract
In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae.
Collapse
|
14
|
Elías-Villalobos A, Fernández-Álvarez A, Ibeas JI. The general transcriptional repressor Tup1 is required for dimorphism and virulence in a fungal plant pathogen. PLoS Pathog 2011; 7:e1002235. [PMID: 21909277 PMCID: PMC3164652 DOI: 10.1371/journal.ppat.1002235] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 07/08/2011] [Indexed: 01/22/2023] Open
Abstract
A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens. Fungal plant pathogens cause serious damage to crops with huge social and economic consequences. To cause disease, many such fungi need to change their morphology between a yeast-like, unicellular form and a filamentous state. This change, known as dimorphism, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogens, one of the most important genes controlling dimorphism is Tup1. In plant pathogens, however, the role for this gene is completely unknown. In this work, we describe the role of Tup1 in the dimorphism and virulence of Ustilago maydis, the plant fungal pathogen that causes maize smut disease. We show that mutant U. maydis cells lacking Tup1 are unable to properly change between yeast-like and filamentous forms, thus compromising its virulence. We look at the underlying genetic pathways, and find that Tup1 regulates key genes known to regulate dimorphism. We also show that Tup1 is essential for the production of mature fungal spores, which normally allow the fungus to disperse and infect new plants. Our results show that Tup1 is a key element in the control of both infectious and dispersible fungal forms and supports an evolutionary-conserved role for this gene in the regulation of dimorphism among animal and plant pathogenic fungi.
Collapse
Affiliation(s)
- Alberto Elías-Villalobos
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Alfonso Fernández-Álvarez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - José I. Ibeas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Sevilla, Spain
- * E-mail:
| |
Collapse
|
15
|
Purkayastha A, Sharma S, Dasgupta I. A negative element in the downstream region of the Rice tungro bacilliform virus promoter is orientation- and position-independent and is active with heterologous promoters. Virus Res 2010; 153:166-71. [PMID: 20621135 DOI: 10.1016/j.virusres.2010.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/26/2010] [Accepted: 07/05/2010] [Indexed: 11/30/2022]
Abstract
The promoter of an Indian isolate of the pararetrovirus Rice tungro bacilliform virus (RTBV-WB) contains a negative element downstream of the transcription start site (TSS), between nucleotide residues +58 and +195 (Mathur and Dasgupta, 2007). To further characterize the element, we show, by using transient gus reporter gene assays in the cells of onion peel, rice calli and Arabidopsis leaves, that it down-regulates heterologous promoters CaMV35S and Maize ubiquitin. Quantitative measurements of transient GUS activity indicated more than 90% inhibition of reporter gene expression by the negative element. We also show, by reversing the orientation of the element downstream and by placing it in a position upstream to a constitutively expressing RTBV promoter, that the negative element is orientation- and position-independent, pointing towards its activity at the transcriptional and not post-transcriptional level.
Collapse
Affiliation(s)
- Arunima Purkayastha
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | |
Collapse
|
16
|
Govin J, Berger SL. Genome reprogramming during sporulation. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:425-32. [PMID: 19412896 DOI: 10.1387/ijdb.082687jg] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
When environmental conditions compromise survival, single celled organisms, such as the budding yeast S. cerevisiae, induce and complete a differentiation program called sporulation. The first step consists of meiosis, which generates genetic diversity within the eventual haploid cells. The post-meiotic maturation stage reinforces protective barriers, such as the spore wall, against deleterious external conditions. In later stages of sporulation, the spore nucleus becomes highly compacted, likely sharing certain characteristics with the metazoan male gamete, the spermatozoon. The sporulation differentiation program involves many chromatin-related events, including execution of a precise transcription program involving more than one thousand genes. Here, we review how chromatin structure and genome reprogramming regulate the sporulation transcription program, and how post-meiotic events reorganize spore chromatin.
Collapse
Affiliation(s)
- Jerome Govin
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA19104, USA
| | | |
Collapse
|
17
|
Gurvitz A, Suomi F, Rottensteiner H, Hiltunen JK, Dawes IW. Avoiding unscheduled transcription in shared promoters: Saccharomyces cerevisiae Sum1p represses the divergent gene pair SPS18-SPS19 through a midsporulation element (MSE). FEMS Yeast Res 2009; 9:821-31. [PMID: 19583587 PMCID: PMC2784042 DOI: 10.1111/j.1567-1364.2009.00527.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The sporulation-specific gene SPS18 shares a common promoter region with the oleic acid-inducible gene SPS19. Both genes are transcribed in sporulating diploid cells, albeit unevenly in favour of SPS18, whereas in haploid cells grown on fatty acids only SPS19 is highly activated. Here, SPS19 oleate-response element (ORE) conferred activation on a basal CYC1-lacZ reporter gene equally in both orientations, but promoter analysis using SPS18-lacZ reporter constructs with deletions identified a repressing fragment containing a midsporulation element (MSE) that could be involved in imposing directionality towards SPS19 in oleic acid-induced cells. In sporulating diploids, MSEs recruit the Ndt80p transcription factor for activation, whereas under vegetative conditions, certain MSEs are targeted by the Sum1p repressor in association with Hst1p and Rfm1p. Quantitative real-time PCR demonstrated that in haploid sum1Δ, hst1Δ, or rfm1Δ cells, oleic acid-dependent expression of SPS18 was higher compared with the situation in wild-type cells, but in the sum1Δ mutant, this effect was diminished in the absence of Oaf1p or Pip2p. We conclude that SPS18 MSE is a functional element repressing the expression of both SPS18 and SPS19, and is a component of a stricture mechanism shielding SPS18 from the dramatic increase in ORE-dependent transcription of SPS19 in oleic acid-grown cells.
