1
|
Datta S, Roychoudhury S, Ghosh A, Dasgupta D, Ghosh A, Chakraborty B, Roy S, Gupta S, Santra AK, Datta S, Das K, Dhali GK, Chowdhury A, Banerjee S. Distinct distribution pattern of hepatitis B virus genotype C and D in liver tissue and serum of dual genotype infected liver cirrhosis and hepatocellular carcinoma patients. PLoS One 2014; 9:e102573. [PMID: 25032957 PMCID: PMC4102524 DOI: 10.1371/journal.pone.0102573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/20/2014] [Indexed: 12/27/2022] Open
Abstract
Aims The impact of co-infection of several hepatitis B virus (HBV) genotypes on the clinical outcome remains controversial. This study has for the first time investigated the distribution of HBV genotypes in the serum and in the intrahepatic tissue of liver cirrhotic (LC) and hepatocellular carcinoma (HCC) patients from India. In addition, the genotype-genotype interplay and plausible mechanism of development of HCC has also been explored. Methods The assessment of HBV genotypes was performed by nested PCR using either surface or HBx specific primers from both the circulating virus in the serum and replicative virus that includes covalently closed circular DNA (cccDNA) and relaxed circular DNA (rcDNA) of HBV from the intrahepatic tissue. The integrated virus within the host chromosome was genotyped by Alu-PCR method. Each PCR products were cloned and sequences of five randomly selected clones were subsequently analysed. Results HBV/genotype D was detected in the serum of all LC and HCC patients whereas the sequences of the replicative HBV DNA (cccDNA and rcDNA) from the intrahepatic tissue of the same patients revealed the presence of both HBV/genotype C and D. The sequences of the integrated viruses exhibited the solo presence of HBV/genotype C in the majority of LC and HCC tissues while both HBV/genotype C and D clones were found in few patients in which HBV/genotype C was predominated. Moreover, compared to HBV/genotype D, genotype C had higher propensity to generate double strand breaks, ER stress and reactive oxygen species and it had also showed higher cellular homologous-recombination efficiency that engendered more chromosomal rearrangements, which ultimately led to development of HCC. Conclusions Our study highlights the necessity of routine analysis of HBV genotype from the liver tissue of each chronic HBV infected patient in clinical practice to understand the disease prognosis and also to select therapeutic strategy.
Collapse
MESH Headings
- Adult
- Base Sequence
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Cell Line, Tumor
- Coinfection
- DNA Breaks, Double-Stranded
- DNA, Circular/blood
- DNA, Circular/genetics
- DNA, Viral/blood
- DNA, Viral/genetics
- Genotype
- Hep G2 Cells
- Hepatitis B e Antigens/blood
- Hepatitis B e Antigens/immunology
- Hepatitis B virus/classification
- Hepatitis B virus/genetics
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/virology
- Humans
- India
- Liver/pathology
- Liver/virology
- Liver Cirrhosis/mortality
- Liver Cirrhosis/pathology
- Liver Cirrhosis/virology
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Liver Transplantation
- Male
- Middle Aged
- Molecular Sequence Data
- Prognosis
- Reactive Oxygen Species/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Somenath Datta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Shrabasti Roychoudhury
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Alip Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Debanjali Dasgupta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Amit Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Bidhan Chakraborty
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sukanta Roy
- Department of Gastro-Intestinal surgery, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Subash Gupta
- Centre for Liver and Biliary Surgery, Indraprastha Apollo Hospital, New Delhi, India
| | - Amal Kumar Santra
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Simanti Datta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Kausik Das
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Gopal Krishna Dhali
- Department Gastroenterology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
- * E-mail:
| |
Collapse
|
2
|
Abstract
Initial events in double-strand break repair by homologous recombination in vivo involve homology searching, 3' strand invasion, and new DNA synthesis. While studies in yeast have contributed much to our knowledge of these processes, in comparison, little is known of the early events in the integrated mammalian system. In this study, a sensitive PCR procedure was developed to detect the new DNA synthesis that accompanies mammalian homologous recombination. The test system exploits a well-characterized gene targeting assay in which the transfected vector bears a gap in the region of homology to the single-copy chromosomal immunoglobulin mu heavy chain gene in mouse hybridoma cells. New DNA synthesis primed by invading 3' vector ends copies chromosomal mu-gene template sequences excluded by the vector-borne double-stranded gap. Following electroporation, specific 3' extension products from each vector end are detected with rapid kinetics: they appear after 0.5 hr, peak at 3-6 hr, and then decline, likely as a result of the combined effects of susceptibility to degradation and cell division. New DNA synthesis from each vector 3' end extends at least approximately 1000 nucleotides into the gapped region, but the efficiency declines markedly within the first approximately 200 nucleotides. Over this short distance, an average frequency of 3' extension for the two invading vector ends is approximately 0.007 events/vector backbone. DNA sequencing reveals precise copying of the cognate chromosomal mu-gene template. In unsynchronized cells, 3' extension is sensitive to aphidicolin supporting involvement of a replicative polymerase. Analysis suggests that the vast majority of 3' extensions reside on linear plasmid molecules.
