1
|
Shi Y, Li J, Wolf CA, Liu S, Sharma SS, Wolber G, Bureik M, Clark BR. Expected and Unexpected Products from the Biochemical Oxidation of Bacterial Alkylquinolones with CYP4F11. JOURNAL OF NATURAL PRODUCTS 2023; 86:2502-2513. [PMID: 37939299 DOI: 10.1021/acs.jnatprod.3c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
2-Alkylquinolones are a class of microbial natural products primarily produced in the Pseudomonas and Burkholderia genera that play a key role in modulating quorum sensing. Bacterial alkylquinolones were synthesized and then subjected to oxidative biotransformation using human cytochrome P450 enzyme CYP4F11, heterologously expressed in the fission yeast Schizosaccharomyces pombe. This yielded a range of hydroxylated and carboxylic acid derivatives which had undergone ω-oxidation of the 2-alkyl chain, the structures of which were determined by analysis of NMR and MS data. Oxidation efficiency depended on chain length, with a chain length of eight or nine carbon atoms proving optimal for high yields. Homology modeling suggested that Glu233 was relevant for binding, due to the formation of a hydrogen bond from the quinolone nitrogen to Glu233, and in this position only the longer alkyl chains could come close enough to the heme moiety for effective oxidation. In addition to the direct oxidation products, a number of esters were also isolated, which was attributed to the action of endogenous yeast enzymes on the newly formed ω-hydroxy-alkylquinolones. ω-Oxidation of the alkyl chain significantly reduced the antimicrobial and antibiofilm activity of the quinolones.
Collapse
Affiliation(s)
- Yue Shi
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Jianye Li
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering and Materials, Handan University, Handan 056005, Hebei Province, People's Republic of China
| | - Clemens Alexander Wolf
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Sijie Liu
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Sangeeta S Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Gerhard Wolber
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
| |
Collapse
|
2
|
Shi Y, Wolf CA, Lotfy R, Sharma SS, Tesfa AF, Wolber G, Bureik M, Clark BR. Deciphering the biotransformation mechanism of dialkylresorcinols by CYP4F11. Bioorg Chem 2023; 131:106330. [PMID: 36565673 DOI: 10.1016/j.bioorg.2022.106330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Cytochrome P450 enzymes (CYPs) are one of the most important classes of oxidative enzymes in the human body, carrying out metabolism of various exogenous and endogenous substrates. In order to expand the knowledge of these enzymes' specificity and to obtain new natural product derivatives, CYP4F11, a cytochrome P450 monooxygenase, was used in the biotransformation of dialkylresorcinols 1 and 2, a pair of antibiotic microbial natural products. This investigation resulted in four biotransformation products including two oxidative products: a hydroxylated derivative (3) and a carboxylic acid derivative (4). In addition, acetylated (5) and esterified products (6) were isolated, formed by further metabolism by endogenous yeast enzymes. Oxidative transformations were highly regioselective, and took place exclusively at the ω-position of the C-5 alkyl chain. Homology modeling studies revealed that optimal hydrogen bonding between 2 and the enzyme can only be established with the C-5 alkyl chain pointing towards the heme. The closely-related CYP4F12 was not capable of oxidizing the dialkylresorcinol 2. Modeling experiments rationalize these differences by the different shapes of the binding pockets with respect to the non-oxidized alkyl chain. Antimicrobial testing indicated that the presence of polar groups on the side-chains reduces the antibiotic activity of the dialkylresorcinols.
Collapse
Affiliation(s)
- Yue Shi
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Clemens A Wolf
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Rowaa Lotfy
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Sangeeta S Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Abel Fekadu Tesfa
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Gerhard Wolber
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China.
| |
Collapse
|
3
|
Seike T, Niki H. Pheromone Response and Mating Behavior in Fission Yeast. Microbiol Mol Biol Rev 2022; 86:e0013022. [PMID: 36468849 PMCID: PMC9769774 DOI: 10.1128/mmbr.00130-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most ascomycete fungi, including the fission yeast Schizosaccharomyces pombe, secrete two peptidyl mating pheromones: C-terminally modified and unmodified peptides. S. pombe has two mating types, plus and minus, which secrete two different pheromones, P-factor (unmodified) and M-factor (modified), respectively. These pheromones are specifically recognized by receptors on the cell surface of cells of opposite mating types, which trigger a pheromone response. Recognition between pheromones and their corresponding receptors is important for mate discrimination; therefore, genetic changes in pheromone or receptor genes affect mate recognition and cause reproductive isolation that limits gene flow between populations. Such genetic variation in recognition via the pheromone/receptor system may drive speciation. Our recent studies reported that two pheromone receptors in S. pombe might have different stringencies in pheromone recognition. In this review, we focus on the molecular mechanism of pheromone response and mating behavior, emphasizing pheromone diversification and its impact on reproductive isolation in S. pombe and closely related fission yeast species. We speculate that the "asymmetric" system might allow flexible adaptation to pheromone mutational changes while maintaining stringent recognition of mating partners. The loss of pheromone activity results in the extinction of an organism's lineage. Therefore, genetic changes in pheromones and their receptors may occur gradually and/or coincidently before speciation. Our findings suggest that the M-factor plays an important role in partner discrimination, whereas P-factor communication allows flexible adaptation to create variations in S. pombe. Our inferences provide new insights into the evolutionary mechanisms underlying pheromone diversification.