Collapse
Affiliation(s)
- Aner Gurvitz
- Center for Physiology, Pathophysiology and Immunology, Institute of Physiology, Section of Physiology of Lipid Metabolism, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | |
Collapse
|
18
|
Ligr M, Siddharthan R, Cross FR, Siggia ED. Gene expression from random libraries of yeast promoters. Genetics 2006; 172:2113-22. [PMID: 16415362 PMCID: PMC1456374 DOI: 10.1534/genetics.105.052688] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genomewide techniques to assay gene expression and transcription factor binding are in widespread use, but are far from providing predictive rules for the function of regulatory DNA. To investigate more intensively the grammar rules for active regulatory sequence, we made libraries from random ligations of a very restricted set of sequences. Working with the yeast Saccharomyces cerevisiae, we developed a novel screen based on the sensitivity of ascospores lacking dityrosine to treatment with lytic enzymes. We tested two separate libraries built by random ligation of a single type of activator site either for a well-characterized sporulation factor, Ndt80, or for a new sporulation-specific regulatory site that we identified and several neutral spacer elements. This selective system achieved up to 1:10(4) enrichment of the artificial sequences that were active during sporulation, allowing a high-throughput analysis of large libraries of synthetic promoters. This is not practical with methods involving direct screening for expression, such as those based on fluorescent reporters. There were very few false positives, since active promoters always passed the screen when retested. The survival rate of our libraries containing roughly equal numbers of spacers and activators was a few percent that of libraries made from activators alone. The sequences of approximately 100 examples of active and inactive promoters could not be distinguished by simple binary rules; instead, the best model for the data was a linear regression fit of a quantitative measure of gene activity to multiple features of the regulatory sequence.
Collapse
Affiliation(s)
- Martin Ligr
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
19
|
Wang C, Butt TM, Leger RJS. Colony sectorization of Metarhizium anisopliae is a sign of ageing. MICROBIOLOGY-SGM 2005; 151:3223-3236. [PMID: 16207906 DOI: 10.1099/mic.0.28148-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spontaneous phenotypic degeneration resulting in sterile sectors is frequently observed when culturing filamentous fungi on artificial medium. Sterile sectors from two different strains of the insect pathogenic fungus Metarhizium anisopliae were investigated and found to contain reduced levels of cAMP and destruxins (insecticidal peptides). Microarray analysis using slides printed with 1730 clones showed that compared to wild-type, sterile sectors down-regulated 759 genes and upregulated 27 genes during growth in Sabouraud glucose broth or on insect cuticle. The differentially expressed genes are largely involved in cell metabolism (18.8 %), cell structure and function (13.6 %) and protein metabolism (8.8 %). Strong oxidative stress was demonstrated in sectorial cultures using the nitro blue tetrazolium assay and these cultures show other syndromes associated with ageing, including mitochondrial DNA alterations. However, genes involved in deoxidation and self-protection (e.g. heat-shock proteins, HSPs) were also upregulated. Further evidence of physiological adaptation by the degenerative sectorial cultures included cell-structure reorganization and the employment of additional signalling pathways. In spite of their very similar appearance, microarray analysis identified 181 genes differentially expressed between the two sectors, and the addition of exogenous cAMP only restored conidiation in one of them. Most of the differentially expressed genes were involved in catabolic or anabolic pathways, but the latter included genes for sporulation. Compared to the mammalian ageing process, sectorization in M. anisopliae showed many similarities, including similar patterns of cAMP production, oxidative stress responses and the involvement of HSPs. Thus, a common molecular machinery for ageing may exist throughout the eukaryotes.
