1
|
Perroud PF, Demko V, Ako AE, Khanal R, Bokor B, Pavlovič A, Jásik J, Johansen W. The nuclear GUCT domain-containing DEAD-box RNA helicases govern gametophytic and sporophytic development in Physcomitrium patens. PLANT MOLECULAR BIOLOGY 2021; 107:307-325. [PMID: 33886069 PMCID: PMC8648619 DOI: 10.1007/s11103-021-01152-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/06/2021] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE In Physcomitrium patens, PpRH1/PpRH2 are GUCT-domain-containing DEAD-BOX RNA helicases localize to the nucleus. They are implicated in cell and tissue development in all stages of the moss life cycle. ABSTRACT The DEAD-box-containing RNA helicase family encompasses a large and functionally important group of enzymes involved in cellular processes committed to the metabolism of RNA, including its transcription, processing, transport, translation and decay. Studies indicate this protein family has implied roles in plant vegetative and reproductive developmental processes as well as response to environmental stresses such has cold and high salinity. We focus here on a small conserved sub-group of GUCT domain-containing RNA helicase in the moss Physcomitrium patens. Phylogenetic analysis shows that RNA helicases containing the GUCT domain form a distinct conserved clade across the green lineage. In this clade, the P. patens genome possesses two closely related paralogues RNA helicases predicted to be nuclear, PpRH1 and PpRH2. Using in-locus gene fluorescent tagging we show that PpRH1 is localized to the nucleus in protonema. Analysis of PpRH1 and PpRH2 deletions, individually and together, indicates their potential roles in protonema, gametophore and sporophyte cellular and tissue development in P. patens. Additionally, the ultrastructural analysis of phyllid chloroplasts in Δrh2 and Δrh1/2 shows distinct starch granule accumulation under standard growth conditions associated with changes in photosynthetic activity parameters. We could not detect effects of either temperature or stress on protonema growth or PpRH1 and PpRH2 expression. Together, these results suggest that nuclear GUCT-containing RNA helicases play a role primarily in developmental processes directly or indirectly linked to photosynthesis activity in the moss P. patens. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11103-021-01152-w.
Collapse
Affiliation(s)
- Pierre-François Perroud
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043, Marburg, Germany
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Viktor Demko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215, Bratislava, Slovakia
- Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovakia
| | - Ako Eugene Ako
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 31, 2318, Hamar, Norway
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell, NG25 0QF, Nottinghamshire, UK
| | - Rajendra Khanal
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 31, 2318, Hamar, Norway
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215, Bratislava, Slovakia
- Comenius University in Bratislava Science Park, Ilkovicova 8, 84215, Bratislava, Slovakia
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Ján Jásik
- Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovakia
| | - Wenche Johansen
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 31, 2318, Hamar, Norway.
| |
Collapse
|
2
|
Parreira JR, Cappuccio M, Balestrazzi A, Fevereiro P, Araújo SDS. MicroRNAs expression dynamics reveal post-transcriptional mechanisms regulating seed development in Phaseolus vulgaris L. HORTICULTURE RESEARCH 2021; 8:18. [PMID: 33436559 PMCID: PMC7804330 DOI: 10.1038/s41438-020-00448-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 05/04/2023]
Abstract
The knowledge on post-transcriptional regulation mechanisms implicated in seed development (SD) is still limited, particularly in one of the most consumed grain legumes, Phaseolus vulgaris L. We explore for the first time the miRNA expression dynamics in P. vulgaris developing seeds. Seventy-two known and 39 new miRNAs were found expressed in P. vulgaris developing seeds. Most of the miRNAs identified were more abundant at 10 and 40 days after anthesis, suggesting that late embryogenesis/early filling and desiccation were SD stages in which miRNA action is more pronounced. Degradome analysis and target prediction identified targets for 77 expressed miRNAs. While several known miRNAs were predicted to target HD-ZIP, ARF, SPL, and NF-Y transcription factors families, most of the predicted targets for new miRNAs encode for functional proteins. MiRNAs-targets expression profiles evidenced that these miRNAs could tune distinct seed developmental stages. MiRNAs more accumulated at early SD stages were implicated in regulating the end of embryogenesis, postponing the seed maturation program, storage compound synthesis and allocation. MiRNAs more accumulated at late SD stages could be implicated in seed quiescence, desiccation tolerance, and longevity with still uncovered roles in germination. The miRNAs herein described represent novel P. vulgaris resources with potential application in future biotechnological approaches to modulate the expression of genes implicated in legume seed traits with impact in horticultural production systems.
Collapse
Affiliation(s)
- José Ricardo Parreira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Michela Cappuccio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Pedro Fevereiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
- InnovPlantProtect Collaborative Laboratory, Estrada de Gil Vaz, 7351-901, Elvas, Portugal
| | - Susana de Sousa Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
- Association BLC3-Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição 2, Lagares da Beira, 3405-155, Oliveira do Hospital, Portugal.