Collapse
Affiliation(s)
- Taisuke Seike
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka, Japan
| | - Hironori Niki
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
4
|
Three-dimensional morphology of bacterial community developed on the index-matched materials. Sci Rep 2021; 11:19508. [PMID: 34593946 PMCID: PMC8484612 DOI: 10.1038/s41598-021-98943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/17/2021] [Indexed: 11/08/2022] Open
Abstract
Herein, we demonstrate that the use of index-matching materials (IMMs) allows direct visualization of microbial cells maintained at a solid-liquid interface through confocal reflection microscopy (CRM). The refractive index mismatch induces a background reflection at the solid-liquid interface that dwarfs the reflection signals from the cells and results in low-contrast images. We found that the IMMs sufficiently suppressed the background reflection at the solid-liquid interface, facilitating the imaging of microbes at the solid surface using CRM. The use of IMMs allowed quantitative analysis of the morphology of the mesh-like structure of Pseudomonas aeruginosa biofilms formed under denitrifying conditions, which led us to propose a novel structural model of the highly porous biofilm structure. These results indicate that the use of CRM coupled with an IMM offers a unique and promising tool for probing the dynamics of biofilm formation, along with visualization of environmental organisms and newly isolated bacteria, for which transformation methods are difficult to establish.
Collapse
|
5
|
Intra- and Interspecies Variability of Single-Cell Innate Fluorescence Signature of Microbial Cell. Appl Environ Microbiol 2019; 85:AEM.00608-19. [PMID: 31324624 PMCID: PMC6715841 DOI: 10.1128/aem.00608-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/09/2019] [Indexed: 01/29/2023] Open
Abstract
A cell’s innate fluorescence signature is an assemblage of fluorescence signals emitted by diverse biomolecules within a cell. It is known that the innate fluoresce signature reflects various cellular properties and physiological statuses; thus, they can serve as a rich source of information in cell characterization as well as cell identification. However, conventional techniques focus on the analysis of the innate fluorescence signatures at the population level but not at the single-cell level and thus necessitate a clonal culture. In the present study, we developed a technique to analyze the innate fluorescence signature of a single microbial cell. Using this novel method, we found that even very similarly shaped cells differ noticeably in their autofluorescence features, and the innate fluorescence signature changes dynamically with growth phases. We also demonstrated that the different cell types can be classified accurately within a mixed population under a microscope at the resolution of a single cell, depending solely on the innate fluorescence signature information. We suggest that single-cell autofluoresce signature analysis is a promising tool to directly assess the taxonomic or physiological heterogeneity within a microbial population, without cell tagging. Here we analyzed the innate fluorescence signature of the single microbial cell, within both clonal and mixed populations of microorganisms. We found that even very similarly shaped cells differ noticeably in their autofluorescence features and that the innate fluorescence signatures change dynamically with growth phases. We demonstrated that machine learning models can be trained with a data set of single-cell innate fluorescence signatures to annotate cells according to their phenotypes and physiological status, for example, distinguishing a wild-type Aspergillus nidulans cell from its nitrogen metabolism mutant counterpart and log-phase cells from stationary-phase cells of Pseudomonas putida. We developed a minimally invasive method (confocal reflection microscopy-assisted single-cell innate fluorescence [CRIF] analysis) to optically extract and catalog the innate cellular fluorescence signatures of each of the individual live microbial cells in a three-dimensional space. This technique represents a step forward from traditional techniques which analyze the innate fluorescence signatures at the population level and necessitate a clonal culture. Since the fluorescence signature is an innate property of a cell, our technique allows the prediction of the types or physiological status of intact and tag-free single cells, within a cell population distributed in a three-dimensional space. Our study presents a blueprint for a streamlined cell analysis where one can directly assess the potential phenotype of each single cell in a heterogenous population by its autofluorescence signature under a microscope, without cell tagging. IMPORTANCE A cell’s innate fluorescence signature is an assemblage of fluorescence signals emitted by diverse biomolecules within a cell. It is known that the innate fluoresce signature reflects various cellular properties and physiological statuses; thus, they can serve as a rich source of information in cell characterization as well as cell identification. However, conventional techniques focus on the analysis of the innate fluorescence signatures at the population level but not at the single-cell level and thus necessitate a clonal culture. In the present study, we developed a technique to analyze the innate fluorescence signature of a single microbial cell. Using this novel method, we found that even very similarly shaped cells differ noticeably in their autofluorescence features, and the innate fluorescence signature changes dynamically with growth phases. We also demonstrated that the different cell types can be classified accurately within a mixed population under a microscope at the resolution of a single cell, depending solely on the innate fluorescence signature information. We suggest that single-cell autofluoresce signature analysis is a promising tool to directly assess the taxonomic or physiological heterogeneity within a microbial population, without cell tagging.
Collapse
|
6
|
Seike T. The evolution of peptide mating pheromones in fission yeast. Curr Genet 2019; 65:1107-1111. [DOI: 10.1007/s00294-019-00968-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 11/30/2022]
|
7
|
Sakamoto Y, Sato S, Ito M, Ando Y, Nakahori K, Muraguchi H. Blue light exposure and nutrient conditions influence the expression of genes involved in simultaneous hyphal knot formation in Coprinopsis cinerea. Microbiol Res 2018; 217:81-90. [PMID: 30384911 DOI: 10.1016/j.micres.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/10/2018] [Accepted: 09/05/2018] [Indexed: 01/04/2023]
Abstract
Light and nutrients are crucial environmental factors influencing fungal sexual reproduction. Blue light induces simultaneous hyphal knot formation in Coprinopsis cinerea mycelia grown on low-glucose media but not in mycelia grown on high-glucose media. Many hyphal knots are visible in the arc near the edge of the colony one day after 15 min of blue light stimulation. These findings collectively suggest that blue light accelerates hyphal knot induction in nutrient-limited conditions. Transcriptome analysis revealed that gene expression after light exposure is divided into at least two major stages. In the first stage, genes coding for fasciclin (fas1), cyclopropane-fatty-acyl-phospholipid synthases (cfs1 and cfs2), and putative lipid exporter (nod1) are highly expressed after 1 h of light exposure in the mycelial region where the hyphal knot will be developed. These genes are upregulated by blue light and not influenced by glucose condition and mating. These results suggest that although some of the genes are critical for induction of the hyphal knots, they are not sufficient for hyphal knot development. In the second gene expression stage, genes encoding galectins (cgl1-3), farnesyl cysteine-carboxyl methyltransferases, mating pheromone-containing protein, nucleus protein (ich1), and laccase (lcc1) are specifically upregulated at 10-16 h after blue light exposure when the mycelia are cultivated on low-glucose media. These genes might be involved in the architecture of hyphal knots or signal transduction for further fruiting body development. These results contribute to the understanding of the effect of environmental factors on sexual reproduction in basidiomycetous fungi.