Collapse
Affiliation(s)
- Chengshu Wang
- School of Biological Sciences, University of Wales Swansea, Swansea SA2 8PP, UK
- Department of Entomology, 4112 Plant Science Building, University of Maryland, College Park, MD 20742-4454, USA
| | - Tariq M Butt
- School of Biological Sciences, University of Wales Swansea, Swansea SA2 8PP, UK
| | - Raymond J St Leger
- Department of Entomology, 4112 Plant Science Building, University of Maryland, College Park, MD 20742-4454, USA
| |
Collapse
|
20
|
Rothfels K, Tanny JC, Molnar E, Friesen H, Commisso C, Segall J. Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:6772-88. [PMID: 16024810 PMCID: PMC1190364 DOI: 10.1128/mcb.25.15.6772-6788.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The divergently transcribed DIT1 and DIT2 genes of Saccharomyces cerevisiae, which belong to the mid-late class of sporulation-specific genes, are subject to Ssn6-Tup1-mediated repression in mitotic cells. The Ssn6-Tup1 complex, which is required for repression of diverse sets of coordinately regulated genes, is known to be recruited to target genes by promoter-specific DNA-binding proteins. In this study, we show that a 42-bp negative regulatory element (NRE) present in the DIT1-DIT2 intergenic region consists of two distinct subsites and that a multimer of each subsite supports efficient Ssn6-Tup1-dependent repression of a CYC1-lacZ reporter gene. By genetic screening procedures, we identified DFG16, YGR122w, VPS36, and the DNA-binding proteins Rim101 and Nrg1 as potential mediators of NRE-directed repression. We show that Nrg1 and Rim101 bind simultaneously to adjacent target sites within the NRE in vitro and act as corepressors in vivo. We have found that the ability of Rim101 to be proteolytically processed to its active form and mediate NRE-directed repression not only depends on the previously characterized RIM signaling pathway but also requires Dfg16, Ygr122w, and components of the ESCRT trafficking pathway. Interestingly, Rim101 was processed in bro1 and doa4 strains but was unable to mediate efficient repression.
Collapse
Affiliation(s)
- Karen Rothfels
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Bungard D, Reed M, Winter E. RSC1 and RSC2 are required for expression of mid-late sporulation-specific genes in Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 3:910-8. [PMID: 15302824 PMCID: PMC500893 DOI: 10.1128/ec.3.4.910-918.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rsc1 and Rsc2 are alternative bromodomain-containing subunits of the ATP-dependent RSC chromatin remodeling complex in Saccharomyces cerevisiae. Smk1 is a sporulation-specific mitogen-activated protein kinase homolog that is required for the postmeiotic events of spore formation. In this study we show that RSC1 and RSC2 are haploinsufficient for spore formation in a smk1 hypomorph. Moreover, diploids lacking Rsc1 or Rsc2 show a subset of smk1-like phenotypes. High-copy-number RSC1 plasmids do not suppress rsc2-Delta/rsc2-Delta sporulation defects, and high-copy-number RSC2 plasmids do not suppress rsc1-Delta/rsc1-Delta sporulation defects. Mid-late sporulation-specific genes, which are normally expressed while key steps in spore assembly occur and which include genes that are required for spore wall formation, are not expressed in cells lacking Rsc1 or Rsc2. We speculate that the combined action of Rsc1 and Rsc2 at mid-late promoters is specifically required for the proper expression of this uniquely timed set of genes. Our data suggest that Smk1 and Rsc1/2 define parallel pathways that converge to provide signaling information and the expression of gene products, respectively, that are required for spore morphogenesis.
Collapse
Affiliation(s)
- David Bungard
- Thomas Jefferson University, 233 S. 10th Street, Rm. 228, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
22
|
Kassir Y, Adir N, Boger-Nadjar E, Raviv NG, Rubin-Bejerano I, Sagee S, Shenhar G. Transcriptional regulation of meiosis in budding yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:111-71. [PMID: 12722950 DOI: 10.1016/s0074-7696(05)24004-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Initiation of meiosis in Saccharomyces cerevisiae is regulated by mating type and nutritional conditions that restrict meiosis to diploid cells grown under starvation conditions. Specifically, meiosis occurs in MATa/MATalpha cells shifted to nitrogen depletion media in the absence of glucose and the presence of a nonfermentable carbon source. These conditions lead to the expression and activation of Ime 1, the master regulator of meiosis. IME1 encodes a transcriptional activator recruited to promoters of early meiosis-specific genes by association with the DNA-binding protein, Ume6. Under vegetative growth conditions these genes are silent due to recruitment of the Sin3/Rpd3 histone deacetylase and Isw2 chromatin remodeling complexes by Ume6. Transcription of these meiotic genes occurs following histone acetylation by Gcn5. Expression of the early genes promote entry into the meiotic cycle, as they include genes required for premeiotic DNA synthesis, synapsis of homologous chromosomes, and meiotic recombination. Two of the early meiosis specific genes, a transcriptional activator, Ndt80, and a CDK2 homologue, Ime2, are required for the transcription of middle meiosis-specific genes that are involved with nuclear division and spore formation. Spore maturation depends on late genes whose expression is indirectly dependent on Ime1, Ime2, and Ndt80. Finally, phosphorylation of Imel by Ime2 leads to its degradation, and consequently to shutting down of the meiotic transcriptional cascade. This review is focusing on the regulation of gene expression governing initiation and progression through meiosis.
