1
|
Bermúdez I, García-Martínez J, Pérez-Ortín JE, Roca J. A method for genome-wide analysis of DNA helical tension by means of psoralen-DNA photobinding. Nucleic Acids Res 2010; 38:e182. [PMID: 20685815 PMCID: PMC2965259 DOI: 10.1093/nar/gkq687] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The helical tension of chromosomal DNA is one of the epigenetic landmarks most difficult to examine experimentally. The occurrence of DNA crosslinks mediated by psoralen photobinding (PB) stands as the only suitable probe for assessing this problem. PB is affected by chromatin structure when is done to saturation; but it is mainly determined by DNA helical tension when it is done to very low hit conditions. Hence, we developed a method for genome-wide analysis of DNA helical tension based on PB. We adjusted in vitro PB conditions that discern DNA helical tension and applied them to Saccharomyces cerevisiae cells. We selected the in vivo cross-linked DNA sequences and identified them on DNA arrays. The entire procedure was robust. Comparison of PB obtained in vivo with that obtained in vitro with naked DNA revealed that numerous chromosomal regions had deviated PB values. Similar analyses in yeast topoisomerase mutants uncovered further PB alterations across specific chromosomal domains. These results suggest that distinct chromosome compartments might confine different levels of DNA helical tension in yeast. Genome-wide analysis of psoralen–DNA PB can be, therefore, a useful approach to uncover a trait of the chromosome architecture not amenable to other techniques.
Collapse
Affiliation(s)
- Ignacio Bermúdez
- Instituto de Biología Molecular de Barcelona-CSIC, Barcelona, Laboratorio de Chips de DNA-SCSIE Universitat de València, Burjassot, Spain
| | | | | | | |
Collapse
|
2
|
The functional response of upstream DNA to dynamic supercoiling in vivo. Nat Struct Mol Biol 2008; 15:146-54. [PMID: 18193062 DOI: 10.1038/nsmb.1372] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 11/09/2007] [Indexed: 11/08/2022]
Abstract
Because RNA polymerase is a powerful motor, transmission of transcription-generated forces might directly alter DNA structure, chromatin or gene activity in mammalian cells. Here we show that transcription-generated supercoils streaming dynamically from active promoters have considerable consequences for DNA structure and function in cells. Using a tamoxifen-activatable Cre recombinase to excise a test segment of chromatin positioned between divergently transcribed metallothionein-IIa promoters, we found the degree of dynamic supercoiling to increase as transcription intensified, and it was very sensitive to the specific arrangement of promoters and cis elements. Using psoralen as an in vivo probe confirmed that, during transcription, sufficient supercoiling is produced to enable transitions to conformations other than B-DNA in elements such as the human MYC far upstream element (FUSE), which in turn recruit structure-sensitive regulatory proteins, such as FUSE Binding Protein (FBP) and FBP-Interacting Repressor (FIR). These results indicate that mechanical stresses, constrained by architectural features of DNA and chromatin, may broadly contribute to gene regulation.
Collapse
|
3
|
Shklover J, Etzioni S, Weisman-Shomer P, Yafe A, Bengal E, Fry M. MyoD uses overlapping but distinct elements to bind E-box and tetraplex structures of regulatory sequences of muscle-specific genes. Nucleic Acids Res 2007; 35:7087-95. [PMID: 17942416 PMCID: PMC2175354 DOI: 10.1093/nar/gkm746] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Muscle differentiation and expression of muscle-specific proteins are initiated by the binding of heterodimers of the transcription factor MyoD with E2A proteins to E-box motif d(CANNTG) in promoters or enhancers of muscle-specific genes. MyoD homodimers, however, form tighter complexes with tetraplex structures of guanine-rich regulatory sequences of some muscle genes. In this work, we identified elements in MyoD that bind E-box or tetraplex structures of promoter sequences of the muscle-specific genes α7 integrin and sarcomeric Mitochondrial Creatine Kinase (sMtCK). Deletions of large domains of the 315 amino acids long recombinant MyoD indicated that the binding site for both E-box and tetraplex DNA is its basic region KRKTTNADRRKAATMRERRR that encompasses the three underlined clusters of basic residues designated R1, R2 and R3. Deletion of a single or pairs of R triads or R111C substitution completely abolished the E-box-binding capacity of MyoD. By contrast, the MyoD deletion mutants Δ102–114, ΔR3, ΔR1R3 or ΔR2R3 maintained comparable tetraplex DNA-binding capacity as reflected by the similar dissociation constants of their protein–DNA complexes. Only deletion of all three basic clusters abolished the binding of tetraplex DNA. Implications of the binding of E-box and tetraplex DNA by non-identical MyoD elements are considered.