Collapse
|
3
|
Wu Y, Siino JS, Sugiyama T, Kowalczykowski SC. The DNA Binding Preference of RAD52 and RAD59 Proteins. J Biol Chem 2006; 281:40001-9. [PMID: 17040915 DOI: 10.1074/jbc.m608071200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We examined the double-stranded DNA (dsDNA) binding preference of the Saccharomyces cerevisiae Rad52 protein and its homologue, the Rad59 protein. In nuclease protection assays both proteins protected an internal sequence and the dsDNA ends equally well. Similarly, using electrophoretic mobility shift assays, we found the affinity of both Rad52 and Rad59 proteins for DNA ends to be comparable with their affinity for internal sequences. The protein-DNA complexes were also directly visualized using atomic force microscopy. Both proteins formed discrete complexes, which were primarily found (90-94%) at internal dsDNA sites. We also measured the DNA end binding behavior of human Rad52 protein and found a slight preference for dsDNA ends. Thus, these proteins have no strong preference for dsDNA ends over internal sites, which is inconsistent with their function at a step of dsDNA break repair that precedes DNA processing. Therefore, we conclude that S. cerevisiae Rad52 and Rad59 proteins and their eukaryotic counterparts function by binding to single-stranded DNA formed as intermediates of recombination rather than by binding to the unprocessed DNA double-strand break.
Collapse
Affiliation(s)
- Yun Wu
- Section of Microbiology, Center for Genetics and Development, University of California, Davis, California 95616-8665, USA
| | | | | | | |
Collapse
|
4
|
Birmingham EC, Lee SA, McCulloch RD, Baker MD. Testing predictions of the double-strand break repair model relating to crossing over in Mammalian cells. Genetics 2004; 168:1539-55. [PMID: 15579705 PMCID: PMC1448801 DOI: 10.1534/genetics.104.029215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 07/22/2004] [Indexed: 11/18/2022] Open
Abstract
In yeast, four-stranded, biparental "joint molecules" containing a pair of Holliday junctions are demonstrated intermediates in the repair of meiotic double-strand breaks (DSBs). Genetic and physical evidence suggests that when joint molecules are resolved by the cutting of each of the two Holliday junctions, crossover products result at least most of the time. The double-strand break repair (DSBR) model is currently accepted as a paradigm for acts of DSB repair that lead to crossing over. In this study, a well-defined mammalian gene-targeting assay was used to test predictions that the DSBR model makes about the frequency and position of hDNA in recombinants generated by crossing over. The DSBR model predicts that hDNA will frequently form on opposite sides of the DSB in the two homologous sequences undergoing recombination [half conversion (HC); 5:3, 5:3 segregation]. By examining the segregation patterns of poorly repairable small palindrome genetic markers, we show that this configuration of hDNA is rare. Instead, in a large number of recombinants, full conversion (FC) events in the direction of the unbroken chromosomal sequence (6:2 segregation) were observed on one side of the DSB. A conspicuous fraction of the unidirectional FC events was associated with normal 4:4 marker segregation on the other side of the DSB. In addition, a large number of recombinants displayed evidence of hDNA formation. In several, hDNA was symmetrical on one side of the DSB, suggesting that the two homologous regions undergoing recombination swapped single strands of the same polarity. These data are considered within the context of modified versions of the DSBR model.