Collapse
Affiliation(s)
- Yona Kassir
- Department of Biology, Technion, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
23
|
Shimizu M, Mitchell AP. Hap1p photofootprinting as an in vivo assay of repression mechanism in Saccharomyces cerevisiae. Methods Enzymol 2003; 370:479-87. [PMID: 14712669 DOI: 10.1016/s0076-6879(03)70041-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Zhang Z, Varanasi U, Trumbly RJ. Functional dissection of the global repressor Tup1 in yeast: dominant role of the C-terminal repression domain. Genetics 2002; 161:957-69. [PMID: 12136003 PMCID: PMC1462163 DOI: 10.1093/genetics/161.3.957] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, Tup1, in association with Cyc8 (Ssn6), functions as a general repressor of transcription. Tup1 and Cyc8 are required for repression of diverse families of genes coordinately controlled by glucose repression, mating type, and other mechanisms. This repression is mediated by recruitment of the Cyc8-Tup1 complex to target promoters by sequence-specific DNA-binding proteins. We created a library of XhoI linker insertions and internal in-frame deletion mutations within the TUP1 coding region. Insertion mutations outside of the WD domains were wild type, while insertions within the WD domains induced mutant phenotypes with differential effects on the target genes SUC2, MFA2, RNR2, and HEM13. Deletion mutations confirmed previous findings of two separate repression domains in the N and C termini. The cumulative data suggest that the C-terminal repression domain, located near the first WD repeat, plays the dominant role in repression. Although the N-terminal repression domain is sufficient for partial repression, deletion of this region does not compromise repression. Surprisingly, deletion of the majority of the histone-binding domain of Tup1 also does not significantly reduce repression. The N-terminal region containing potential alpha-helical coiled coils is required for Tup1 oligomerization and association with Cyc8. Association with Cyc8 is required for repression of SUC2, HEM13, and RNR2 but not MFA2 and STE2.
Collapse
Affiliation(s)
- Zhizhou Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, 3035 Arlington Avenue, Toledo, OH 43614, USA
| | | | | |
Collapse
|
25
|
Khalaf RA, Zitomer RS. The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics 2001; 157:1503-12. [PMID: 11290707 PMCID: PMC1461606 DOI: 10.1093/genetics/157.4.1503] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have identified a repressor of hyphal growth in the pathogenic yeast Candida albicans. The gene was originally cloned in an attempt to characterize the homologue of the Saccharomyces cerevisiae Rox1, a repressor of hypoxic genes. Rox1 is an HMG-domain, DNA binding protein with a repression domain that recruits the Tup1/Ssn6 general repression complex to achieve repression. The C. albicans clone also encoded an HMG protein that was capable of repression of a hypoxic gene in a S. cerevisiae rox1 deletion strain. Gel retardation experiments using the purified HMG domain of this protein demonstrated that it was capable of binding specifically to a S. cerevisiae hypoxic operator DNA sequence. These data seemed to indicate that this gene encoded a hypoxic repressor. However, surprisingly, when a homozygous deletion was generated in C. albicans, the cells became constitutive for hyphal growth. This phenotype was rescued by the reintroduction of the wild-type gene on a plasmid, proving that the hyphal growth phenotype was due to the deletion and not a secondary mutation. Furthermore, oxygen repression of the hypoxic HEM13 gene was not affected by the deletion nor was this putative ROX1 gene regulated positively by oxygen as is the case for the S. cerevisiae gene. All these data indicate that this gene, now designated RFG1 for Repressor of Filamentous Growth, is a repressor of genes required for hyphal growth and not a hypoxic repressor.