Collapse
Affiliation(s)
- Jeny Shklover
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, POB 9649 Bat Galim, Haifa 31096, Israel
| | | | | | | | | | | |
Collapse
|
4
|
Dexheimer TS, Sun D, Hurley LH. Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter. J Am Chem Soc 2006; 128:5404-15. [PMID: 16620112 PMCID: PMC2580050 DOI: 10.1021/ja0563861] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The human bcl-2 gene contains a GC-rich region upstream of the P1 promoter that has been shown to be critically involved in the regulation of bcl-2 gene expression. We have demonstrated that the guanine-rich strand of the DNA in this region can form any one of three distinct intramolecular G-quadruplex structures. Mutation and deletion analysis permitted isolation and identification of three overlapping DNA sequences within this element that formed the three individual G-quadruplexes. Each of these was characterized using nondenaturing gel analysis, DMS footprinting, and circular dichroism. The central G-quadruplex, which is the most stable, forms a mixed parallel/antiparallel structure consisting of three tetrads connected by loops of one, seven, and three bases. Three different G-quadruplex-interactive agents were found to further stabilize these structures, with individual selectivity toward one or more of these G-quadruplexes. Collectively, these results suggest that the multiple G-quadruplexes identified in the promoter region of the bcl-2 gene are likely to play a similar role to the G-quadruplexes in the c-myc promoter in that their formation could serve to modulate gene transcription. Last, we demonstrate that the complexity of the G-quadruplexes in the bcl-2 promoter extends beyond the ability to form any one of three separate G-quadruplexes to each having the capacity to form either three or six different loop isomers. These results are discussed in relation to the biological significance of this G-quadruplex-forming element in modulation of bcl-2 gene expression and the inherent complexity of the system where different G-quadruplexes and loop isomers are possible.
Collapse
Affiliation(s)
| | - Daekyu Sun
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Laurence H. Hurley
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721
- Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, Arizona 85724
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
5
|
Bash R, Lohr D. Yeast chromatin structure and regulation of GAL gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:197-259. [PMID: 11008489 DOI: 10.1016/s0079-6603(00)65006-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Yeast genomic DNA is covered by nucleosome cores spaced by short, discrete length linkers. The short linkers, reinforced by novel histone properties, create a number of unique and dynamic nucleosome structural features in vivo: permanent unpeeling of DNA from the ends of the core, an inability to bind even full 147 bp core DNA lengths, and facility to undergo a conformational transition that resembles the changes found in active chromatin. These features probably explain how yeast can maintain most of its genome in a transcribable state and avoid large-scale packaging away of inactive genes. The GAL genes provide a closely regulated system in which to study gene-specific chromatin structure. GAL structural genes are inactive without galactose but are highly transcribed in its presence; the expression patterns of the regulatory genes can account for many of the features of GAL structural gene control. In the inactive state, GAL genes demonstrate a characteristic promoter chromosomal organization; the major upstream activation sequence (UASG) elements lie in open, hypersensitive regions, whereas the TATA and transcription start sites are in nucleosomes. This organization helps implement gene regulation in this state and may benefit the organism. Induction of GAL expression triggers Gal4p-dependent upstream nucleosome disruption. Disruption is transient and can readily be reversed by a Gal80p-dependent nucleosome deposition process. Both are sensitive to the metabolic state of the cell. Induction triggers different kinds of nucleosome changes on the coding sequences, perhaps reflecting the differing roles of nucleosomes on coding versus promoter regions. GAL gene activation is a complex process involving multiple Gal4p activities, numerous positive and negative cofactors, and the histone tails. DNA bending and chromosomal architecture of the promoter regions may also play a role in GAL regulation. Regulator-mediated competition between nucleosomes and the TATA binding protein complex for the TATA region is probably a central aspect of GAL regulation and a focal point for the numerous factors and processes that contribute to it.