Collapse
Affiliation(s)
- Erin C Birmingham
- Department of Molecular Biology and Genetics, College of Biological Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
5
|
Bill CA, Summers J. Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration. Proc Natl Acad Sci U S A 2004; 101:11135-40. [PMID: 15258290 PMCID: PMC503752 DOI: 10.1073/pnas.0403925101] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Integrated hepadnaviral DNA in livers and tumors of chronic hepatitis B patients has been reported for many years. In this study, we investigated whether hepatitis B virus DNA integration occurs preferentially at sites of cell DNA damage. A single I-SceI homing endonuclease recognition site was introduced into the DNA of the chicken hepatoma cell line LMH by stable DNA transfection, and double-strand breaks were induced by transient expression of I-SceI after transfection of an I-SceI expression vector. Alteration of the target cleavage site by imprecise nonhomologous end joining occurred at a frequency of approximately 10(-3) per transfected cell. When replication of an avian hepadnavirus, duck hepatitis B virus, occurred at the time of double-strand break repair, we observed integration of viral DNA at the site of the break with a frequency of approximately 10(-4) per transfected cell. Integration depended on the production of viral double-stranded linear DNA and the expression of I-SceI, and integrated DNA was stable through at least 17 cell divisions. Integration appeared to occur through nonhomologous end joining between the viral linear DNA ends and the I-SceI-induced break, because small deletions or insertions were observed at the sites of end joining. The results suggest that integration of hepadnaviral DNA in infected livers occurs at sites of DNA damage and may indicate the presence of more widespread genetic changes beyond that caused by viral DNA integration itself [corrected].
Collapse
Affiliation(s)
- Colin A Bill
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | | |
Collapse
|
6
|
Manivasakam P, Aubrecht J, Sidhom S, Schiestl RH. Restriction enzymes increase efficiencies of illegitimate DNA integration but decrease homologous integration in mammalian cells. Nucleic Acids Res 2001; 29:4826-33. [PMID: 11726692 PMCID: PMC96699 DOI: 10.1093/nar/29.23.4826] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mammalian cells repair DNA double-strand breaks by illegitimate end-joining or by homologous recombination. We investigated the effects of restriction enzymes on illegitimate and homologous DNA integration in mammalian cells. A plasmid containing the neo(R) expression cassette, which confers G418 resistance, was used to select for illegitimate integration events in CHO wild-type and xrcc5 mutant cells. Co-transfection with the restriction enzymes BamHI, BglII, EcoRI and KpnI increased the efficiency of linearized plasmid integration up to 5-fold in CHO cells. In contrast, the restriction enzymes did not increase the integration efficiency in xrcc5 mutant cells. Effects of restriction enzymes on illegitimate and homologous integration were also studied in mouse embryonic stem (ES) cells using a plasmid containing the neo(R) gene flanked by exon 3 of HPRT: The enzymes BamHI, BglII and EcoRI increased the illegitimate integration efficiency of transforming DNA several-fold, similar to the results for CHO cells. However, all three enzymes decreased the absolute frequency of homologous integration approximately 2-fold, and the percentage of homologous integration decreased >10-fold. This suggests that random DNA breaks attract illegitimate recombination (IR) events that compete with homology search.
Collapse
Affiliation(s)
- P Manivasakam
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
7
|
Baker MD, Birmingham EC. Evidence for biased holliday junction cleavage and mismatch repair directed by junction cuts during double-strand-break repair in mammalian cells. Mol Cell Biol 2001; 21:3425-35. [PMID: 11313468 PMCID: PMC100264 DOI: 10.1128/mcb.21.10.3425-3435.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammalian cells, several features of the way homologous recombination occurs between transferred and chromosomal DNA are consistent with the double-strand-break repair (DSBR) model of recombination. In this study, we examined the segregation patterns of small palindrome markers, which frequently escape mismatch repair when encompassed within heteroduplex DNA formed in vivo during mammalian homologous recombination, to test predictions of the DSBR model, in particular as they relate to the mechanism of crossover resolution. According to the canonical DSBR model, crossover between the vector and chromosome results from cleavage of the joint molecule in two alternate sense modes. The two crossover modes lead to different predicted marker configurations in the recombinants, and assuming no bias in the mode of Holliday junction cleavage, the two types of recombinants are expected in equal frequency. However, we propose a revision to the canonical model, as our results suggest that the mode of crossover resolution is biased in favor of cutting the DNA strands upon which DNA synthesis is occurring during formation of the joint molecule. The bias in junction resolution permitted us to examine the potential consequences of mismatch repair acting on the DNA breaks generated by junction cutting. The combination of biased junction resolution with both early and late rounds of mismatch repair can explain the marker patterns in the recombinants.