Collapse
Affiliation(s)
- R A Khalaf
- Department of Biological Sciences, University at Albany/State University of New York, Albany, New York 12222, USA
| | | |
Collapse
|
26
|
Kastaniotis AJ, Mennella TA, Konrad C, Torres AM, Zitomer RS. Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast. Mol Cell Biol 2000; 20:7088-98. [PMID: 10982825 PMCID: PMC86251 DOI: 10.1128/mcb.20.19.7088-7098.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2000] [Accepted: 07/03/2000] [Indexed: 11/20/2022] Open
Abstract
The hypoxic genes of Saccharomyces cerevisiae are repressed by a complex consisting of the aerobically expressed, sequence-specific DNA-binding protein Rox1 and the Tup1-Ssn6 general repressors. The regulatory region of one well-studied hypoxic gene, ANB1, is comprised of two operators, OpA and OpB, each of which has two strong Rox1 binding sites, yet OpA represses transcription almost 10 times more effectively than OpB. We show here that this difference is due to the presence of a Mot3 binding site in OpA. Mutations in this site reduced OpA repression to OpB levels, and the addition of a Mot3 binding site to OpB enhanced repression. Deletion of the mot3 gene also resulted in reduced repression of ANB1. Repression of two other hypoxic genes in which Mot3 sites were associated with Rox1 sites was reduced in the deletion strain, but other hypoxic genes were unaffected. In addition, the mot3Delta mutation caused a partial derepression of the Mig1-Tup1-Ssn6-repressed SUC2 gene, but not the alpha2-Mcm1-Tup1-Ssn6-repressed STE2 gene. The Mot3 protein was demonstrated to bind to the ANB1 OpA in vitro. Competition experiments indicated that there was no interaction between Rox1 and Mot3, indicating that Mot3 functions either in Tup1-Ssn6 recruitment or directly in repression. A great deal of evidence has accumulated suggesting that the Tup1-Ssn6 complex represses transcription through both nucleosome positioning and a direct interaction with the basal transcriptional machinery. We demonstrate here that under repressed conditions a nucleosome is positioned over the TATA box in the wild-type ANB1 promoter. This nucleosome was absent in cells carrying a rox1, tup1, or mot3 deletion, all of which cause some degree of derepression. Interestingly, however, this positioned nucleosome was also lost in a cell carrying a deletion of the N-terminal coding region of histone H4, yet ANB1 expression remained fully repressed. A similar deletion in the gene for histone H3, which had no effect on repression, had only a minor effect on the positioned nucleosome. These results indicate that the nucleosome phasing on the ANB1 promoter caused by the Rox1-Mot3-Tup1-Ssn6 complex is either completely redundant with a chromatin-independent repression mechanism or, less likely, plays no role in repression at all.
Collapse
Affiliation(s)
- A J Kastaniotis
- Department of Biological Sciences, University at Albany/SUNY, Albany, New York 12222, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
The genes required for meiosis and sporulation in yeast are expressed at specific points in a highly regulated temporal pathway. Recent experiments using DNA microarrays to examine gene expression during meiosis and the identification of many regulatory factors have provided important advances in our understanding of how genes are regulated at the different stages of meiosis.
Collapse
Affiliation(s)
- A K Vershon
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854-8020, USA. vershon@waksman. rutgers.edu
| | | |
Collapse
|
28
|
Braun BR, Johnson AD. TUP1, CPH1 and EFG1 make independent contributions to filamentation in candida albicans. Genetics 2000; 155:57-67. [PMID: 10790384 PMCID: PMC1461068 DOI: 10.1093/genetics/155.1.57] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The common fungal pathogen, Candida albicans, can grow either as single cells or as filaments (hyphae), depending on environmental conditions. Several transcriptional regulators have been identified as having key roles in controlling filamentous growth, including the products of the TUP1, CPH1, and EFG1 genes. We show, through a set of single, double, and triple mutants, that these genes act in an additive fashion to control filamentous growth, suggesting that each gene represents a separate pathway of control. We also show that environmentally induced filamentous growth can occur even in the absence of all three of these genes, providing evidence for a fourth regulatory pathway. Expression of a collection of structural genes associated with filamentous growth, including HYR1, ECE1, HWP1, ALS1, and CHS2, was monitored in strains lacking each combination of TUP1, EFG1, and CPH1. Different patterns of expression were observed among these target genes, supporting the hypothesis that these three regulatory proteins engage in a network of individual connections to downstream genes and arguing against a model whereby the target genes are regulated through a central filamentous growth pathway. The results suggest the existence of several distinct types of filamentous forms of C. albicans, each dependent on a particular set of environmental conditions and each expressing a unique set of surface proteins.
Collapse
Affiliation(s)
- B R Braun
- Department of Microbiology, University of California, San Francisco, California 94143-0414, USA
| | | |
Collapse
|
29
|
Davis D, Wilson RB, Mitchell AP. RIM101-dependent and-independent pathways govern pH responses in Candida albicans. Mol Cell Biol 2000; 20:971-8. [PMID: 10629054 PMCID: PMC85214 DOI: 10.1128/mcb.20.3.971-978.2000] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Growth and differentiation of Candida albicans over a broad pH range underlie its ability to infect an array of tissues in susceptible hosts. We identified C. albicans RIM101, RIM20, and RIM8 based on their homology to components of the one known fungal pH response pathway. PCR product-disruption mutations in each gene cause defects in three responses to alkaline pH: filamentation, induction of PRA1 and PHR1, and repression of PHR2. We find that RIM101 itself is an alkaline-induced gene that also depends on Rim20p and Rim8p for induction. Two observations indicate that a novel pH response pathway also exists. First, PHR2 becomes an alkaline-induced gene in the absence of Rim101p, Rim20p, or Rim8p. Second, we created strains in which Rim101p activity is independent of Rim20p and Rim8p; in these strains, filamentation remains pH dependent. Thus, pH governs gene expression and cellular differentiation in C. albicans through both RIM101-dependent and RIM101-independent pathways.
