1
|
Clarke HJ. Post-transcriptional control of gene expression during mouse oogenesis. Results Probl Cell Differ 2012; 55:1-21. [PMID: 22918798 DOI: 10.1007/978-3-642-30406-4_1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Post-transcriptional mechanisms play a central role in regulating gene expression during oogenesis and early embryogenesis. Growing oocytes accumulate an enormous quantity of messenger RNAs (mRNAs), but transcription decreases dramatically near the end of growth and is undetectable during meiotic maturation. Following fertilization, the embryo is initially transcriptionally inactive and then becomes active at a species-specific stage of early cleavage. Meanwhile, beginning during maturation and continuing after fertilization, the oocyte mRNAs are eliminated, allowing the embryonic genome to assume control of development. How the mammalian oocyte manages the storage, translation, and degradation of the huge quantity and diversity of mRNAs that it harbours has been the focus of enormous research effort and is the subject of this review. We discuss the roles of sequences within the 3'-untranslated region of certain mRNAs and the proteins that bind to them, sequence-non-specific RNA-binding proteins, and recent studies implicating ribonucleoprotein processing (P-) bodies and cytoplasmic lattices. We also discuss mechanisms that may control the temporally regulated translational activation of different mRNAs during meiotic maturation, as well as the signals that trigger silencing and degradation of the oocyte mRNAs. We close by highlighting areas for future research including the potential key role of small RNAs in regulating gene expression in oocytes.
Collapse
Affiliation(s)
- Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montréal, QC, Canada.
| |
Collapse
|
2
|
Swetloff A, Conne B, Huarte J, Pitetti JL, Nef S, Vassalli JD. Dcp1-bodies in mouse oocytes. Mol Biol Cell 2009; 20:4951-61. [PMID: 19812249 DOI: 10.1091/mbc.e09-02-0123] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Processing bodies (P-bodies) are cytoplasmic granules involved in the storage and degradation of mRNAs. In somatic cells, their formation involves miRNA-mediated mRNA silencing. Many P-body protein components are also found in germ cell granules, such as in mammalian spermatocytes. In fully grown mammalian oocytes, where changes in gene expression depend entirely on translational control, RNA granules have not as yet been characterized. Here we show the presence of P-body-like foci in mouse oocytes, as revealed by the presence of Dcp1a and the colocalization of RNA-associated protein 55 (RAP55) and the DEAD box RNA helicase Rck/p54, two proteins associated with P-bodies and translational control. These P-body-like structures have been called Dcp1-bodies and in meiotically arrested primary oocytes, two types can be distinguished based on their size. They also have different protein partners and sensitivities to the depletion of endogenous siRNA/miRNA and translational inhibitors. However, both type progressively disappear during in vitro meiotic maturation and are virtually absent in metaphase II-arrested secondary oocytes. Moreover, this disassembly of hDcp1a-bodies is concomitant with the posttranslational modification of EGFP-hDcp1a.
Collapse
Affiliation(s)
- Adam Swetloff
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
3
|
Abstract
CPEB is a sequence-specific RNA-binding protein that regulates polyadenylation-induced translation. In Cpeb knockout mice, meiotic progression is disrupted at pachytene due to inhibited translation of synaptonemal complex protein mRNAs. To assess the function of CPEB after pachytene, we used the zona pellucida 3 (Zp3) promoter to generate transgenic mice expressing siRNA that induce the destruction of Cpeb mRNA. Oocytes from these animals do not develop normally; they undergo parthenogenetic cell division in the ovary, exhibit abnormal polar bodies, are detached from the cumulus granulosa cell layer, and display spindle and nuclear anomalies. In addition, many follicles contain apoptotic granulosa cells. CPEB binds several oocyte mRNAs, including Smad1, Smad5, spindlin, Bub1b, Mos, H1foo, Obox1, Dnmt1o, TiParp, Trim61 and Gdf9, a well described oocyte-expressed growth factor that is necessary for follicle development. In Cpeb knockdown oocytes, Gdf9 RNA has a shortened poly(A) tail and reduced expression. These data indicate that CPEB controls the expression of Gdf9 mRNA, which in turn is necessary for oocyte-follicle development. Finally, several phenotypes, i.e. progressive oocyte loss and infertility, elicited by the knockdown of CPEB in oocytes resemble those of the human premature ovarian failure syndrome.
Collapse
Affiliation(s)
- Waldemar J Racki
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
4
|
Abstract
RNA-binding proteins play a major part in the control of gene expression during early development. At this stage, the majority of regulation occurs at the levels of translation and RNA localization. These processes are, in general, mediated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated regions of their target RNAs. Although initial work concentrated on the analysis of these sequences and their trans-acting factors, we are now beginning to gain an understanding of the mechanisms by which some of these proteins function. In this review, we will describe a number of different families of RNA-binding proteins, grouping them together on the basis of common regulatory strategies, and emphasizing the recurrent themes that occur, both across different species and as a response to different biological problems.