| |
Collapse
|
3
|
Huang CK, Shen YL, Huang LF, Wu SJ, Yeh CH, Lu CA. The DEAD-Box RNA Helicase AtRH7/PRH75 Participates in Pre-rRNA Processing, Plant Development and Cold Tolerance in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:174-91. [PMID: 26637537 DOI: 10.1093/pcp/pcv188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/18/2015] [Indexed: 05/18/2023]
Abstract
DEAD-box RNA helicases belong to an RNA helicase family that plays specific roles in various RNA metabolism processes, including ribosome biogenesis, mRNA splicing, RNA export, mRNA translation and RNA decay. This study investigated a DEAD-box RNA helicase, AtRH7/PRH75, in Arabidopsis. Expression of AtRH7/PRH75 was ubiquitous; however, the levels of mRNA accumulation were increased in cell division regions and were induced by cold stress. The phenotypes of two allelic AtRH7/PRH75-knockout mutants, atrh7-2 and atrh7-3, resembled auxin-related developmental defects that were exhibited in several ribosomal protein mutants, and were more severe under cold stress. Northern blot and circular reverse transcription-PCR (RT-PCR) analyses indicated that unprocessed 18S pre-rRNAs accumulated in the atrh7 mutants. The atrh7 mutants were hyposensitive to the antibiotic streptomycin, which targets ribosomal small subunits, suggesting that AtRH7 was also involved in ribosome assembly. In addition, the atrh7-2 and atrh7-3 mutants displayed cold hypersensitivity and decreased expression of CBF1, CBF2 and CBF3, which might be responsible for the cold intolerance. The present study indicated that AtRH7 participates in rRNA biogenesis and is also involved in plant development and cold tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC These authors contributed equally to this work
| | - Yu-Lien Shen
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC These authors contributed equally to this work
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Shaw-Jye Wu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Chin-Hui Yeh
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| |
Collapse
|
4
|
Nayak NR, Putnam AA, Addepalli B, Lowenson JD, Chen T, Jankowsky E, Perry SE, Dinkins RD, Limbach PA, Clarke SG, Downie AB. An Arabidopsis ATP-dependent, DEAD-box RNA helicase loses activity upon IsoAsp formation but is restored by PROTEIN ISOASPARTYL METHYLTRANSFERASE. THE PLANT CELL 2013; 25:2573-86. [PMID: 23903319 PMCID: PMC3753384 DOI: 10.1105/tpc.113.113456] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Orthodox seeds are capable of withstanding severe dehydration. However, in the dehydrated state, Asn and Asp residues in proteins can convert to succinimide residues that can further react to predominantly form isomerized isoAsp residues upon rehydration (imbibition). IsoAsp residues can impair protein function and can render seeds nonviable, but PROTEIN ISOASPARTYL METHYLTRANSFERASE (PIMT) can initiate isoAsp conversion to Asp residues. The proteins necessary for translation upon imbibition in orthodox seeds may be particularly important to maintain in an active state. One such protein is the large, multidomain protein, Arabidopsis thaliana PLANT RNA HELICASE75 (PRH75), a DEAD-box helicase known to be susceptible to isoAsp residue accumulation. However, the consequences of such isomerization on PRH75 catalysis and for the plant are unknown. Here, it is demonstrated that PRH75 is necessary for successful seed development. It acquires isoAsp rapidly during heat stress, which eliminates RNA unwinding (but not rewinding) competence. The repair by PIMT is able to restore PRH75's complex biochemical activity provided isoAsp formation has not led to subsequent, destabilizing conformational alterations. For PRH75, an important enzymatic activity associated with translation would be eliminated unless rapidly repaired by PIMT prior to additional, deleterious conformational changes that would compromise seed vitality and germination.
Collapse
Affiliation(s)
- Nihar R. Nayak
- Department of Horticulture, University of Kentucky, Lexington, Kentucky 40546-0312
- Seed Biology Group, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Andrea A. Putnam
- Center for RNA Molecular Biology and Department of Biochemistry, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | | | - Jonathan D. Lowenson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - Tingsu Chen
- Department of Horticulture, University of Kentucky, Lexington, Kentucky 40546-0312
- Seed Biology Group, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Eckhard Jankowsky
- Center for RNA Molecular Biology and Department of Biochemistry, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Sharyn E. Perry
- Seed Biology Group, University of Kentucky, Lexington, Kentucky 40546-0312
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Randy D. Dinkins
- U.S. Department of Agriculture–Agricultural Research Service Forage Animal Production Research Unit, N220C Agriculture Science Center North, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Patrick A. Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - A. Bruce Downie
- Department of Horticulture, University of Kentucky, Lexington, Kentucky 40546-0312
- Seed Biology Group, University of Kentucky, Lexington, Kentucky 40546-0312
- Address correspondence to
| |
Collapse
|
5
|
Asakura Y, Galarneau E, Watkins KP, Barkan A, van Wijk KJ. Chloroplast RH3 DEAD box RNA helicases in maize and Arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome biogenesis. PLANT PHYSIOLOGY 2012; 159:961-74. [PMID: 22576849 PMCID: PMC3387720 DOI: 10.1104/pp.112.197525] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/08/2012] [Indexed: 05/18/2023]
Abstract
Chloroplasts in angiosperms contain at least seven nucleus-encoded members of the DEAD box RNA helicase family. Phylogenetic analysis shows that five of these plastid members (RH22, -39, -47, -50, and -58) form a single clade and that RH3 forms a clade with two mitochondrial RH proteins (PMH1 and -2) functioning in intron splicing. The function of chloroplast RH3 in maize (Zea mays; ZmRH3) and Arabidopsis (Arabidopsis thaliana; AtRH3) was determined. ZmRH3 and AtRH3 are both under strong developmental control, and ZmRH3 abundance sharply peaked in the sink-source transition zone of developing maize leaves, coincident with the plastid biogenesis machinery. ZmRH3 coimmunoprecipitated with a specific set of plastid RNAs, including several group II introns, as well as pre23S and 23S ribosomal RNA (rRNA), but not 16S rRNA. Furthermore, ZmRH3 associated with 50S preribosome particles as well as nucleoids. AtRH3 null mutants are embryo lethal, whereas a weak allele (rh3-4) results in pale-green seedlings with defects in splicing of several group II introns and rRNA maturation as well as reduced levels of assembled ribosomes. These results provide strong evidence that RH3 functions in the splicing of group II introns and possibly also contributes to the assembly of the 50S ribosomal particle. Previously, we observed 5- to 10-fold up-regulation of AtRH3 in plastid Caseinolytic protease mutants. The results shown here indicate that AtRH3 up-regulation was not a direct consequence of reduced proteolysis but constituted a compensatory response at both RH3 transcript and protein levels to impaired chloroplast biogenesis; this response demonstrates that cross talk between the chloroplast and the nucleus is used to regulate RH3 levels.
Collapse
Affiliation(s)
- Yukari Asakura
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
6
|
Srivastava S, Chaudhry V, Mishra A, Chauhan PS, Rehman A, Yadav A, Tuteja N, Nautiyal CS. Gene expression profiling through microarray analysis in Arabidopsis thaliana colonized by Pseudomonas putida MTCC5279, a plant growth promoting rhizobacterium. PLANT SIGNALING & BEHAVIOR 2012; 7:235-45. [PMID: 22353860 PMCID: PMC3405686 DOI: 10.4161/psb.18957] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant growth promotion is a multigenic process under the influence of many factors; therefore an understanding of these processes and the functions regulated may have profound implications. Present study reports microarray analysis of Arabidopsis thaliana plants inoculated with Pseudomonas putida MTCC5279 (MTCC5279) which resulted in significant increase in growth traits as compared with non-inoculated control. The gene expression changes, represented by oligonucleotide array (24652 genes) have been studied to gain insight into MTCC5279 assisted plant growth promotion in Arabidopsis thaliana. MTCC5279 induced upregulated Arabidopsis thaliana genes were found to be involved in maintenance of genome integrity (At5g20850), growth hormone (At3g23890 and At4g36110), amino acid synthesis (At5g63890), abcissic acid (ABA) signaling and ethylene suppression (At2g29090, At5g17850), Ca⁺² dependent signaling (At3g57530) and induction of induced systemic resistance (At2g46370, At2g44840). The genes At3g32920 and At2g15890 which are suggested to act early in petal, stamen and embryonic development are among the downregulated genes. We report for the first time MTCC5279 assisted repression of At3g32920, a putative DNA repair protein involved in recombination and DNA strand transfer in a process of rapid meiotic and mitotic division.