Collapse
Affiliation(s)
- D Davis
- Department of Microbiology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
30
|
Ufano S, San-Segundo P, del Rey F, Vázquez de Aldana CR. SWM1, a developmentally regulated gene, is required for spore wall assembly in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:2118-29. [PMID: 10022899 PMCID: PMC84005 DOI: 10.1128/mcb.19.3.2118] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Meiosis in Saccharomyces cerevisiae is followed by encapsulation of haploid nuclei within multilayered spore walls. Formation of this spore-specific wall requires the coordinated activity of enzymes involved in the biosynthesis of its components. Completion of late events in the sporulation program, leading to spore wall formation, requires the SWM1 gene. SWM1 is expressed at low levels during vegetative growth but its transcription is strongly induced under sporulating conditions, with kinetics similar to those of middle sporulation-specific genes. Homozygous swm1Delta diploids proceed normally through both meiotic divisions but fail to produce mature asci. Consistent with this finding, swm1Delta mutant asci display enhanced sensitivity to enzymatic digestion and heat shock. Deletion of SWM1 specifically affects the expression of mid-late and late sporulation-specific genes. All of the phenotypes observed are similar to those found for the deletion of SPS1 or SMK1, two putative components of a sporulation-specific MAP kinase cascade. However, epistasis analyses indicate that Swm1p does not form part of the Sps1p-Smk1p-MAP kinase pathway. We propose that Swm1p, a nuclear protein, would participate in a different signal transduction pathway that is also required for the coordination of the biochemical and morphological events occurring during the last phase of the sporulation program.
Collapse
Affiliation(s)
- S Ufano
- Departamento de Microbiología y Genética, Instituto de Microbiología-Bioquímica, Universidad de Salamanca/CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
31
|
Grbavec D, Lo R, Liu Y, Greenfield A, Stifani S. Groucho/transducin-like enhancer of split (TLE) family members interact with the yeast transcriptional co-repressor SSN6 and mammalian SSN6-related proteins: implications for evolutionary conservation of transcription repression mechanisms. Biochem J 1999; 337 ( Pt 1):13-7. [PMID: 9854018 PMCID: PMC1219929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The yeast proteins TUP1 and SSN6 form a transcription repressor complex that is recruited to different promoters via pathway-specific DNA-binding proteins and regulates the expression of a variety of genes. TUP1 is functionally related to invertebrate and vertebrate transcriptional repressors of the Groucho/transducin-like Enhancer of split (TLE) family. The aim was to examine whether similar mechanisms underlie the transcription repression functions of TUP1 and Groucho/TLEs by determining whether TLE family members can interact with yeast SSN6 and mammalian SSN6-like proteins. It is shown in the present work that SSN6 binds to TLE1 and mediates transcriptional repression when expressed in mammalian cells. Moreover, TLE1 and TLE2 interact with two mammalian proteins related to SSN6, designated as the products of the ubiquitously transcribed tetratricopeptide-repeat genes on the Y (or X) chromosomes (UTY/X). These findings suggest that mammalian TLE and UTY/X proteins may mediate repression mechanisms similar to those performed by TUP1-SSN6 in yeast.
Collapse
Affiliation(s)
- D Grbavec
- Center for Neuronal Survival, Montreal Neurological Institute, 3801 rue University, Montreal, Quebec, H3A 2B4 Canada
| | | | | | | | | |
Collapse
|
32
|
Deckert J, Torres AM, Hwang SM, Kastaniotis AJ, Zitomer RS. The anatomy of a hypoxic operator in Saccharomyces cerevisiae. Genetics 1998; 150:1429-41. [PMID: 9832521 PMCID: PMC1460422 DOI: 10.1093/genetics/150.4.1429] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aerobic repression of the hypoxic genes of Saccharomyces cerevisiae is mediated by the DNA-binding protein Rox1 and the Tup1/Ssn6 general repression complex. To determine the DNA sequence requirements for repression, we carried out a mutational analysis of the consensus Rox1-binding site and an analysis of the arrangement of the Rox1 sites into operators in the hypoxic ANB1 gene. We found that single base pair substitutions in the consensus sequence resulted in lower affinities for Rox1, and the decreased affinity of Rox1 for mutant sites correlated with the ability of these sites to repress expression of the hypoxic ANB1 gene. In addition, there was a general but not complete correlation between the strength of repression of a given hypoxic gene and the compliance of the Rox1 sites in that gene to the consensus sequence. An analysis of the ANB1 operators revealed that the two Rox1 sites within an operator acted synergistically in vivo, but that Rox1 did not bind cooperatively in vitro, suggesting the presence of a higher order repression complex in the cell. In addition, the spacing or helical phasing of the Rox1 sites was not important in repression. The differential repression by the two operators of the ANB1 gene was found to be due partly to the location of the operators and partly to the sequences between the two Rox1-binding sites in each. Finally, while Rox1 repression requires the Tup1/Ssn6 general repression complex and this complex has been proposed to require the aminoterminal regions of histones H3 and H4 for full repression of a number of genes, we found that these regions were dispensable for ANB1 repression and the repression of two other hypoxic genes.