Collapse
Affiliation(s)
- Yuichi Sakamoto
- Iwate Biotechnology Research Center, 22-174-4, Narita Kitakami Iwate, 024-0003, Japan.
| | - Shiho Sato
- Iwate Biotechnology Research Center, 22-174-4, Narita Kitakami Iwate, 024-0003, Japan
| | - Miyuki Ito
- Iwate Biotechnology Research Center, 22-174-4, Narita Kitakami Iwate, 024-0003, Japan
| | - Yuki Ando
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kiyoshi Nakahori
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Hajime Muraguchi
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| |
Collapse
|
8
|
Cansado J. To finish things well: cysteine methylation ensures selective GTPase membrane localization and signalling. Curr Genet 2017; 64:341-344. [PMID: 28929213 DOI: 10.1007/s00294-017-0756-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022]
Abstract
Isoprenylcysteine-O-Carboxyl Methyltransferase (ICMT) catalyzes the final step in the prenylation process of different proteins including members of the Ras superfamily of GTPases. While cysteine methylation is essential in mammalian cells for growth, membrane association, and signalling by Ras and Rho GTPases, its role during signal transduction events in simple eukaryotes like yeasts appears irrelevant. By using a multidisciplinary approach our group has recently shown that, contrary to this initial assumption, in the fission yeast Schizosaccharomyces pombe ICMT activity encoded by the Mam4 gene is not only important to promote selective plasma membrane targeting of Ras and specific Rho GTPases, but also to allow precise downstream signalling to the mitogen-activated protein kinase and target of rapamycin pathways in response to diverse environmental cues. Thus, the dynamic regulation of in vivo methylation as a modulator of GTPase localization and function is an evolutionary conserved mechanism, making fission yeast an appealing model organism to study the regulation of this process.
Collapse
Affiliation(s)
- José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain.
| |
Collapse
|
9
|
Franco A, Soto T, Martín-García R, Madrid M, Vázquez-Marín B, Vicente-Soler J, Coll PM, Gacto M, Pérez P, Cansado J. Distinct functional relevance of dynamic GTPase cysteine methylation in fission yeast. Sci Rep 2017; 7:6057. [PMID: 28729673 PMCID: PMC5519673 DOI: 10.1038/s41598-017-06053-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
The final step in post-translational processing of Ras and Rho GTPases involves methylation of the prenylated cysteine residue by an isoprenylcysteine-O-carboxyl methyltransferase (ICMT). ICMT activity is essential for cell growth and development in higher eukaryotes, and inhibition of GTPase methylation has become an attractive target in cancer therapy to inactivate prenylated oncoproteins. However, the specificity and dynamics of the GTPase methylation process remain to be fully clarified. Notably, cells lacking Mam4, the ICMT ortholog in the fission yeast Schizosaccharomyces pombe, are viable. We have exploited this feature to analyze the role of methylation on GTPase localization and function. We show that methylation differentially affects GTPase membrane localization, being particularly relevant for plasma membrane tethering and downstream signaling of palmitoylated and farnesylated GTPases Ras1 and Rho2 lacking C-terminal polybasic motifs. Indeed, Ras1 and Rho2 cysteine methylation is required for proper regulation of differentiation elicited by MAPK Spk1 and for stress-dependent activation of the cell integrity pathway (CIP) and its main effector MAPK Pmk1. Further, Mam4 negatively regulates TORC2 signaling by a cross-inhibitory mechanism relying on Rho GTPase methylation. These results highlight the requirement for a tight control of GTPase methylation in vivo to allow adequate GTPase function.
Collapse
Affiliation(s)
- Alejandro Franco
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Departamento de Microbiología y Genética, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Marisa Madrid
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Beatriz Vázquez-Marín
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Jero Vicente-Soler
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Pedro M Coll
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Departamento de Microbiología y Genética, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Mariano Gacto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas/Departamento de Microbiología y Genética, Universidad de Salamanca, 37007, Salamanca, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain.
| |
Collapse
|
10
|
Seike T, Nakamura T, Shimoda C. Distal and proximal actions of peptide pheromone M-factor control different conjugation steps in fission yeast. PLoS One 2013; 8:e69491. [PMID: 23874965 PMCID: PMC3713066 DOI: 10.1371/journal.pone.0069491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/10/2013] [Indexed: 11/26/2022] Open
Abstract
Mating pheromone signaling is essential for conjugation between haploid cells of P-type (P-cells) and haploid cells of M-type (M-cells) in Schizosaccharomyces pombe. A peptide pheromone, M-factor, produced by M-cells is recognized by the receptor of P-cells. An M-factor-less mutant, in which the M-factor-encoding genes are deleted, is completely sterile. In liquid culture, sexual agglutination was not observed in the mutant, but it could be recovered by adding exogenous synthetic M-factor, which stimulated expression of the P-type-specific cell adhesion protein, Map4. Exogenous M-factor, however, failed to recover the cell fusion defect in the M-factor-less mutant. When M-factor-less cells were added to a mixture of wild-type P- and M-cells, marked cell aggregates were formed. Notably, M-factor-less mutant cells were also incorporated in these aggregates. In this mixed culture, P-cells conjugated preferentially with M-cells secreting M-factor, and rarely with M-factor-less M-cells. The kinetics of mating parameters in liquid culture revealed that polarized growth commenced from the contact region of opposite mating-type cells. Taken together, these findings indicate that M-factor at a low concentration induces adhesin expression, leading to initial cell-cell adhesion in a type of “distal pheromone action”, but M-factor that is secreted directly in the proximity of the adhered P-cells may be necessary for cell fusion in a type of “proximal pheromone action”.