Collapse
Affiliation(s)
| | - Vasvi Chaudhry
- CSIR-National Botanical Research Institute, Lucknow, India
| | | | | | - Ateequr Rehman
- CSIR-National Botanical Research Institute, Lucknow, India
| | - Archana Yadav
- CSIR-National Botanical Research Institute, Lucknow, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | | |
Collapse
|
7
|
Meier I. mRNA export and sumoylation-Lessons from plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:531-7. [PMID: 22306659 DOI: 10.1016/j.bbagrm.2012.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/15/2012] [Accepted: 01/19/2012] [Indexed: 01/22/2023]
Abstract
SUMO is a small ubiquitin-related protein modifier that is involved in a number of biological processes, including transcription, DNA repair, genome stability, and chromatin organization. Its potential role in mRNA biogenesis is less well investigated. The biogenesis of mRNA is closely coupled to transcription as well as mRNA nuclear export and several of the involved proteins have dual roles and appear in several complexes. Recently, SUMO-proteome analyses have discovered a number of these proteins as putative targets of SUMO regulation. In the model plant Arabidopsis thaliana, several mutants as well as environmental conditions have been identified that show a close correlation between over- and under-sumoylation of nuclear proteins and mRNA export retention. Three new plant SUMO-proteome studies add to the list of potentially sumoylated RNA-related proteins. Here, the emerging connection between SUMO and mRNA export is compared across kingdoms and its potential mechanistic role is discussed. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Chen T, Nayak N, Majee SM, Lowenson J, Schäfermeyer KR, Eliopoulos AC, Lloyd TD, Dinkins R, Perry SE, Forsthoefel NR, Clarke SG, Vernon DM, Zhou ZS, Rejtar T, Downie AB. Substrates of the Arabidopsis thaliana protein isoaspartyl methyltransferase 1 identified using phage display and biopanning. J Biol Chem 2010; 285:37281-92. [PMID: 20870712 DOI: 10.1074/jbc.m110.157008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The role of protein isoaspartyl methyltransferase (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of PIMT target proteins in plant seeds, where the enzyme is highly active and proteome long-lived, has been hindered by large amounts of isoaspartate-containing storage proteins. Mature seed phage display libraries circumvented this problem. Inclusion of the PIMT co-substrate, S-adenosylmethionine (AdoMet), during panning permitted PIMT to retain aged phage in greater numbers than controls lacking co-substrate or when PIMT protein binding was poisoned with S-adenosyl homocysteine. After four rounds, phage titer plateaued in AdoMet-containing pans, whereas titer declined in both controls. This strategy identified 17 in-frame PIMT target proteins, including a cupin-family protein similar to those identified previously using on-blot methylation. All recovered phage had at least one susceptible Asp or Asn residue. Five targets were recovered independently. Two in-frame targets were produced in Escherichia coli as recombinant proteins and shown by on-blot methylation to acquire isoAsp, becoming a PIMT target. Both gained isoAsp rapidly in solution upon thermal insult. Mutant analysis of plants deficient in any of three in-frame PIMT targets resulted in demonstrable phenotypes. An over-representation of clones encoding proteins involved in protein production suggests that the translational apparatus comprises a subgroup for which PIMT-mediated repair is vital for orthodox seed longevity. Impaired PIMT activity would hinder protein function in these targets, possibly resulting in poor seed performance.
Collapse
Affiliation(s)
- Tingsu Chen
- Department of Horticulture, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Köhler D, Schmidt-Gattung S, Binder S. The DEAD-box protein PMH2 is required for efficient group II intron splicing in mitochondria of Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2010; 72:459-67. [PMID: 19960362 DOI: 10.1007/s11103-009-9584-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 11/24/2009] [Indexed: 05/04/2023]
Abstract
In Arabidopsis thaliana the putative mitochondrial RNA helicases PMH1 and PMH2 are members of the large DEAD-box protein family. Our previous characterization of these proteins revealed that PMH1 and/or PMH2 are part of high molecular weight complexes. Now T-DNA insertion lines were established and characterized for each of these genes. Immunodetection analysis of cell suspension cultures established from pmh1-1 and pmh2-1 mutants revealed that indeed both DEAD-box proteins are detectable in large protein complexes with PMH2 being much more abundant than PMH1. In plants the knockout of PMH2 leads to reduced group II intron splicing efficiency. In addition the steady-state levels of several mature mitochondrial mRNAs are decreased while transcription is not influenced. This molecular phenotype suggests that PMH2 acts at the posttranscriptional level with a potential function as RNA chaperone required for formation or maintenance of complex RNA secondary structures of introns rather than a direct role in splicing. In contrast, the investigation of a pmh1-1 knockout line did not reveal any influence of this protein on processing and abundance of mitochondrial transcripts.
Collapse
Affiliation(s)
- Daniela Köhler
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | | | | |
Collapse
|
10
|
Chung E, Cho CW, Yun BH, Choi HK, So HA, Lee SW, Lee JH. Molecular cloning and characterization of the soybean DEAD-box RNA helicase gene induced by low temperature and high salinity stress. Gene 2009; 443:91-9. [PMID: 19463922 DOI: 10.1016/j.gene.2009.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/24/2009] [Accepted: 05/09/2009] [Indexed: 10/20/2022]
Abstract
A novel gene encoding a DEAD-box RNA helicase designated as GmRH was isolated from soybean. Amino acid sequence alignment and phylogenetic tree analysis revealed a close relationship between GmRH and other orthologous DEAD-box RNA helicases from other plant species. Structural motif analysis revealed that the bipartite lysine rich nuclear localization signal (NLS) is present in the N-terminal variable region of GmRH and that there are ten conserved motifs found in DEAD-box RNA helicase proteins. Southern blot analysis revealed the presence of 2 copies of GmRH in the soybean genome. Northern blot analysis demonstrated that the RNA expression of the GmRH was induced during low temperature or high salinity stress, but not by the exogenous application of abscisic acid or drought stress. Subcellular localization studies showed that GmRH((1-355))-GFP is localized in the nucleus, whereas GmRH((130-355))-GFP is localized both in the cytoplasm and in the nucleus. This provides the evidence that the N-terminal region predicted as NLS is essential for nuclear targeting of the GmRH protein in the plant cell. Purified GST-GmRH recombinant protein was shown to unwind dsRNA independent of ATP in vitro. Here, we propose that GmRH plays an important role in RNA processing during low temperature and high salinity stresses in plants.