Collapse
Affiliation(s)
- J Deckert
- Department of Biological Sciences, University at Albany/State University of New York, Albany, New York 12222, USA
| | | | | | | | | |
Collapse
|
33
|
Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I. The transcriptional program of sporulation in budding yeast. Science 1998; 282:699-705. [PMID: 9784122 DOI: 10.1126/science.282.5389.699] [Citation(s) in RCA: 1218] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diploid cells of budding yeast produce haploid cells through the developmental program of sporulation, which consists of meiosis and spore morphogenesis. DNA microarrays containing nearly every yeast gene were used to assay changes in gene expression during sporulation. At least seven distinct temporal patterns of induction were observed. The transcription factor Ndt80 appeared to be important for induction of a large group of genes at the end of meiotic prophase. Consensus sequences known or proposed to be responsible for temporal regulation could be identified solely from analysis of sequences of coordinately expressed genes. The temporal expression pattern provided clues to potential functions of hundreds of previously uncharacterized genes, some of which have vertebrate homologs that may function during gametogenesis.
Collapse
Affiliation(s)
- S Chu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143-0448, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Pierce M, Wagner M, Xie J, Gailus-Durner V, Six J, Vershon AK, Winter E. Transcriptional regulation of the SMK1 mitogen-activated protein kinase gene during meiotic development in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:5970-80. [PMID: 9742114 PMCID: PMC109183 DOI: 10.1128/mcb.18.10.5970] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiotic development (sporulation) in Saccharomyces cerevisiae is characterized by an ordered pattern of gene expression, with sporulation-specific genes classified as early, middle, mid-late, or late depending on when they are expressed. SMK1 encodes a mitogen-activated protein kinase required for spore morphogenesis that is expressed as a middle sporulation-specific gene. Here, we identify the cis-acting DNA elements that regulate SMK1 transcription and characterize the phenotypes of mutants with altered expression patterns. The SMK1 promoter contains an upstream activating sequence (UASS) that specifically interacts with the transcriptional activator Abf1p. The Abf1p-binding sites from the early HOP1 and the middle SMK1 promoters are functionally interchangeable, demonstrating that these elements do not play a direct role in their differential transcriptional timing. Timing of SMK1 expression is determined by another cis-acting DNA sequence termed MSE (for middle sporulation element). The MSE is required not only for activation of SMK1 transcription during middle sporulation but also for its repression during vegetative growth and early meiosis. In addition, the SMK1 MSE can repress vegetative expression in the context of the HOP1 promoter and convert HOP1 from an early to a middle gene. SMK1 function is not contingent on its tight transcriptional regulation as a middle sporulation-specific gene. However, promoter mutants with different quantitative defects in SMK1 transcript levels during middle sporulation show distinct sporulation phenotypes.
Collapse
Affiliation(s)
- M Pierce
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Friesen H, Tanny JC, Segall J. Spe3, which encodes spermidine synthase, is required for full repression through NRE(DIT) in Saccharomyces cerevisiae. Genetics 1998; 150:59-73. [PMID: 9725830 PMCID: PMC1460323 DOI: 10.1093/genetics/150.1.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously identified a transcriptional regulatory element, which we call NRE(DIT), that is required for repression of the sporulation-specific genes, DIT1 and DIT2, during vegetative growth of Saccharomyces cerevisiae. Repression through this element is dependent on the Ssn6-Tup1 corepressor. In this study, we show that SIN4 contributes to NRE(DIT)-mediated repression, suggesting that changes in chromatin structure are, at least in part, responsible for regulation of DIT gene expression. In a screen for additional genes that function in repression of DIT (FRD genes), we recovered alleles of TUP1, SSN6, SIN4, and ROX3 and identified mutations comprising eight complementation groups of FRD genes. Four of these FRD genes appeared to act specifically in NRE(DIT)mediated repression, and four appeared to be general regulators of gene expression. We cloned the gene complementing the frd3-1 phenotype and found that it was identical to SPE3, which encodes spermidine synthase. Mutant spe3 cells not only failed to support complete repression through NRE(DIT) but also had modest defects in repression of some other genes. Addition of spermidine to the medium partially restored repression to spe3 cells, indicating that spermidine may play a role in vivo as a modulator of gene expression. We suggest various mechanisms by which spermidine could act to repress gene expression.
Collapse
Affiliation(s)
- H Friesen
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
36
|
Bellí G, Garí E, Piedrafita L, Aldea M, Herrero E. An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res 1998; 26:942-7. [PMID: 9461451 PMCID: PMC147371 DOI: 10.1093/nar/26.4.942] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have developed an activator/repressor expression system for budding yeast in which tetracyclines control in opposite ways the ability of tetR-based activator and repressor molecules to bind tetO promoters. This combination allows tight expression of tetO- driven genes, both in a direct (tetracycline-repressible) and reverse (tetracycline-inducible) dual system. Ssn6 and Tup1, that are components of a general repressor complex in yeast, have been tested for their repressing properties in the dual system, using lacZ and CLN2 as reporter genes. Ssn6 gives better results and allows complete switching-off of the regulated genes, although increasing the levels of the Tup1-based repressor by expressing it from a stronger promoter improves repressing efficiency of the latter. Effector-mediated shifts between expression and non-expression conditions are rapid. The dual system here described may be useful for the functional analysis of essential genes whose conditional expression can be tightly controlled by tetracyclines.