Collapse
Affiliation(s)
- Taisuke Seike
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan.
| | | | | |
Collapse
|
11
|
Abstract
Since the study of yeast RAS and adenylate cyclase in the early 1980s, yeasts including budding and fission yeasts contributed significantly to the study of Ras signaling. First, yeast studies provided insights into how Ras activates downstream signaling pathways. Second, yeast studies contributed to the identification and characterization of GAP and GEF proteins, key regulators of Ras. Finally, the study of yeast provided many important insights into the understanding of C-terminal processing and membrane association of Ras proteins.
Collapse
Affiliation(s)
- Fuyuhiko Tamanoi
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Genomewide identification of pheromone-targeted transcription in fission yeast. BMC Genomics 2006; 7:303. [PMID: 17137508 PMCID: PMC1693924 DOI: 10.1186/1471-2164-7-303] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 11/30/2006] [Indexed: 11/16/2022] Open
Abstract
Background Fission yeast cells undergo sexual differentiation in response to nitrogen starvation. In this process haploid M and P cells first mate to form diploid zygotes, which then enter meiosis and sporulate. Prior to mating, M and P cells communicate with diffusible mating pheromones that activate a signal transduction pathway in the opposite cell type. The pheromone signalling orchestrates mating and is also required for entry into meiosis. Results Here we use DNA microarrays to identify genes that are induced by M-factor in P cells and by P-factor in M-cells. The use of a cyr1 genetic background allowed us to study pheromone signalling independently of nitrogen starvation. We identified a total of 163 genes that were consistently induced more than two-fold by pheromone stimulation. Gene disruption experiments demonstrated the involvement of newly discovered pheromone-induced genes in the differentiation process. We have mapped Gene Ontology (GO) categories specifically associated with pheromone induction. A direct comparison of the M- and P-factor induced expression pattern allowed us to identify cell-type specific transcripts, including three new M-specific genes and one new P-specific gene. Conclusion We found that the pheromone response was very similar in M and P cells. Surprisingly, pheromone control extended to genes fulfilling their function well beyond the point of entry into meiosis, including numerous genes required for meiotic recombination. Our results suggest that the Ste11 transcription factor is responsible for the majority of pheromone-induced transcription. Finally, most cell-type specific genes now appear to be identified in fission yeast.
Collapse
|
13
|
Mata J, Bähler J. Global roles of Ste11p, cell type, and pheromone in the control of gene expression during early sexual differentiation in fission yeast. Proc Natl Acad Sci U S A 2006; 103:15517-22. [PMID: 17032641 PMCID: PMC1592531 DOI: 10.1073/pnas.0603403103] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Indexed: 01/09/2023] Open
Abstract
Fission yeast cells belong to one of two specialized cell types, M or P. Specific environmental conditions trigger sexual differentiation, which leads to an internal program starting with pheromone signaling between M and P cells, followed by mating, meiosis, and sporulation. The initial steps of this process are controlled by Ste11p, a master transcriptional regulator that activates the expression of cell type-specific genes (only expressed in either M or P cells) as well as genes expressed in both M and P cells. Pheromone signaling is activated by Ste11p-dependent transcription and, in turn, enhances some of this transcription in a positive feedback. To obtain a genomewide view of Ste11p target genes, their cell-type specificity, and their dependence on pheromone, we used DNA microarrays along with different genetic and environmental manipulations of fission yeast cells. We identified 78 Ste11p-dependent genes, 12 and 4 of which are only expressed in M and P cells, respectively. These genes show differing grades of pheromone dependencies for Ste11p-activated transcription, ranging from complete independence to complete dependence on pheromone. We systematically deleted all novel cell type-specific genes and characterized their phenotype during sexual differentiation. A comparison with a similar data set from the distantly related budding yeast reveals striking conservation in both number and types of the proteins that define cell types. Given the divergent mechanisms regulating cell type-specific gene expression, our results highlight the plasticity of regulatory circuits, which evolve to allow adaptation to changing environments and lifestyles.
Collapse
Affiliation(s)
- Juan Mata
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Cambridge CB10 1HH, United Kingdom
| | - Jürg Bähler
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Cambridge CB10 1HH, United Kingdom
| |
Collapse
|
14
|
Kjaerulff S, Müller S, Jensen MR. Alternative protein secretion: The Mam1 ABC transporter supports secretion of M-factor linked GFP in fission yeast. Biochem Biophys Res Commun 2005; 338:1853-9. [PMID: 16288715 DOI: 10.1016/j.bbrc.2005.10.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 10/21/2005] [Indexed: 11/18/2022]
Abstract
To examine whether the fission yeast Mam1 ABC transporter can be used for secretion of heterologous proteins, thereby bypassing the classical secretion pathway, we have analyzed chimeric forms of the M-factor precursor. It was demonstrated that GFP can be exported when fused to both the amino-terminal prosequence from mfm1 and a CaaX motif. This secretion was dependent on the Mam1 transporter and not the classical secretion pathway. The secretion efficiency of GFP, however, was relatively low and most of the reporter protein was trapped in the vacuolar membranes. Our findings suggest that the Mam1 ABC protein is a promiscuous peptide transporter that can accommodate globular proteins of a relatively large size. Furthermore, our results help in defining the sequences required for processing and secretion of natural M-factor.