Collapse
Affiliation(s)
- Eunsook Chung
- BK21 Center for Silver-Bio Industrialization, College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Vega-Sánchez ME, Zeng L, Chen S, Leung H, Wang GL. SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice. THE PLANT CELL 2008; 20:1456-69. [PMID: 18586868 PMCID: PMC2483366 DOI: 10.1105/tpc.108.058610] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The rice (Oryza sativa) E3 ligase SPOTTED LEAF11 (SPL11) negatively regulates programmed cell death and disease resistance. We demonstrate here that SPL11 also regulates flowering via interaction with SPIN1 (for SPL11-interacting protein1), a Signal Transduction and Activation of RNA family member. SPIN1 binds RNA and DNA in vitro and interacts with SPL11 in the nucleus. Spl11 mutants have delayed flowering under long-day conditions. Spin1 overexpression causes late flowering independently of daylength; expression analyses of flowering marker genes in these lines suggested that SPIN1 represses flowering by downregulating the flowering promoter gene Heading date3a (Hd3a) via Hd1-dependent mechanisms in short days and by targeting Hd1-independent factors in long days. Both Spin1 and Spl11 are regulated diurnally in opposing phases. SPL11 negatively regulates Spin1 transcript levels, while SPIN1 also affects Spl11 expression. Moreover, we show that coincidence of high accumulation of Spin1 mRNA with the light in the morning and early evening is needed to repress flowering. SPIN1 is monoubiquitinated by SPL11, suggesting that it is not targeted for degradation. Our data are consistent with a model in which SPIN1 acts as a negative regulator of flowering that itself is negatively regulated by SPL11, possibly via ubiquitination.
Collapse
Affiliation(s)
- Miguel E Vega-Sánchez
- Department of Plant Pathology, Plant Molecular Biology and Biotechnology Program, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
12
|
Matthes A, Schmidt-Gattung S, Köhler D, Forner J, Wildum S, Raabe M, Urlaub H, Binder S. Two DEAD-box proteins may be part of RNA-dependent high-molecular-mass protein complexes in Arabidopsis mitochondria. PLANT PHYSIOLOGY 2007; 145:1637-46. [PMID: 17951454 PMCID: PMC2151684 DOI: 10.1104/pp.107.108076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 10/05/2007] [Indexed: 05/18/2023]
Abstract
Posttranscriptional processes are important for regulation of gene expression in plant mitochondria. DEAD-box proteins, which form a huge protein family with members from all kingdoms, are fundamental components in virtually all types of processes in RNA metabolism. Two members of this protein family, designated PMH1 and PMH2 (for PUTATIVE MITOCHONDRIAL RNA HELICASE), were analyzed and characterized in mitochondria of Arabidopsis (Arabidopsis thaliana). Green fluorescent protein tagging with N-terminal PMH1 and PMH2 sequences supports the mitochondrial localization of these proteins. Northern experiments, as well as histochemical beta-glucuronidase staining of transgenic plants carrying respective promoter:beta-glucuronidase fusion constructs, revealed differing transcription patterns for the two genes. In response to cold, however, transcript levels of both genes increased. Immunodetection analyses of mitochondrial protein complexes after two-dimensional blue native/urea SDS-PAGE and after fractionation on sucrose gradients strongly suggest that one or both proteins are part of RNA-dependent complexes. Cold treatment of cell cultures or solubilization of mitochondria in the presence of MgCl(2) favored the detection of high-molecular-mass complexes. This study paves the way for detailed analysis of high-molecular-mass complexes in mitochondria of higher plants.
Collapse
|
13
|
Saha D, Prasad AM, Srinivasan R. Pentatricopeptide repeat proteins and their emerging roles in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:521-34. [PMID: 17560114 DOI: 10.1016/j.plaphy.2007.03.026] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 03/21/2007] [Indexed: 05/15/2023]
Abstract
Several protein families with tandem repeat motifs play a very important role in plant development and defense. The pentatricopeptide repeat (PPR) protein family, one of the largest families, is the most perplexing one in plants. PPR proteins have been implicated in many crucial functions broadly involving organelle biogenesis and plant development. PPR motifs are degenerate motifs, each with 35-amino-acid sequences and are present in tandem arrays of 2-27 repeats per protein. Although PPR proteins are found in other eukaryotes, their large number is probably required in plants to meet the specific needs of organellar gene expression. The repeats of PPR proteins form a superhelical structure to bind a specific ligand, probably a single-stranded RNA molecule, and modulate its expression. Functional studies on different PPR proteins have revealed their role in organellar RNA processing, fertility restoration in CMS plants, embryogenesis, and plant development. Functional genomic techniques can help identify the diverse roles of the PPR family of proteins in nucleus-organelle interaction and in plant development.