Collapse
|
5
|
Stasinopoulos S, Tran H, Chen E, Sachchithananthan M, Nagamine Y, Medcalf RL. Regulation of protease and protease inhibitor gene expression: the role of the 3'-UTR and lessons from the plasminogen activating system. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:169-215. [PMID: 16164975 DOI: 10.1016/s0079-6603(05)80005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Stan Stasinopoulos
- Friedrich Miescher Institute, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
6
|
Allard P, Champigny MJ, Skoggard S, Erkmann JA, Whitfield ML, Marzluff WF, Clarke HJ. Stem-loop binding protein accumulates during oocyte maturation and is not cell-cycle-regulated in the early mouse embryo. J Cell Sci 2002; 115:4577-86. [PMID: 12415002 PMCID: PMC5115915 DOI: 10.1242/jcs.00132] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stem-loop binding protein (SLBP) binds to the 3' end of histone mRNA and participates in 3'-processing of the newly synthesized transcripts, which protects them from degradation, and probably also promotes their translation. In proliferating cells, translation of SLBP mRNA begins at G1/S and the protein is degraded following DNA replication. These post-transcriptional mechanisms closely couple SLBP expression to S-phase of the cell cycle, and play a key role in restricting synthesis of replication-dependent histones to S-phase. In contrast to somatic cells, replication-dependent histone mRNAs accumulate and are translated independently of DNA replication in oocytes and early embryos. We report here that SLBP expression and activity also differ in mouse oocytes and early embryos compared with somatic cells. SLBP is present in oocytes that are arrested at prophase of G2/M, where it is concentrated in the nucleus. Upon entry into M-phase of meiotic maturation, SLBP begins to accumulate rapidly, reaching a very high level in mature oocytes arrested at metaphase II. Following fertilization, SLBP remains abundant in the nucleus and the cytoplasm throughout the first cell cycle, including both G1 and G2 phases. It declines during the second and third cell cycles, reaching a relatively low level by the late 4-cell stage. SLBP can bind the histone mRNA-stem-loop at all stages of the cell cycle in oocytes and early embryos, and it is the only stem-loop binding activity detectable in these cells. We also report that SLBP becomes phosphorylated rapidly following entry into M-phase of meiotic maturation through a mechanism that is sensitive to roscovitine, an inhibitor of cyclin-dependent kinases. SLBP is rapidly dephosphorylated following fertilization or parthenogenetic activation, and becomes newly phosphorylated at M-phase of mitosis. Phosphorylation does not affect its stem-loop binding activity. These results establish that, in contrast to Xenopus, mouse oocytes and embryos contain a single SLBP. Expression of SLBP is uncoupled from S-phase in oocytes and early embryos, which indicates that the mechanisms that impose cell-cycle-regulated expression of SLBP in somatic cells do not operate in oocytes or during the first embryonic cell cycle. This distinctive pattern of SLBP expression may be required for accumulation of histone proteins required for sperm chromatin remodelling and assembly of newly synthesized embryonic DNA into chromatin.
Collapse
Affiliation(s)
- Patrick Allard
- Departments of Obstetrics and Gynecology and Biology, McGill University, Montreal, Quebec, Canada H3A 1A1
| | - Marc J. Champigny
- Departments of Obstetrics and Gynecology and Biology, McGill University, Montreal, Quebec, Canada H3A 1A1
| | - Sarah Skoggard
- Departments of Obstetrics and Gynecology and Biology, McGill University, Montreal, Quebec, Canada H3A 1A1
| | - Judith A. Erkmann
- Department of Biochemistry and Biophysics and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael L. Whitfield
- Department of Biochemistry and Biophysics and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William F. Marzluff
- Department of Biochemistry and Biophysics and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hugh J. Clarke
- Departments of Obstetrics and Gynecology and Biology, McGill University, Montreal, Quebec, Canada H3A 1A1
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3A 1A1
- Author for correspondence ()
| |
Collapse
|
7
|
Hodgman R, Tay J, Mendez R, Richter JD. CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes. Development 2001; 128:2815-22. [PMID: 11526086 DOI: 10.1242/dev.128.14.2815] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In both vertebrates and invertebrates, the expression of several maternal mRNAs is regulated by cytoplasmic polyadenylation. In Xenopus oocytes, where most of the biochemical details of this process have been examined, polyadenylation is controlled by CPEB, a sequence-specific RNA binding protein. The activity of CPEB, which is to recruit cleavage and polyadenylation specificity factor (CPSF) and poly(A) polymerase (PAP) into an active cytoplasmic polyadenylation complex, is controlled by Eg2-catalyzed phosphorylation. Soon after CPEB phosphorylation and resulting polyadenylation take place, the interaction between maskin, a CPEB-associated factor, and eIF4E, the cap-binding protein, is destroyed, which results in the recruitment of mRNA into polysomes. Polyadenylation also occurs in maturing mouse oocytes, although the biochemical events that govern the reaction in these cells are not known. In this study, we have examined the phosphorylation of CPEB and have assessed the necessity of this protein for polyadenylation in maturing mouse oocytes. Immunohistochemistry has revealed that all the factors that control polyadenylation and translation in Xenopus oocytes (CPEB, CPSF, PAP, maskin, and IAK1, the murine homologue of Eg2) are also present in the cytoplasm of mouse oocytes. After the induction of maturation, a kinase is activated that phosphorylates CPEB on a critical regulatory residue, an event that is essential for CPEB activity. A peptide that competitively inhibits the activity of IAK1/Eg2 blocks the progression of meiosis in injected oocytes. Finally, a CPEB protein that acts as a dominant negative mutation because it cannot be phosphorylated by IAK1/Eg2, prevents cytoplasmic polyadenylation. These data indicate that cytoplasmic polyadenylation in mouse oocytes is mediated by IAK1/Eg2-catalyzed phosphorylation of CPEB.