Collapse
Affiliation(s)
- G Bellí
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Rovira Roure 44, 25198 Lleida, Spain
| | | | | | | | | |
Collapse
|
37
|
Abstract
The Tup1 and Ssn6 proteins of Saccharomyces cerevisiae form a general transcriptional repression complex that regulates the expression of a diverse set of genes including aerobically repressed hypoxic genes, a-mating type genes, glucose repressed genes, and genes controlling cell flocculence. To identify amino acid residues in the Tup1 protein that are required for repression function, we selected for mutations that derepressed the hypoxic genes. Three missense mutations that accumulated stable protein were isolated, and an additional three were generated by site-directed mutagenesis. The mutant protein L62R was unable to complex with Ssn6 or repress expression of reporter genes for the hypoxic and glucose repressed regulons or the flocculence phenotype, however, expression of the a-mating type reporter gene was still repressed. The remaining mutations fell within the WD repeat region of Tup1. These mutations had different effects on the expression of the four Tup1 repressed regulons assayed, indicating that the WD repeats serve different roles for repression of different regulons.
Collapse
Affiliation(s)
- P M Carrico
- Department of Biological Sciences, University at Albany/State University of New York, 12222, USA
| | | |
Collapse
|
38
|
Benni ML, Neigeborn L. Identification of a new class of negative regulators affecting sporulation-specific gene expression in yeast. Genetics 1997; 147:1351-66. [PMID: 9383076 PMCID: PMC1208257 DOI: 10.1093/genetics/147.3.1351] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We characterized two yeast loci, MDS3 and PMD1, that negatively regulate sporulation. Initiation of sporulation is mediated by the meiotic activator IME1, which relies on MCK1 for maximal expression. We isolated the MDS3-1 allele (encoding a truncated form of Mds3p) as a suppressor that restores IME1 expression in mck1 mutants. mds3 null mutations confer similar suppression phenotypes as MDS3-1, indicating that Mds3p is a negative regulator of sporulation and the MDS3-1 allele confers a dominant-negative phenotype. PMD1 is predicted to encode a protein sharing significant similarity with Mds3p. mds3 pmd1 double mutants are better suppressors of mck1 than is either single mutant, indicating that Mds3p and Pmd1p function synergistically. Northern blot analysis revealed that suppression is due to increased IME1 transcript accumulation. The roles of Mds3p and Pmd1p are not restricted to the MCK1 pathway because mds3 pmd1 mutations also suppress IME1 expression defects associated with MCK1-independent sporulation mutants. Furthermore, mds3 pmd1 mutants express significant levels of IME1 even in vegetative cells and this unscheduled expression results in premature sporulation. These phenotypes and interactions with RAS2-Val19 suggest that unscheduled derepression of IME1 is probably due to a defect in recognition of nutritional status.
Collapse
Affiliation(s)
- M L Benni
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway 08854-8020, USA
| | | |
Collapse
|
39
|
Gavin IM, Simpson RT. Interplay of yeast global transcriptional regulators Ssn6p-Tup1p and Swi-Snf and their effect on chromatin structure. EMBO J 1997; 16:6263-71. [PMID: 9321405 PMCID: PMC1326310 DOI: 10.1093/emboj/16.20.6263] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcriptional regulation in yeast involves a number of general trans-acting factors affecting chromatin structure. The Swi-Snf complex is required for expression of a large number of genes and has the ability to remodel chromatin in vitro. The Ssn6p-Tup1p repressor complex may be involved in chromatin organization through the interaction with pathway-specific DNA-binding proteins. To study the interplay of these factors and their effect on chromatin we have analyzed SUC2 chromatin structure in wild-type cells and in strains bearing combinations of ssn6/tup1 and swi1 mutations. We have mapped nucleosome positioning of the repressed gene in wild-type cells using primer extension methodology, allowing base pair resolution, and have analyzed details of chromatin remodeling in the derepressed state. In ssn6 or tup1 mutants under repressing conditions the observed changes in SUC2 chromatin structure may be suppressed by the swi1 mutation, suggesting that Ssn6p-Tup1p is not required for the establishment of nucleosome positioning at the SUC2 promoter. Our data indicate the involvement of chromatin remodeling factors distinct from the Swi-Snf complex in SUC2 transcriptional regulation and suggest that Swi-Snf may antagonize Ssn6p-Tup1p by controlling remodeling activity. We also show that a relatively high level of SUC2 transcription can coexist with positioned nucleosomes.
Collapse
Affiliation(s)
- I M Gavin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|