Collapse
Affiliation(s)
- R Bash
- Department of Chemistry and Biochemistry, Arizona State University, Tempe 85287, USA
| | | |
Collapse
|
6
|
Kahn JD. Topological effects of the TATA box binding protein on minicircle DNA and a possible thermodynamic linkage to chromatin remodeling. Biochemistry 2000; 39:3520-4. [PMID: 10736150 DOI: 10.1021/bi992263f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA ring closure experiments on short restriction fragments ( approximately 160 bp) bound by the TATA box binding protein (TBP) have demonstrated the formation of negative topoisomers, consistent with crystallographically observed TBP-induced DNA untwisting but in contrast to most previous results on topological effects in plasmid DNA. The difference may be due to the high free energy cost of substantial writhe in minicircles. A speculative mechanism for the loss of TBP-induced writhe suggests that TBP is capable of inducing DeltaTw between 0 and -0.3 in minicircles, via loss of out-of-plane bending upon retraction of intercalating Phe stirrups, and that TBP can thus act as a "supercoil shock absorber". The proposed biological relevance of these observations is that they may model the behavior of DNA in constrained chromatin environments. Irrespective of the detailed mechanism of TBP-induced supercoiling, its existence suggests that chromatin remodeling and enhanced TBP binding are thermodynamically linked. Remodeling ATPases or histone acetylases release some of the negative supercoiling previously restrained by the nucleosome. When TBP takes up the supercoiling, its binding should be enhanced transiently until the unrestrained supercoiling is removed by diffusion or topoisomerases. The effect is predicted to be independent of local remodeling-induced changes in TATA box accessibility.
Collapse
Affiliation(s)
- J D Kahn
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA.
| |
Collapse
|
7
|
Abstract
In the past decade, site-specific chromosomal DNA cleavage mediated by DNA endonucleases has been used to examine diverse aspects of chromosome structure and function in eukaryotes, such as DNA topology, replication, transcription, recombination, and repair. Here we describe a method with which chromosomes can be linearized at any predefined position in vivo. Yeast homothallic switching endonuclease (HO endo), a sequence-specific double-strand nuclease involved in mating-type switching, is employed for targeting DNA cleavage. HO endo contains discrete functional domains: a N-terminal nuclease and a C-terminal DNA-binding domain, thereby allowing construction of a chimeric nuclease with the cutting site distinct from the original HO recognition sequence. The expression of the nuclease is engineered to be controlled by a tightly regulated, inducible promoter. The cut sites recognized by HO endo or its derivatives are introduced specifically at desired positions in the yeast genome by homologous recombination. Here we present experimental procedures and review some applications based on this approach in yeast and other biological systems.
Collapse
Affiliation(s)
- C P Liang
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Boulevard, Dallas, Texas 75235-9140, USA
| | | |
Collapse
|
8
|
Sinden RR, Bat O, Kramer PR. Psoralen cross-linking as probe of torsional tension and topological domain size in vivo. Methods 1999; 17:112-24. [PMID: 10075890 DOI: 10.1006/meth.1998.0723] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DNA within a cell is organized with unrestrained torsional tension, and each molecule is divided into multiple individual topological domains. Psoralen photobinding can be used as an assay for supercoiling and topological domain size in living cells. Psoralen photobinds to DNA at a rate nearly linearly proportional to superhelical density. Comparison of the rate of photobinding to supercoiled and relaxed DNA in cells provides a measure of superhelical density. For this, in vivo superhelical tension is relaxed by the introduction of nicks by either ionizing radiation or photolysis of bromodeoxyuridine in the DNA. Since nicks are introduced in a random fashion, the distribution of nicks is described by a Poisson distribution. Thus, after nicking, the fraction of topological domains containing no nicks is described by the zero term of the Poisson distribution. From measurement of the number of nicks introduced in the DNA and the fraction of torsional tension remaining, an average topological domain size can be estimated. Using this logic, procedures were designed and described for measuring supercoiling and domain size at specific sites in eukaryotic genomes.