Collapse
Affiliation(s)
- D Saha
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi 110012, India
| | | | | |
Collapse
|
14
|
Grohman JK, Campo MD, Bhaskaran H, Tijerina P, Lambowitz AM, Russell R. Probing the mechanisms of DEAD-box proteins as general RNA chaperones: the C-terminal domain of CYT-19 mediates general recognition of RNA. Biochemistry 2007; 46:3013-22. [PMID: 17311413 PMCID: PMC2271177 DOI: 10.1021/bi0619472] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DEAD-box protein CYT-19 functions in the folding of several group I introns in vivo and a diverse set of group I and group II RNAs in vitro. Recent work using the Tetrahymena group I ribozyme demonstrated that CYT-19 possesses a second RNA-binding site, distinct from the unwinding active site, which enhances unwinding activity by binding nonspecifically to the adjacent RNA structure. Here, we probe the region of CYT-19 responsible for that binding by constructing a C-terminal truncation variant that lacks 49 amino acids and terminates at a domain boundary, as defined by limited proteolysis. This truncated protein unwinds a six-base-pair duplex, formed between the oligonucleotide substrate of the Tetrahymena ribozyme and an oligonucleotide corresponding to the internal guide sequence of the ribozyme, with near-wild-type efficiency. However, the truncated protein is activated much less than the wild-type protein when the duplex is covalently linked to the ribozyme or single-stranded or double-stranded extensions. Thus, the active site for RNA unwinding remains functional in the truncated CYT-19, but the site that binds the adjacent RNA structure has been compromised. Equilibrium binding experiments confirmed that the truncated protein binds RNA less tightly than the wild-type protein. RNA binding by the compromised site is important for chaperone activity, because the truncated protein is less active in facilitating the folding of a group I intron that requires CYT-19 in vivo. The deleted region contains arginine-rich sequences, as found in other RNA-binding proteins, and may function by tethering CYT-19 to structured RNAs, so that it can efficiently disrupt exposed, non-native structural elements, allowing them to refold. Many other DExD/H-box proteins also contain arginine-rich ancillary domains, and some of these domains may function similarly as nonspecific RNA-binding elements that enhance general RNA chaperone activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Rick Russell
- *To whom correspondence should be addressed. Tel: 512-471-1514; Fax: 512-232-3432; E-mail:
| |
Collapse
|
15
|
Vashisht AA, Tuteja N. Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 84:150-60. [PMID: 16624568 DOI: 10.1016/j.jphotobiol.2006.02.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
Abiotic stresses including various environmental factors adversely affect plant growth and limit agricultural production worldwide. Minimizing these losses is a major area of concern for all countries. Therefore, it is desirable to develop multi-stress tolerant varieties. Salinity, drought, and cold are among the major environmental stresses that greatly influence the growth, development, survival, and yield of plants. UV-B radiation of sunlight, which damages the cellular genomes, is another growth-retarding factor. Several genes are induced under the influence of various abiotic stresses. Among these are DNA repair genes, which are induced in response to the DNA damage. Since the stresses affect the cellular gene expression machinery, it is possible that molecules involved in nucleic acid metabolism including helicases are likely to be affected. The light-driven shifts in redox-potential can also initiate the helicase gene expression. Helicases are ubiquitous enzymes that catalyse the unwinding of energetically stable duplex DNA (DNA helicases) or duplex RNA secondary structures (RNA helicases). Most helicases are members of DEAD-box protein superfamily and play essential roles in basic cellular processes such as DNA replication, repair, recombination, transcription, ribosome biogenesis and translation initiation. Therefore, helicases might be playing an important role in regulating plant growth and development under stress conditions by regulating some stress-induced pathways. There are now few reports on the up-regulation of DEAD-box helicases in response to abiotic stresses. Recently, salinity-stress tolerant tobacco plants have already been raised by overexpressing a helicase gene, which suggests a new pathway to engineer plant stress tolerance [N. Sanan-Mishra, X.H. Pham, S.K. Sopory, N. Tuteja, Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc. Natl. Acad. Sci. USA 102 (2005) 509-514]. Presently the exact mechanism of helicase-mediated stress tolerance is not understood. In this review we have described all the reported stress-induced helicases and also discussed the possible mechanisms by which they can provide stress tolerance.
Collapse
Affiliation(s)
- Ajay Amar Vashisht
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
16
|
Cordin O, Banroques J, Tanner NK, Linder P. The DEAD-box protein family of RNA helicases. Gene 2005; 367:17-37. [PMID: 16337753 DOI: 10.1016/j.gene.2005.10.019] [Citation(s) in RCA: 730] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 10/11/2005] [Accepted: 10/15/2005] [Indexed: 11/24/2022]
Abstract
RNA helicases of the DEAD-box protein family have been shown to participate in every aspect of RNA metabolism. They are present in most organisms where they work as RNA helicases or RNPases. The properties of these enzymes in vivo remains poorly described, however some were extensively characterized in vitro, and the solved crystal structures of a few are now available. Taken together, this information gives insight into the regulation of ATP and RNA binding as well as in the ATPase and helicase activities. This review will focus on the description of the molecular characteristics of members of the DEAD-box protein family and on the enzymatic activities they possess.
Collapse
Affiliation(s)
- Olivier Cordin
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, 1 rue Michel Servet, 1211, Genève 4, Switzerland
| | | | | | | |
Collapse
|
17
|
Lorkovic ZJ, Lopato S, Pexa M, Lehner R, Barta A. Interactions of Arabidopsis RS domain containing cyclophilins with SR proteins and U1 and U11 small nuclear ribonucleoprotein-specific proteins suggest their involvement in pre-mRNA Splicing. J Biol Chem 2004; 279:33890-8. [PMID: 15166240 DOI: 10.1074/jbc.m400270200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ser/Arg (SR)-rich proteins are important splicing factors in both general and alternative splicing. By binding to specific sequences on pre-mRNA and interacting with other splicing factors via their RS domain they mediate different intraspliceosomal contacts, thereby helping in splice site selection and spliceosome assembly. While characterizing new members of this protein family in Arabidopsis, we have identified two proteins, termed CypRS64 and CypRS92, consisting of an N-terminal peptidyl-prolyl cis/trans isomerase domain and a C-terminal domain with many SR/SP dipeptides. Cyclophilins possess a peptidyl-prolyl cis/trans isomerase activity and are implicated in protein folding, assembly, and transport. CypRS64 interacts in vivo and in vitro with a subset of Arabidopsis SR proteins, including SRp30 and SRp34/SR1, two homologs of mammalian SF2/ASF, known to be important for 5' splice site recognition. In addition, both cyclophilins interact with U1-70K and U11-35K, which in turn are binding partners of SRp34/SR1. CypRS64 is a nucleoplasmic protein, but in most cells expressing CypRS64-GFP fusion it was also found in one to six round nuclear bodies. However, co-expression of CypRS64 with its binding partners resulted in re-localization of CypRS64 from the nuclear bodies to nuclear speckles, indicating functional interactions. These findings together with the observation that binding of SRp34/SR1 to CypRS64 is phosphorylation-dependent indicate an involvement of CypRS64 in nuclear pre-mRNA splicing, possibly by regulating phosphorylation/dephosphorylation of SR proteins and other spliceosomal components. Alternatively, binding of CypRS64 to proteins important for 5' splice site recognition suggests its involvement in the dynamics of spliceosome assembly.
Collapse
Affiliation(s)
- Zdravko J Lorkovic
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9/3, A-1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
18
|
Abstract
DNA helicases are molecular 'motor' enzymes that use the energy of NTP hydrolysis to separate transiently energetically stable duplex DNA into single strands. They are therefore essential in nearly all DNA metabolic transactions. They act as essential molecular tools for the cellular machinery. Since the discovery of the first DNA helicase in Escherichia coli in 1976, several have been isolated from both prokaryotic and eukaryotic systems. DNA helicases generally bind to ssDNA or ssDNA/dsDNA junctions and translocate mainly unidirectionally along the bound strand and disrupt the hydrogen bonds between the duplexes. Most helicases contain conserved motifs which act as an engine to drive DNA unwinding. Crystal structures have revealed an underlying common structural fold for their function. These structures suggest the role of the helicase motifs in catalytic function and offer clues as to how these proteins can translocate and unwind DNA. The genes containing helicase motifs may have evolved from a common ancestor. In this review we cover the conserved motifs, structural information, mechanism of DNA unwinding and translocation, and functional aspects of DNA helicases.