Collapse
|
15
|
Lin X, Jung J, Kang D, Xu B, Zaret KS, Zoghbi H. Prenylcysteine carboxylmethyltransferase is essential for the earliest stages of liver development in mice. Gastroenterology 2002; 123:345-51. [PMID: 12105862 DOI: 10.1053/gast.2002.34279] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Liver development, regeneration, and oncogenesis involve signaling events mediated by a number of proteins, such as ras and the related small guanosine triphosphatases. Many of these signaling proteins carry unique CAAX motifs, which are processed by prenylcysteine carboxylmethyltransferase (PCCMT), among several other enzymes. We investigated the function of Pccmt during mouse liver development to better understand the embryonic lethality of the null mutation. METHODS Generation of Pccmt-null mice by embryonic stem cell technology, molecular and histologic analysis of Pccmt-null embryos, and foregut endoderm cultures. RESULTS Pccmt-null embryos die in utero with severe anemia and extensive apoptosis at embryonic day 10.5. We show that deletion of Pccmt leads to a dramatic delay in albumin induction, an early and definitive marker for hepatocyte development. In tissue explant cultures supplemented with fibroblast growth factor (FGF), albumin induction remained impaired. We found that hepatocyte precursors in Pccmt-null embryos failed to invade the septum transversum, resulting in liver agenesis. CONCLUSIONS PCCMT is essential for several stages of hepatic induction, consistent with its role in modifying proteins required to transduce signals, such as FGF, that have been shown to promote liver specification and early growth.
Collapse
Affiliation(s)
- Xi Lin
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
16
|
De Busser HM, Van Dessel G, Lagrou AR. Characterization and localization of prenylcysteine carboxymethyltransferase in the SH-SY5Y neuroblastoma cell line: The methyltransferase is in the endoplasmic reticulum. EUR J LIPID SCI TECH 2001. [DOI: 10.1002/1438-9312(200109)103:9<565::aid-ejlt5650>3.0.co;2-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Romano JD, Michaelis S. Topological and mutational analysis of Saccharomyces cerevisiae Ste14p, founding member of the isoprenylcysteine carboxyl methyltransferase family. Mol Biol Cell 2001; 12:1957-71. [PMID: 11451995 PMCID: PMC55642 DOI: 10.1091/mbc.12.7.1957] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic proteins that terminate in a CaaX motif undergo three processing events: isoprenylation, C-terminal proteolytic cleavage, and carboxyl methylation. In Saccharomyces cerevisiae, the latter step is mediated by Ste14p, an integral endoplasmic reticulum membrane protein. Ste14p is the founding member of the isoprenylcysteine carboxyl methyltransferase (ICMT) family, whose members share significant sequence homology. Because the physiological substrates of Ste14p, such as Ras and the yeast a-factor precursor, are isoprenylated and reside on the cytosolic side of membranes, the Ste14p residues involved in enzymatic activity are predicted to be cytosolically disposed. In this study, we have investigated the topology of Ste14p by analyzing the protease protection of epitope-tagged versions of Ste14p and the glycosylation status of Ste14p-Suc2p fusions. Our data lead to a topology model in which Ste14p contains six membrane spans, two of which form a helical hairpin. According to this model most of the Ste14p hydrophilic regions are located in the cytosol. We have also generated ste14 mutants by random and site-directed mutagenesis to identify residues of Ste14p that are important for activity. Notably, four of the five loss-of-function mutations arising from random mutagenesis alter residues that are highly conserved among the ICMT family. Finally, we have identified a novel tripartite consensus motif in the C-terminal region of Ste14p. This region is similar among all ICMT family members, two phospholipid methyltransferases, several ergosterol biosynthetic enzymes, and a group of bacterial open reading frames of unknown function. Site-directed and random mutations demonstrate that residues in this region play a critical role in the function of Ste14p.
Collapse
Affiliation(s)
- J D Romano
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
18
|
7 Postisoprenylation protein processing: CXXX (CaaX) endoproteases and isoprenylcysteine carboxyl methyltransferase. PROTEIN LIPIDATION 2001. [DOI: 10.1016/s1874-6047(01)80020-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Rodríguez-Concepción M, Toledo-Ortiz G, Yalovsky S, Caldelari D, Gruissem W. Carboxyl-methylation of prenylated calmodulin CaM53 is required for efficient plasma membrane targeting of the protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:775-784. [PMID: 11135111 DOI: 10.1046/j.1365-313x.2000.00924.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Prenylation is necessary for association of the petunia calmodulin CaM53 with the plasma membrane. To determine whether post-prenylation processing of the protein was also required for plasma membrane targeting, we studied the subcellular localization of a GFP-labelled CaM53 reporter in yeast and plant cells. Blocking of carboxyl-methylation of prenylated proteins either by a specific inhibitor or in mutant yeast cells resulted in localization of green fluorescence to what appears to be the endomembrane system, in contrast with the plasma membrane localization observed in control cells. We show that a prenyl-cysteine methyltransferase (PCM) activity that carboxyl-methylates prenylated CaM53 also exists in plant cells, and that it is required for efficient plasma membrane targeting. We also report an Arabidopsis gene with homology to PCM and demonstrate that it encodes a protein with PCM activity that localizes to the endomembrane system of plant cells, similar to prenylated but unmethylated CaM53. Together, our data suggest that, following prenylation, CaM53 is probably associated with the endomembrane system, where a PCM activity methylates the prenylated protein prior to targeting it to its final destination in the plasma membrane.