Collapse
Affiliation(s)
- R Hodgman
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
8
|
Conne B, Stutz A, Vassalli JD. The 3' untranslated region of messenger RNA: A molecular 'hotspot' for pathology? Nat Med 2000; 6:637-41. [PMID: 10835679 DOI: 10.1038/76211] [Citation(s) in RCA: 411] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The role of the 3' untranslated region in posttranscriptional regulation of mRNA expression is being elucidated. Here we describe diseases arising from anomalies in this region, that affect the expression of one or more genes.
Collapse
Affiliation(s)
- B Conne
- Department of MorphologyFaculty of Medicine University of Geneva CMU, 1211 Geneva 4, Switzerland.
| | | | | |
Collapse
|
9
|
Abstract
In maturing mouse oocytes, protein synthesis is required for meiotic maturation subsequent to germinal vesicle breakdown (GVBD). While the number of different proteins that must be synthesized for this progression to occur is unknown, at least one of them appears to be cyclin B1, the regulatory subunit of M-phase-promoting factor. Here, we investigate the mechanism of cyclin B1 mRNA translational control during mouse oocyte maturation. We show that the U-rich cytoplasmic polyadenylation element (CPE), a cis element in the 3' UTR of cyclin B1 mRNA, mediates translational repression in GV-stage oocytes. The CPE is also necessary for cytoplasmic polyadenylation, which stimulates translation during oocyte maturation. The injection of oocytes with a cyclin B1 antisense RNA, which probably precludes the binding of a factor to the CPE, delays cytoplasmic polyadenylation as well as the transition from GVBD to metaphase II. CPEB, which interacts with the cyclin B1 CPE and is present throughout meiotic maturation, becomes phosphorylated at metaphase I. These data indicate that CPEB is involved in both the repression and the stimulation of cyclin B1 mRNA and suggest that the phosphorylation of this protein could be involved in regulating its activity.
Collapse
Affiliation(s)
- J Tay
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
10
|
Jiménez Díaz M, Giunta S, Valz-Gianinet J, Pereyra-Alfonso S, Flores V, Miceli D. Proteases with plasminogen activator activity in hamster oviduct. Mol Reprod Dev 2000; 55:47-54. [PMID: 10602273 DOI: 10.1002/(sici)1098-2795(200001)55:1<47::aid-mrd7>3.0.co;2-j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
At present the physiological role of most oviductal proteins remains unknown. In this work, we present evidence that the oviductal secretion as well as the crude oviductal tissue-extract show proteolytic-like esterase and amidase activity. The proteolytic activity of the oviductal enzymes was higher in the oviducts of superovulated hamster females than in those of normal ones, indicating that gonadotrophic hormones would stimulate the synthesis and secretion of these enzymes. Some of their properties were analyzed in the 15,600-g supernatant of both oviductal tissue extracts (OE) and oviductal fluid (OF). The enzymatic activity toward the synthetic substrates p-tosyl-l-arginine methyl ester-HCl (TAME) and alpha-N-benzoyl-dl-arginine-p-nitroanilide HCl (BAPNA) was activated by calcium ions, reached a maximum at pH 7.5, and was inhibited by soybean trypsin inhibitor (SBTI), N-alpha-p-tosyl-l-lysine chloromethyl ketone HCl (TLCK), phenyl methyl sulfonyl fluoride (PMSF), and benzamidine. The OE glycoprotein fraction recognized by WGA-Sepharose affinity columns (37% total proteins) showed proteolytic activity with properties similar to the OE and OF enzymes. The protease activity could be ascribed to a plasminogen activator (PA) detected in the Triton X-100 treated tissue crude membrane fraction (Triton-CMF) and in the oviductal secretion of the superovulated females. In the Triton-CMF fraction, 100% of the proteolytic activity was plasminogen-dependent. The use of amiloride, a selective urokinase-type plasminogen activator (uPA) inhibitor, shows that 90% of this activity was due to a tissue-type plasminogen activator (tPA) and 10% to uPA whereas in the uterus 100% of the activity was tPA. Only a small percentage of the OF proteolytic activity was plasminogen-dependent, probably due to the presence of PA inhibitors in this medium.