Collapse
Affiliation(s)
- Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| | | |
Collapse
|
19
|
Lorković ZJ, Hilscher J, Barta A. Use of fluorescent protein tags to study nuclear organization of the spliceosomal machinery in transiently transformed living plant cells. Mol Biol Cell 2004; 15:3233-43. [PMID: 15133128 PMCID: PMC452579 DOI: 10.1091/mbc.e04-01-0055] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 04/29/2004] [Indexed: 01/24/2023] Open
Abstract
Although early studies suggested that little compartmentalization exists within the nucleus, more recent studies on metazoan systems have identified a still increasing number of specific subnuclear compartments. Some of these compartments are dynamic structures; indeed, protein and RNA-protein components can cycle between different domains. This is particularly evident for RNA processing components. In plants, lack of tools has hampered studies on nuclear compartmentalization and dynamics of RNA processing components. Here, we show that transient expression of fluorescent protein fusions of U1 and U2 small nuclear ribonucleoprotein particle (snRNP)-specific proteins U1-70K, U2B", and U2A ', nucleolar proteins Nop10 and PRH75, and serine-arginine-rich proteins in plant protoplasts results in their correct localization. Furthermore, snRNP-specific proteins also were correctly assembled into mature snRNPs. This system allowed a systematic analysis of the cellular localization of Arabidopsis serine-arginine-rich proteins, which, like their animal counterparts, localize to speckles but not to nucleoli and Cajal bodies. Finally, markers for three different nuclear compartments, namely, nucleoli, Cajal bodies, and speckles, have been established and were shown to be applicable for colocalization studies in living plant protoplasts. Thus, transient expression of proteins tagged with four different fluorescent proteins is a suitable system for studying the nuclear organization of spliceosomal proteins in living plant cells and should therefore allow studies of their dynamics as well.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Cell Nucleolus/immunology
- Cell Nucleolus/metabolism
- Cell Nucleolus/ultrastructure
- Cell Nucleus Structures/chemistry
- Chloroplasts/metabolism
- Coiled Bodies/metabolism
- Luminescent Proteins/analysis
- Luminescent Proteins/genetics
- Microscopy, Fluorescence
- Nuclear Proteins/analysis
- Nuclear Proteins/metabolism
- Phosphoproteins/analysis
- Phosphoproteins/metabolism
- Plant Proteins/analysis
- Protoplasts/metabolism
- RNA-Binding Proteins
- Ribonucleoprotein, U1 Small Nuclear/analysis
- Ribonucleoprotein, U1 Small Nuclear/genetics
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Ribonucleoprotein, U2 Small Nuclear/analysis
- Ribonucleoprotein, U2 Small Nuclear/genetics
- Ribonucleoprotein, U2 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/analysis
- Ribonucleoproteins, Small Nuclear/metabolism
- Serine-Arginine Splicing Factors
- Spliceosomes/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
- Transformation, Genetic
Collapse
Affiliation(s)
- Zdravko J Lorković
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Institute of Medical Biochemistry, 1030 Vienna, Austria.
| | | | | |
Collapse
|
20
|
Yang L, Yang J, Huang Y, Liu ZR. Phosphorylation of p68 RNA helicase regulates RNA binding by the C-terminal domain of the protein. Biochem Biophys Res Commun 2004; 314:622-30. [PMID: 14733953 DOI: 10.1016/j.bbrc.2003.12.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We previously reported ATPase, RNA unwinding, and RNA-binding activities of recombinant p68 RNA helicase that was expressed in Escherichia coli. Huang et al. The recombinant protein bound both single-stranded (ss) and double-stranded (ds) RNAs. To further characterize the substrate RNA binding by p68 RNA helicase, we expressed and purified the recombinant N-terminal and C-terminal domains of the protein. RNA-binding property and protein phosphorylation of the recombinant domains of p68 were analyzed. Our data demonstrated that the C-terminal domain of p68 RNA helicase bound ssRNA. More interestingly, the C-terminal domain was a target of protein kinase C (PKC). Phosphorylation of the C-terminal domain of p68 abolished its RNA binding. Based on our observations, we propose that the C-terminal domain is an RNA substrate binding site for p68. The protein phosphorylation by PKC regulates the RNA binding of p68 RNA helicase, which consequently controls the enzymatic activities of the protein.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | |
Collapse
|
21
|
Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci U S A 2002; 99:11507-12. [PMID: 12165572 PMCID: PMC123286 DOI: 10.1073/pnas.172399299] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Susceptibility to chilling injury prevents the cultivation of many important crops and limits the extended storage of horticultural commodities. Although freezing tolerance is acquired through cold-induced gene expression changes mediated in part by the CBF family of transcriptional activators, whether plant chilling resistance or sensitivity involves the CBF genes is not known. We report here that an Arabidopsis thaliana mutant impaired in the cold-regulated expression of CBF genes and their downstream target genes is sensitive to chilling stress. Expression of CBF3 under a strong constitutive promoter restores chilling resistance to the mutant plants. The mutated gene was cloned and found to encode a nuclear localized RNA helicase. Our results identify a regulator of CBF genes, and demonstrate the importance of gene regulation and the CBF transcriptional activators in plant chilling resistance.
Collapse
Affiliation(s)
- Zhizhong Gong
- Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | |
Collapse
|
22
|
Huang Y, Liu ZR. The ATPase, RNA unwinding, and RNA binding activities of recombinant p68 RNA helicase. J Biol Chem 2002; 277:12810-5. [PMID: 11823473 DOI: 10.1074/jbc.m200182200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p68 RNA helicase, a nuclear RNA helicase, was identified 2 decades ago. The protein plays very important roles in cell development and organ maturation. However, the biological functions and enzymology of p68 RNA helicase are not well characterized. We report the expression and purification of recombinant p68 RNA helicase in a bacterial system. The recombinant p68 is an ATP-dependent RNA helicase. ATPase assays demonstrated that double-stranded RNA (dsRNA) is much more effective than single-stranded RNA in stimulating ATP hydrolysis by the recombinant protein. Consistently, RNA-binding assays showed that p68 RNA helicase binds single-stranded RNA weakly in an ATP-dependent manner. On the other hand, the recombinant protein has very high affinity for dsRNA. Binding of the protein to dsRNA is ATP-independent. The data indicate that p68 may directly target dsRNA as its natural substrate. Interestingly, the recombinant p68 RNA helicase unwinds dsRNA in both 3' --> 5' and 5' --> 3' directions. This is the second example of a Asp-Glu-Ala-Asp (DEAD) box RNA helicase that unwinds RNA duplexes in a bi-directional manner.