Collapse
Affiliation(s)
- M Rodríguez-Concepción
- Department Bioquímica i Biologia Molecular, Universitat de Barcelona, Martí i Franquès 1-7, 08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
20
|
De Busser HM, Van Dessel GA, Lagrou AR. Identification of prenylcysteine carboxymethyltransferase in bovine adrenal chromaffin cells. Int J Biochem Cell Biol 2000; 32:1007-16. [PMID: 11084380 DOI: 10.1016/s1357-2725(00)00036-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chromaffin cells from bovine adrenal medulla were examined for the presence of a specific prenylcysteine carboxymethyltransferase by using N-acetyl-S-farnesyl-L-cysteine and N-acetyl-S-geranylgeranyl-L-cysteine as artificial substrates and a crude cell homogenate as the enzyme source. From Michaelis-Menten kinetics the following constants were calculated: K(m) 90 microM and V(max) 3 pmol/min per mg proteins for N-acetyl-S-farnesyl-L-cysteine; K(m) 52 microM and V(max) 3 pmol/min per mg proteins for N-acetyl-S-geranylgeranyl-L-cysteine. Both substrates were methylated to an optimal extent at the pH range 7. 4-8.0. Methylation activity increased linearly up to 20 min incubation time and was dose dependent up to at least 160 microg of protein. Sinefungin and S-adenosylhomocysteine both caused pronounced inhibition, as also to a lesser extent did farnesylthioacetic acid, deoxymethylthioadenosine and 3-deaza-adenosine. Effector studies showed that the methyltransferase activity varied depending on the concentration and chemical nature of the cations present. Monovalent cations were slightly stimulatory, while divalent metallic ions displayed diverging inhibitory effects. The inhibition by cations was validated by the stimulatory effect of the chelators EDTA and EGTA. Sulphydryl reagents inhibited methylation but to different degrees: Hg(2+)-ions: 100%, N-ethylmaleimide: 30%, dithiothreitol: 0% and mono-iodoacetate: 20%. Due to the hydrophobicity of the substrates dimethyl sulfoxide had to be included in the incubation mixture (<4%; still moderate inhibition at more elevated concentrations). The detergents tested affected the methyltransferase activity to a varying degree. The membrane bound character of the methyltransferase was confirmed.
Collapse
Affiliation(s)
- H M De Busser
- RUCA-Laboratory for Human Biochemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | | |
Collapse
|
21
|
Abstract
Post-translational modification of proteins with isoprenoids was first recognized as a general phenomenon in 1984. In recent years, our understanding, including mechanistic studies, of the enzymatic reactions associated with these modifications and their physiological functions has increased dramatically. Of particular functional interest is the role of prenylation in facilitating protein-protein interactions and membrane-associated protein trafficking. The loss of proper localization of Ras proteins when their farnesylation is inhibited has also permitted a new target for anti-malignancy pharmaceuticals. Recent advances in the enzymology and function of protein prenylation are reviewed in this article.
Collapse
Affiliation(s)
- M Sinensky
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0581, USA.
| |
Collapse
|
22
|
Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY. Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci 2000; 3:157-63. [PMID: 10649571 DOI: 10.1038/72101] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The expansion of an unstable CAG repeat causes spinocerebellar ataxia type 1 (SCA1) and several other neurodegenerative diseases. How polyglutamine expansions render the resulting proteins toxic to neurons, however, remains elusive. Hypothesizing that long polyglutamine tracts alter gene expression, we found certain neuronal genes involved in signal transduction and calcium homeostasis sequentially downregulated in SCA1 mice. These genes were abundant in Purkinje cells, the primary site of SCA1 pathogenesis; moreover, their downregulation was mediated by expanded ataxin-1 and occurred before detectable pathology. Similar downregulation occurred in SCA1 human tissues. Altered gene expression may be the earliest mediator of polyglutamine toxicity.
Collapse
Affiliation(s)
- X Lin
- Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
23
|
Nambara E, McCourt P. Protein farnesylation in plants: a greasy tale. CURRENT OPINION IN PLANT BIOLOGY 1999; 2:388-392. [PMID: 10508754 DOI: 10.1016/s1369-5266(99)00010-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although farnesylation is required for a number of abscisic acid mediated responses in plants, knowledge of how this lipid modification of proteins regulates specific developmental and physiological processes remains unclear. Recent information from the Arabidopsis genome-sequencing project in combination with mutants deficient in farnesylation should unravel the role(s) of this process in plant signaling.
Collapse
Affiliation(s)
- E Nambara
- Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, Canada M5S 3B2
| | | |
Collapse
|
24
|
Stockand JD, Edinger RS, Al-Baldawi N, Sariban-Sohraby S, Al-Khalili O, Eaton DC, Johnson JP. Isoprenylcysteine-O-carboxyl methyltransferase regulates aldosterone-sensitive Na(+) reabsorption. J Biol Chem 1999; 274:26912-6. [PMID: 10480901 DOI: 10.1074/jbc.274.38.26912] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Xenopus laevis distal tubule epithelial cell line A6 was used as a model epithelia to study the role of isoprenylcysteine-O-carboxyl methyltransferase (pcMTase) in aldosterone-mediated stimulation of Na(+) transport. Polyclonal antibodies raised against X. laevis pcMTase were immunoreactive with a 33-kDa protein in whole cell lysate. These antibodies were also reactive with a 33-kDa product from in vitro translation of the pcMTase cDNA. Aldosterone application increased pcMTase activity resulting in elevation of total protein methyl esterification in vivo, but pcMTase protein levels were not affected by steroid, suggesting that aldosterone increased activity independent of enzyme number. Inhibition of pcMTase resulted in a reduction of aldosterone-induced Na(+) transport demonstrating the necessity of pcMTase-mediated transmethylation for steroid induced Na(+) reabsorption. Transfection with an eukaryotic expression construct containing pcMTase cDNA increased pcMTase protein level and activity. This resulted in potentiation of the natriferic actions of aldosterone. However, overexpression did not change Na(+) reabsorption in the absence of steroid, suggesting that pcMTase activity is not limiting Na(+) transport in the absence of steroid, but that subsequent to aldosterone addition, pcMTase activity becomes limiting. These results suggest that a critical transmethylation is necessary for aldosterone-induction of Na(+) transport. It is likely that the protein catalyzing this methylation is isoprenylcysteine-O-carboxyl methyltransferase and that aldosterone activates pcMTase without affecting transferase expression.