Collapse
Affiliation(s)
- R R Sinden
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University, 2121 W. Holcombe Boulevard, Houston, Texas 77030-3303, USA
| | | | | |
Collapse
|
9
|
Bell SD, Jaxel C, Nadal M, Kosa PF, Jackson SP. Temperature, template topology, and factor requirements of archaeal transcription. Proc Natl Acad Sci U S A 1998; 95:15218-22. [PMID: 9860949 PMCID: PMC28023 DOI: 10.1073/pnas.95.26.15218] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although Archaea are prokaryotic and resemble Bacteria morphologically, their transcription apparatus is remarkably similar to those of eukaryotic cell nuclei. Because some Archaea exist in environments with temperatures of around 100 degreesC, they are likely to have evolved unique strategies for transcriptional control. Here, we investigate the effects of temperature and DNA template topology in a thermophilic archaeal transcription system. Significantly, and in marked contrast with characterized eucaryal systems, archaeal DNA template topology has negligible effect on transcription levels at physiological temperatures using highly purified polymerase and recombinant transcription factors. Furthermore, archaeal transcription does not require hydrolysis of the beta-gamma phosphoanhydride bond of ATP. However, at lower temperatures, negatively supercoiled templates are transcribed more highly than those that are positively supercoiled. Notably, the block to transcription on positively supercoiled templates at lowered temperatures is at the level of polymerase binding and promoter opening. These data imply that Archaea do not possess a functional homologue of transcription factor TFIIH, and that for the promoters studied, transcription is mediated by TATA box-binding protein, transcription factor TFB, and RNA polymerase alone. Furthermore, they suggest that the reduction of plasmid linking number by hyperthermophilic Archaea in vivo in response to cold shock is a mechanism to maintain gene expression under these adverse circumstances.
Collapse
Affiliation(s)
- S D Bell
- Wellcome Trust/Cancer Research Campaign Institute of Cancer and Developmental Biology, and Department of Zoology Cambridge University, Tennis Court Road, Cambridge CB2 1QR United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Kobayashi M, Aita N, Hayashi S, Okada K, Ohta T, Hirose S. DNA supercoiling factor localizes to puffs on polytene chromosomes in Drosophila melanogaster. Mol Cell Biol 1998; 18:6737-44. [PMID: 9774687 PMCID: PMC109257 DOI: 10.1128/mcb.18.11.6737] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA supercoiling factor (SCF) was first identified in silkworm as a protein that generates negative supercoils in DNA in conjunction with eukaryotic topoisomerase II. To analyze the in vivo role of the factor, we cloned a cDNA encoding Drosophila melanogaster SCF. Northern analysis revealed 1.6- and 1.8-kb mRNAs throughout development. The longer mRNA contains an open reading frame that shares homology with mouse reticulocalbin whereas the shorter one encodes a truncated version lacking the N-terminal signal peptide-like sequence. An antibody against SCF detected a 45-kDa protein in the cytoplasmic fraction and a 30-kDa protein in the nuclear fraction of embryonic extracts. Immunoprecipitation suggests that the 30-kDa protein interacts with topoisomerase II in the nucleus, and hence that it is a functional form of SCF. Immunostaining of blastoderm embryos showed that SCF is present in nuclei during interphase but is excluded from mitotic chromosomes. In larvae, the antibody stained the nuclei of several tissues including a posterior part of the salivary gland. This latter staining was associated with natural or ecdysteroid-induced puffs on polytene chromosomes. Upon heat treatment of larvae, the staining on the endogenous puffs disappeared, and strong staining appeared on heat shock puffs. These results implicate SCF in gene expression.
Collapse
Affiliation(s)
- M Kobayashi
- The Graduate University for Advanced Studies, National Institute of Genetics, Mishima, Shizuoka-ken 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Workman JL, Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 1998; 67:545-79. [PMID: 9759497 DOI: 10.1146/annurev.biochem.67.1.545] [Citation(s) in RCA: 872] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nucleosome, which is the primary building block of chromatin, is not a static structure: It can adopt alternative conformations. Changes in solution conditions or changes in histone acetylation state cause nucleosomes and nucleosomal arrays to behave with altered biophysical properties. Distinct subpopulations of nucleosomes isolated from cells have chromatographic properties and nuclease sensitivity different from those of bulk nucleosomes. Recently, proteins that were initially identified as necessary for transcriptional regulation have been shown to alter nucleosomal structure. These proteins are found in three types of multiprotein complexes that can acetylate nucleosomes, deacetylate nucleosomes, or alter nucleosome structure in an ATP-dependent manner. The direct modification of nucleosome structure by these complexes is likely to play a central role in appropriate regulation of eukaryotic genes.
Collapse
Affiliation(s)
- J L Workman
- Howard Hughes Medical Institute, Pennsylvania State University, University Park 16802, USA.
| | | |
Collapse
|
12
|
Abstract
In eukaryotes, transcription of genes by RNA polymerase II yields messenger RNA intermediates from which protein products are synthesized. Transcriptional enhancers are discrete DNA elements that contain specific sequence motifs with which DNA-binding proteins interact and transmit molecular signals to genes. Here, current models regarding the role of enhancers in the regulation of transcription by RNA polymerase II are presented.
Collapse
Affiliation(s)
- E M Blackwood
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-347, USA
| | | |
Collapse
|