Collapse
Affiliation(s)
- M D Baker
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | |
Collapse
|
8
|
Li J, Baker MD. Use of a small palindrome genetic marker to investigate mechanisms of double-strand-break repair in mammalian cells. Genetics 2000; 154:1281-9. [PMID: 10757769 PMCID: PMC1460998 DOI: 10.1093/genetics/154.3.1281] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We examined mechanisms of mammalian homologous recombination using a gene targeting assay in which the vector-borne region of homology to the chromosome bore small palindrome insertions that frequently escape mismatch repair when encompassed within heteroduplex DNA (hDNA). Our assay permitted the product(s) of each independent recombination event to be recovered for molecular analysis. The results revealed the following: (i) vector-borne double-strand break (DSB) processing usually did not yield a large double-strand gap (DSG); (ii) in 43% of the recombinants, the results were consistent with crossover at or near the DSB; and (iii) in the remaining recombinants, hDNA was an intermediate. The sectored (mixed) genotypes observed in 38% of the recombinants provided direct evidence for involvement of hDNA, while indirect evidence was obtained from the patterns of mismatch repair (MMR). Individual hDNA tracts were either long or short and asymmetric or symmetric on the one side of the DSB examined. Clonal analysis of the sectored recombinants revealed how vector-borne and chromosomal markers were linked in each strand of individual hDNA intermediates. As expected, vector-borne and chromosomal markers usually resided on opposite strands. However, in one recombinant, they were linked on the same strand. The results are discussed with particular reference to the double-strand-break repair (DSBR) model of recombination.
Collapse
Affiliation(s)
- J Li
- Department of Molecular Biology and Genetics and Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
9
|
Semionov A, Cournoyer D, Chow TY. Transient expression of Saccharomyces cerevisiae endo-exonuclease NUD1 gene increases the frequency of extrachromosomal homologous recombination in mouse Ltk- fibroblasts. Mutat Res 1999; 435:129-39. [PMID: 10556593 DOI: 10.1016/s0921-8777(99)00038-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Endo-exonucleases (EEs) are nucleolytic enzymes which have been shown to participate in the processes of DNA repair and recombination in eukaryotes. Recently, we have demonstrated that transient expression of Saccharomyces cerevisiae EE NUD1 gene in HeLa cells increased the resistance of the latter to ionizing radiation and cisplatin, suggesting the involvement of the NUD1 gene product in the recombination repair of double-strand breaks (DSB). Here, we report that transient expression of NUD1 results in up to 62% increase in the frequency of homologous recombination between two co-transfected linear plasmids in mouse Ltk- cells.
Collapse
Affiliation(s)
- A Semionov
- Departments of Oncology and Medicine, Faculty of Medicine, McGill University and Montreal General Hospital, 1650 Avenue Cedar, Montreal, Quebec, Canada
| | | | | |
Collapse
|
10
|
Müller AE, Kamisugi Y, Grüneberg R, Niedenhof I, Hörold RJ, Meyer P. Palindromic sequences and A+T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. J Mol Biol 1999; 291:29-46. [PMID: 10438604 DOI: 10.1006/jmbi.1999.2957] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Illegitimate recombination is the prevailing molecular mechanism for the integration of recombinant DNA into the genome of most eukaryotic systems and the generation of deletions by intrachromosomal recombination. We developed a ?selectable marker system to screen for intrachromosomal illegitimate recombination events in order to assess the sequence and structure-specific requirements for illegitimate recombination in tobacco. In 12 illegitimate recombination products analysed, we found that all deletion termini localise to sites of palindromic structures or to A+T-rich DNA elements. All deletion termini showed microhomologies of two to six nucleotides. In three plants, the recombination products contained filler-DNA or an inversion of an endogenous segment. Our data strongly suggest that illegitimate recombination in plants is mediated by a DNA synthesis-dependent process, and that this mechanism is promoted by DNA regions that can form palindromic structures or facilitate DNA unwinding.