Collapse
Affiliation(s)
- Youliang Huang
- Program in Cell and Molecular Biosciences, Department of Animal and Dairy Sciences, Auburn University, 210 Upchurch Hall, Auburn, Alabama 36849, USA
| | | |
Collapse
|
23
|
Valdez BC, Yang H, Hong E, Sequitin AM. Genomic structure of newly identified paralogue of RNA helicase II/Gu: detection of pseudogenes and multiple alternatively spliced mRNAs. Gene 2002; 284:53-61. [PMID: 11891046 DOI: 10.1016/s0378-1119(01)00888-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA helicase II/Gu (RH-II/Gu or DDX21) is a DEAD-box enzyme that localizes to the nucleoli and may be involved in ribosomal RNA synthesis or processing. It has two paralogues, RH-II/Gualpha and RH-II/Gubeta, both genes of which are on chromosome 10. Their similar genomic structures suggest the two genes arose by gene duplication. Both genes are expressed at higher levels in some normal human tissues compared to matching tumor tissues. Pseudogenes for RH-II/Gubeta exist on chromosomes 2, 3 and 4. No pseudogene was identified for RH-II/Gualpha. Both exon inclusion and exon skipping were found to post-transcriptionally regulate RH-II/Gubeta gene expression. No alternative splicing was identified for RH-II/Gualpha. Overall, the results suggest that the two paralogues of RH-II/Gu arose by gene duplication but the resulting genes are differentially regulated.
Collapse
Affiliation(s)
- Benigno C Valdez
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
24
|
Li SC, Chung MC, Chen CS. Cloning and characterization of a DEAD box RNA helicase from the viable seedlings of aged mung bean. PLANT MOLECULAR BIOLOGY 2001; 47:761-70. [PMID: 11785937 DOI: 10.1023/a:1013687412020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Seeds stored under adverse conditions will reduce the viability of germination as a result of induced aging. We have established a procedure to induce accelerated aging for studying the process of aging in mung bean (Vigna radiata) seeds at the molecular level. A full-length cDNA was isolated from acceleratedly aged mung bean seedlings. The cDNA, VrRH1 (Vigna radiata RNA helicase 1), contains an open reading frame of 2139 bp encoding a protein of 713 amino acids. VrRHI has seven highly conserved motifs including the DEAD box as in the case of other plant RNA helicases. VrRHI was sub-cloned into an expression vector pET-28b (+), over-expressed in Escherichia coli BL 21 and purified by a Ni2+-agarose column. The expressed protein showed double-stranded RNA unwinding and ATPase activities. Either ATP or dATP is required for the unwinding activity, indicating that VrRHI is an ATP/dATP-dependent RNA helicase. Northern blot analysis showed the presence of mRNAs hybridized with a full-length cDNA fragment of VrRHI (VrRH transcripts) in mung bean seeds that were imbibed for 16 to 32 h after accelerated aging treatment. The amount of these mRNAs reached a maximum in 24 h imbibed seeds after the treatment. The accumulation of VrRH transcripts was shown to lead to the appearance of 25S and 18S rRNAs in the imbibed aging mung bean seeds. The results suggest that VrRHI may play a role in the viability of mung bean seeds.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Amino Acid Motifs/genetics
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Electrophoresis, Polyacrylamide Gel
- Fabaceae/enzymology
- Fabaceae/genetics
- Fabaceae/growth & development
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plants/enzymology
- Plants/genetics
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- S C Li
- Graduate Institute of Agricultural Chemistry, National Taiwan University, Taipei
| | | | | |
Collapse
|
25
|
Takaku H, Mutoh E, Horiuchi H, Ohta A, Takagi M. Ray38p, a homolog of a purine motif triple-helical DNA-binding protein, Stm1p, is a ribosome-associated protein and dissociated from ribosomes prior to the induction of cycloheximide resistance in Candida maltosa. Biochem Biophys Res Commun 2001; 284:194-202. [PMID: 11374890 DOI: 10.1006/bbrc.2001.4951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cycloheximide (CYH) resistance in Candida maltosa is dependent on the induction of a ribosomal protein, Q-type L41, the 56th residue of which is glutamine, not proline as in ordinary P-type L41. We found that a 38-kDa protein in a wild-type C. maltosa ribosomal fraction became undetectable upon CYH treatment but detectable again with the establishment of CYH resistance by the induction of Q-type L41. We cloned a gene coding for this protein and named it RAY38 (ribosome-associated protein of yeast). Ray38p is a homolog of a purine motif triple-helical DNA-binding protein, Stm1p, and has a putative RNA-binding motif RGG. The ribosome-associated Ray38p was phosphorylated at serine and threonine residues, and Ray38p that was dissociated from ribosome by CYH treatment was highly phosphorylated in threonine residues. A ray38 null mutant recovered faster from CYH-caused growth stasis than the wild-type strain, suggesting that the dissociation of Ray38p from ribosome facilitates the induction of CYH resistance in C. maltosa.
Collapse
Affiliation(s)
- H Takaku
- Department of Biotechnology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | |
Collapse
|
26
|
Yu E, Owttrim GW. Characterization of the cold stress-induced cyanobacterial DEAD-box protein CrhC as an RNA helicase. Nucleic Acids Res 2000; 28:3926-34. [PMID: 11024172 PMCID: PMC110790 DOI: 10.1093/nar/28.20.3926] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2000] [Revised: 08/23/2000] [Accepted: 08/23/2000] [Indexed: 11/14/2022] Open
Abstract
We have shown previously that CrhC is a unique member of the DEAD-box family of RNA helicases whose expression occurs specifically under conditions of cold stress. Here we show that recombinant His-tagged CrhC, purified from Escherichia coli, is an ATP-independent RNA binding protein possessing RNA-dependent ATPase activity which is stimulated most efficiently by rRNA and polysome preparations. RNA strand displacement assays indicate that CrhC possesses RNA unwinding activity that is adenosine nucleotide specific. Unwinding of partially duplexed RNA proceeds in the 5'-->3' but not the 3'-->5' direction using standard assay conditions. Immunoprecipitation and far-western analysis indicate that CrhC is a component of a multisubunit complex, interacting specifically with a 37 kDa polypeptide. We propose that CrhC unwinds cold-stabilized secondary structure in the 5'-UTR of RNA during cold stress.