Collapse
Affiliation(s)
- J D Stockand
- Department of Physiology, Emory University School of Medicine, Center for Cellular and Molecular Signaling, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Desrosiers RR, Nguyen QT, Béliveau R. The carboxyl methyltransferase modifying G proteins is a metalloenzyme. Biochem Biophys Res Commun 1999; 261:790-7. [PMID: 10441503 DOI: 10.1006/bbrc.1999.0936] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prenylated protein carboxyl methyltransferase (PPMT) catalyzes the posttranslational methylation of isoprenylated C-terminal cysteine residues found in many signaling proteins such as the small monomeric G proteins and the gamma subunits of heterotrimeric G proteins. Here we report that both membrane-bound PPMT from rat kidney and the recombinant bacterially expressed form of the enzyme required divalent cations for catalytic activity. Unlike EDTA and EGTA, the metal chelator 1,10-phenanthroline strongly inhibited the PPMT activity of kidney intracellular membranes in a dose- and time-dependent manner. 1,10-Phenanthroline was found to inhibit the methylation of the prenylcysteine analog N-acetyl-S-all-trans-geranylgeranyl-l-cysteine, a synthetic substrate for PPMT, with an IC(50) of 2.2 mM. Gel electrophoretic analysis demonstrated that 1,10-phenanthroline almost totally abolished the labeling of methylated proteins in kidney intracellular membranes. Immunoblotting analysis showed that one of the two major peaks of (3)H-methylated proteins in intracellular membranes comigrated with the small G proteins Ras, Cdc42, RhoA, and Rab1. In addition, the methylation of immunoprecipitated Ras and RhoA from kidney intracellular membranes was strongly inhibited when 1,10-phenanthroline was present. Treatment of kidney intracellular membranes with 1,10-phenanthroline increased the proteolytic degradation of PPMT by exogenous trypsin, compared to untreated membranes. We conclude from these data that metal ions are essential for the activity and the stabilization of PPMT. The finding that PPMT is a metalloenzyme may provide new insights into the functions played by this methyltransferase in signal transduction processes.
Collapse
Affiliation(s)
- R R Desrosiers
- Laboratoire de Médecine Moléculaire, Centre de Cancérologie Charles Bruneau, Université du Québec à Montréal, Succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | | | | |
Collapse
|
26
|
Affiliation(s)
- J Davey
- Department of Biological Sciences, University of Warwick, U.K.
| |
Collapse
|
27
|
Crowell DN, Sen SE, Randall SK. Prenylcysteine alpha-carboxyl methyltransferase in suspension-cultured tobacco cells. PLANT PHYSIOLOGY 1998; 118:115-23. [PMID: 9733531 PMCID: PMC34848 DOI: 10.1104/pp.118.1.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/1998] [Accepted: 05/23/1998] [Indexed: 05/19/2023]
Abstract
Isoprenylation is a posttranslational modification that is believed to be necessary, but not sufficient, for the efficient association of numerous eukaryotic cell proteins with membranes. Additional modifications have been shown to be required for proper intracellular targeting and function of certain isoprenylated proteins in mammalian and yeast cells. Although protein isoprenylation has been demonstrated in plants, postisoprenylation processing of plant proteins has not been described. Here we demonstrate that cultured tobacco (Nicotiana tabacum cv Bright Yellow-2) cells contain farnesylcysteine and geranylgeranylcysteine alpha-carboxyl methyltransferase activities with apparent Michaelis constants of 73 and 21 &mgr;M for N-acetyl-S-trans, trans-farnesyl-L-cysteine and N-acetyl-S-all-trans-geranylgeranyl-L-cysteine, respectively. Furthermore, competition analysis indicates that the same enzyme is responsible for both activities. These results suggest that alpha-carboxyl methylation is a step in the maturation of isoprenylated proteins in plants.
Collapse
Affiliation(s)
- DN Crowell
- Department of Biology, Indiana University-Purdue University at Indianapolis, 723 West Michigan Street, Indianapolis, Indiana 46202 (D.N.C., S.K.R.)