Collapse
Affiliation(s)
- M Jiménez Díaz
- Instituto de Biología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Argentina
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Maternal mRNA translation is regulated in large part by cytoplasmic polyadenylation. This process, which occurs in both vertebrates and invertebrates, is essential for meiosis and body patterning. In spite of the evolutionary conservation of cytoplasmic polyadenylation, many of the cis elements and trans-acting factors appear to have some species specificity. With the recent isolation and cloning of factors involved in both poly(A) elongation and deadenylation, the underlying biochemistry of these reactions is beginning to be elucidated. In addition to early development, cytoplasmic polyadenylation is now known to occur in the adult brain, and there is circumstantial evidence that this process occurs at synapses, where it could mediate the long-lasting phase of long-term potentiation, which is probably the basis of learning and memory. Finally, there may be multiple mechanisms by which polyadenylation promotes translation. Important questions yet to be answered in the field of cytoplasmic polyadenylation are addressed.
Collapse
Affiliation(s)
- J D Richter
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| |
Collapse
|
12
|
Tu GC, Cao QN, Zhou F, Israel Y. Tetranucleotide GGGA motif in primary RNA transcripts. Novel target site for antisense design. J Biol Chem 1998; 273:25125-31. [PMID: 9737971 DOI: 10.1074/jbc.273.39.25125] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selecting effective antisense target sites on a given mRNA molecule constitutes a major problem in antisense therapeutics. By trial-and-error, only 1 in 18 (6%) of antisense oligonucleotides designed to target the primary RNA transcript of tumor necrosis factor-alpha (TNF-alpha) strongly inhibited TNF-alpha synthesis. Subsequent studies showed that the area in RNA targeted by antisense oligonucleotides could be moved effectively 10-15 bases in either direction from the original area. We observed that only molecules that incorporated a tetranucleotide motif TCCC (complementary to GGGA on RNA) yielded potent antisense oligonucleotides against TNF-alpha. A comprehensive literature survey showed that this motif is unwittingly present in 48% of the most potent antisense oligonucleotides reported in the literature. This finding was prospectively used to predict the sequences of additional antisense oligonucleotides for the rat TNF-alpha primary RNA transcript. Over 50% of antisense constructs (13 of 22) containing the TCCC motif were found to effectively inhibit TNF-alpha synthesis. Marked reductions in mRNA were also observed. This motif was found to be most effective when targeting introns in the primary RNA transcript, suggesting a nuclear localization for the antisense action. Predicting target sites based on the presence of this motif in primary RNA transcripts should be of value in the development on new antisense pharmacotherapy.
Collapse
Affiliation(s)
- G C Tu
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
13
|
Stutz A, Conne B, Huarte J, Gubler P, Völkel V, Flandin P, Vassalli JD. Masking, unmasking, and regulated polyadenylation cooperate in the translational control of a dormant mRNA in mouse oocytes. Genes Dev 1998; 12:2535-48. [PMID: 9716406 PMCID: PMC317088 DOI: 10.1101/gad.12.16.2535] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/1997] [Accepted: 05/26/1998] [Indexed: 11/24/2022]
Abstract
The mechanisms responsible for translational silencing of certain mRNAs in growing oocytes, and for their awakening during meiotic maturation, are not completely elucidated. We show that binding of a approximately 80-kD protein to a UA-rich element in the 3' UTR of tissue-type plasminogen activator mRNA, a mouse oocyte mRNA that is translated during meiotic maturation, silences the mRNA in primary oocytes. Translation can be triggered by injecting a competitor transcript that displaces this silencing factor, without elongation of a pre-existing short poly(A) tail, the presence of which is mandatory. During meiotic maturation, cytoplasmic polyadenylation is necessary to maintain a poly(A) tail, but the determining event for translational activation appears to be the modification or displacement of the silencing factor.
Collapse
Affiliation(s)
- A Stutz
- Department of Morphology, University of Geneva Medical School, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | |
Collapse
|