Collapse
Affiliation(s)
- E Yu
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | |
Collapse
|
27
|
Lahmy S, Barnèche F, Derancourt J, Filipowicz W, Delseny M, Echeverria M. A chloroplastic RNA-binding protein is a new member of the PPR family. FEBS Lett 2000; 480:255-60. [PMID: 11034340 DOI: 10.1016/s0014-5793(00)01935-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
P67, a new protein binding to a specific RNA probe, was purified from radish seedlings [Echeverria, M. and Lahmy, S. (1995) Nucleic Acids Res. 23, 4963-4970]. Amino acid sequence information obtained from P67 microsequencing allowed the isolation of genes encoding P67 in radish and Airabidopsis thaliana. Immunolocalisation experiments in transfected protoplasts demonstrated that this protein is addressed to the chloroplast. The RNA-binding activity of recombinant P67 was found to be similar to that of the native protein. A significant similarity with the maize protein CRP1 [Fisk, D.G., Walker, M.B. and Barkan, A. (1999) EMBO J. 18, 2621-2630] suggests that P67 belongs to the PPR family and could be involved in chloroplast RNA processing.
Collapse
Affiliation(s)
- S Lahmy
- Laboratoire Génome et Développement des Plantes', Université de Perpignan UMR CNRS 5096, France
| | | | | | | | | | | |
Collapse
|
28
|
You LR, Chen CM, Yeh TS, Tsai TY, Mai RT, Lin CH, Lee YH. Hepatitis C virus core protein interacts with cellular putative RNA helicase. J Virol 1999; 73:2841-53. [PMID: 10074132 PMCID: PMC104042 DOI: 10.1128/jvi.73.4.2841-2853.1999] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nucleocapsid core protein of hepatitis C virus (HCV) has been shown to trans-act on several viral or cellular promoters. To get insight into the trans-action mechanism of HCV core protein, a yeast two-hybrid cloning system was used for identification of core protein-interacting cellular protein. One such cDNA clone encoding the DEAD box family of putative RNA helicase was obtained. This cellular putative RNA helicase, designated CAP-Rf, exhibits more than 95% amino acid sequence identity to other known RNA helicases including human DBX and DBY, mouse mDEAD3, and PL10, a family of proteins generally involved in translation, splicing, development, or cell growth. In vitro binding or in vivo coimmunoprecipitation studies demonstrated the direct interaction of the full-length/matured form and C-terminally truncated variants of HCV core protein with this targeted protein. Additionally, the protein's interaction domains were delineated at the N-terminal 40-amino-acid segment of the HCV core protein and the C-terminal tail of CAP-Rf, which encompassed its RNA-binding and ATP hydrolysis domains. Immunoblotting or indirect immunofluorescence analysis revealed that the endogenous CAP-Rf was mainly localized in the nucleus and to a lesser extent in the cytoplasm, and when fused with FLAG tag, it colocalized with the HCV core protein either in the cytoplasm or in the nucleus. Similar to other RNA helicases, this cellular RNA helicase has nucleoside triphosphatase-deoxynucleoside triphosphatase activity, but this activity is inhibited by various forms of homopolynucleotides and enhanced by the HCV core protein. Moreover, transient expression of HCV core protein in human hepatoma HuH-7 cells significantly potentiated the trans-activation effect of FLAG-tagged CAP-Rf or untagged CAP-Rf on the luciferase reporter plasmid activity. All together, our results indicate that CAP-Rf is involved in regulation of gene expression and that HCV core protein promotes the trans-activation ability of CAP-Rf, likely via the complex formation and the modulation of the ATPase-dATPase activity of CAP-Rf. These findings provide evidence that HCV may have evolved a distinct mechanism in alteration of host cellular gene expression regulation via the interaction of its nucleocapsid core protein and cellular putative RNA helicase known to participate in all aspects of cellular processes involving RNA metabolism. This feature of core protein may impart pleiotropic effects on host cells, which may partially account for its role in HCV pathogenesis.
Collapse
Affiliation(s)
- L R You
- Institute of Biochemistry, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Aubourg S, Kreis M, Lecharny A. The DEAD box RNA helicase family in Arabidopsis thaliana. Nucleic Acids Res 1999; 27:628-36. [PMID: 9862990 PMCID: PMC148225 DOI: 10.1093/nar/27.2.628] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The numerous genomic sequences and ESTs released by the Arabidopsis thaliana Genome Initiative (AGI) have allowed a systematic and functional study of the DEAD box RNA helicase family. Sequencing and in silico analysis led to the characterization of 28 novel A. thaliana DEAD box RNA helicases forming a family of 32 members, named AtRH. Fourteen AtRH genes with an unexpected heterogeneous mosaic structure are described and compared bringing new information about the genesis of the gene family. The mapping of the AtRH genes shows their repartition on the five chromosomes without clustering and therefore AtRH s have been estimated to 60 genes per A.thaliana haploid genome. Sequence comparisons revealed a very conserved catalytic central domain flanked or not by four classes of extensions in the N- and/or C- extremities. The global amino acid composition of the extensions are tentatively correlated to specific functions such as targeting, protein interaction or RNA binding. The expression of the 32 AtRH genes has been recorded in different tissues. Separate patterns of expression and alternative polyadenylation sites have been shown. Based on the integration of all this information, we propose a classification of the AtRH proteins into subfamilies with associated functions.
Collapse
Affiliation(s)
- S Aubourg
- Institut de Biotechnologie des Plantes, Laboratoire de Biologie du Développement des Plantes, Bâtiment 630, Université de Paris-Sud-ERS/CNRS 569, F-91405 Orsay Cedex, France
| | | | | |
Collapse
|
30
|
Okanami M, Meshi T, Iwabuchi M. Characterization of a DEAD box ATPase/RNA helicase protein of Arabidopsis thaliana. Nucleic Acids Res 1998; 26:2638-43. [PMID: 9592148 PMCID: PMC147611 DOI: 10.1093/nar/26.11.2638] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have isolated cDNAs encoding a novel member of the DEAD box RNA helicase family from Arabidopsis. The protein, named AtDRH1, is composed of 619 amino acids and the central portion has high similarity with the helicase core region of a prototypic RNA helicase, the human nuclear protein p68. The N- and C-terminal regions are considerably diverged from the animal and yeast p68 homologs at the amino acid sequence level, but like the p68 subfamily members, an RGG box-like domain is present near the C-terminus. RNA blot analysis showed that the AtDRH1 transcript accumulates at a high level and almost equally in every part of the Arabidopsis plant. The purified, recombinant AtDRH1 was capable of unwinding double-stranded RNA in the presence of ATP or dATP and of hydrolyzing ATP. The ATPase activity was stimulated by some single-stranded RNAs and DNAs, including poly(A) and poly(dT), but not by poly(dA). The ability of the polynucleotides to stimulate the ATPase activity was largely consistent with their affinity for AtDRH1. These results show that AtDRH1 is a novel type of ATP/dATP-dependent RNA helicase and polynucleotide-dependent ATPase.
Collapse
Affiliation(s)
- M Okanami
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|