| | | | | |
Collapse
|
28
|
Romano JD, Schmidt WK, Michaelis S. The Saccharomyces cerevisiae prenylcysteine carboxyl methyltransferase Ste14p is in the endoplasmic reticulum membrane. Mol Biol Cell 1998; 9:2231-47. [PMID: 9693378 PMCID: PMC25475 DOI: 10.1091/mbc.9.8.2231] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1998] [Accepted: 06/01/1998] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic proteins containing a C-terminal CAAX motif undergo a series of posttranslational CAAX-processing events that include isoprenylation, C-terminal proteolytic cleavage, and carboxyl methylation. We demonstrated previously that the STE14 gene product of Saccharomyces cerevisiae mediates the carboxyl methylation step of CAAX processing in yeast. In this study, we have investigated the subcellular localization of Ste14p, a predicted membrane-spanning protein, using a polyclonal antibody generated against the C terminus of Ste14p and an in vitro methyltransferase assay. We demonstrate by immunofluorescence and subcellular fractionation that Ste14p and its associated activity are localized to the endoplasmic reticulum (ER) membrane of yeast. In addition, other studies from our laboratory have shown that the CAAX proteases are also ER membrane proteins. Together these results indicate that the intracellular site of CAAX protein processing is the ER membrane, presumably on its cytosolic face. Interestingly, the insertion of a hemagglutinin epitope tag at the N terminus, at the C terminus, or at an internal site disrupts the ER localization of Ste14p and results in its mislocalization, apparently to the Golgi. We have also expressed the Ste14p homologue from Schizosaccharomyces pombe, mam4p, in S. cerevisiae and have shown that mam4p complements a Deltaste14 mutant. This finding, plus additional recent examples of cross-species complementation, indicates that the CAAX methyltransferase family consists of functional homologues.
Collapse
Affiliation(s)
- J D Romano
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
29
|
Dai Q, Choy E, Chiu V, Romano J, Slivka SR, Steitz SA, Michaelis S, Philips MR. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J Biol Chem 1998; 273:15030-4. [PMID: 9614111 DOI: 10.1074/jbc.273.24.15030] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prenylcysteine carboxyl methyltransferase (pcCMT) is the third of three enzymes that posttranslationally modify C-terminal CAAX motifs and thereby target CAAX proteins to the plasma membrane. Here we report the molecular characterization and subcellular localization of the first mammalian (human myeloid) pcCMT. The deduced amino acid sequence of mammalian pcCMT predicts a multiple membrane-spanning protein with homologies to the yeast pcCMT, STE14, and the mammalian band 3 anion transporter. The human gene complemented a ste14 mutant. pcCMT mRNAs were ubiquitously expressed in human tissues. An anti-pcCMT antiserum detected a 33-kDa protein in myeloid cell membranes. Ectopically expressed recombinant pcCMT had enzymatic activity identical to that observed in neutrophil membranes. Mammalian pcCMT was not expressed at the plasma membrane but rather restricted to the endoplasmic reticulum. Thus, the final enzyme in the sequence that modifies CAAX motifs is located in membranes topologically removed from the CAAX protein target membrane.
Collapse
Affiliation(s)
- Q Dai
- Departments of Medicine and Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Desrosiers RR, Béliveau R. Regulation by GTPgammaS of protein carboxylmethyltransferase activity in kidney brush border membranes. Arch Biochem Biophys 1998; 351:149-58. [PMID: 9514644 DOI: 10.1006/abbi.1997.0538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The increase in carboxyl methylation induced by guanosine 5',3-O-(thio)triphosphate (GTPgammaS) in brush border membranes from rat kidney cortex was studied, and the methyltransferase activities affected by this nucleotide analog were identified. Addition of GTPgammaS to brush border membranes stimulated the carboxyl methylation in a time-dependent manner while adenosine and guanine nucleotides were ineffective. The GTPgammaS-dependent carboxyl methylation was inhibited by the chelating agents EDTA (63%) and 1,10-phenanthroline (68%), suggesting that this activity required divalent cations. The methyl ester groups induced by the addition of GTPgammaS to brush border membranes were unstable, with about 80% of them hydrolyzed following 1 h incubation at 37 degrees C. The GTPgammaS stimulation of the carboxyl methylation in brush border membranes was unaffected by the detergent 3-[(3cholamido)-dimethylammonio]-1-propanesulfonic acid up to a concentration of 0.4% (w/v). At this latter detergent concentration, the activity of prenylated protein methyltransferase (PPMT) was strongly inhibited and that of l-isoaspartyl/d-aspartylmethyltransferase (PIMT) was increased twofold, as measured with their respective exogenous substrates, N-acetyl-S-farnesyl cysteine and ovalbumin. GTPgammaS increased the methylation of several substrates in brush border membranes. The induced methylation in substrates migrating between 20 and 36 kDa was strongly decreased by the competitive inhibitor farnesylthioacetic acid, a synthetic farnesylated substrate for PPMT, while a delta-sleep-inducing peptide containing an L-isoaspartyl residue inhibited that of substrates with molecular weights above 36 kDa, suggesting that PIMT activity was also involved. This interpretation was strengthened by the observation that the increased methylation induced by GTPgammaS in these membrane substrates was completely lost following their analysis by gel electrophoresis under alkaline conditions. Taken together, these results indicate that both PPMT and PIMT activities are regulated by guanine nucleotides in brush border membranes of rat kidney.
Collapse
Affiliation(s)
- R R Desrosiers
- Département de chimie-biochimie, et Centre d'oncologie Charles Bruneau, Université du Québec à Montréal, Hôpital Sainte-Justine, Succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | | |
Collapse
|
31
|
Abstract
The regulatory function of the Ras-like GTPases in diverse cellular processes, such as growth, cell movement, and protein trafficking, is critically dependent on targeting to the proper cellular membrane. Prenylation of Ras, Rho/Rac, and Rab GTPases, defined as the covalent addition of isoprenyl groups to cysteine residues near or at their carboxyl terminus, is the first and necessary step that leads to membrane binding and targeting of these proteins. Recent progress on the molecular mechanisms of prenylation, membrane association, and targeting of Ras, Rho/Rac, and Rab proteins will be reviewed here. The detailed understanding of these targeting mechanisms may allow future development of specific therapeutic agents that interfere with the function of each one of these proteins.
Collapse
Affiliation(s)
- M C Seabra
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235, USA.
| |
Collapse
|