Collapse
|
11
|
Affiliation(s)
- A L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612, USA.
| |
Collapse
|
12
|
Abstract
Undesired side products of DNA transfections are usually discarded. However, here, we show that such products may provide insight into mutational events that are also a major driving force in protein evolution. While studying the small heat-shock protein alphaA-crystallin, we transfected the hamster alphaA-crystallin gene into a mouse muscle cell line. One of the stable transfected cell lines expressed, in addition to the expected normal alphaA- and alternatively spliced alphaAins-crystallins, two slightly larger, immunologically cross-reacting proteins. These proteins were found to be encoded by a mutant alphaA-crystallin gene with a large intragenic duplication, arisen by illegitimate recombination at two CCCAT homologies, approximately 1.8 kilobases apart in the normal hamster alphaA-crystallin gene. As a consequence, a tandem-duplicated exon 3 sequence is present in the mature mRNA of this gene, resulting in a 41-residue repeat in the translated proteins. Cells expressing the elongated alphaA-crystallins have normal growth characteristics and the usual diffuse cytoplasmic distribution of immunoreactive alphaA-crystallin. Size-exclusion chromatography of cell extracts indicated that the mutant proteins are readily incorporated into the normal large water-soluble alphaA-crystallin complexes, showing that the insert does not disturb the integrity of these complexes. This viable alphaA-crystallin mutant thus mimics the origins and effects of exon duplication, which is a common consequence of exon shuffling in mammalian genome evolution.
Collapse
Affiliation(s)
- A A van Rijk
- Department of Biochemistry, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
13
|
Islas L, Fairley CF, Morgan WF. DNA synthesis on discontinuous templates by human DNA polymerases: implications for non-homologous DNA recombination. Nucleic Acids Res 1998; 26:3729-38. [PMID: 9685489 PMCID: PMC147762 DOI: 10.1093/nar/26.16.3729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA polymerases catalyze the synthesis of DNA using a continuous uninterrupted template strand. However, it has been shown that a 3'-->5' exonuclease-deficient form of the Klenow fragment of Escherichia coli DNA polymerase I as well as DNA polymerase of Thermus aquaticus can synthesize DNA across two unlinked DNA templates. In this study, we used an oligonucleotide-based assay to show that discontinuous DNA synthesis was present in HeLa cell extracts. DNA synthesis inhibitor studies as well as fractionation of the extracts revealed that most of the discontinuous DNA synthesis was attributable to DNA polymerase alpha. Additionally, discontinuous DNA synthesis could be eliminated by incubation with an antibody that specifically neutralized DNA polymerase alpha activity. To test the relative efficiency of each nuclear DNA polymerase for discontinuous synthesis, equal amounts (as measured by DNA polymerase activity) of DNA polymerases alpha, beta, delta (+/- PCNA) and straightepsilon (+/- PCNA) were used in the discontinuous DNA synthesis assay. DNA polymerase alpha showed the most discontinuous DNA synthesis activity, although small but detectable levels were seen for DNA polymerases delta (+PCNA) and straightepsilon (- PCNA). Klenow fragment and DNA polymerase beta showed no discontinuous DNA synthesis, although at much higher amounts of each enzyme, discontinuous synthesis was seen for both. Discontinuous DNA synthesis by DNA polymerase alpha was seen with substrates containing 3 and 4 bp single-strand stretches of complementarity; however, little synthesis was seen with blunt substrates or with 1 bp stretches. The products formed from these experiments are structurally similar to that seen in vivo for non-homologous end joining in eukaryotic cells. These data suggest that DNA polymerase alpha may be able to rejoin double-strand breaks in vivo during replication.
Collapse
Affiliation(s)
- L Islas
- Department of Radiation Oncology, University of California, San Francisco, CA 94143-0750, USA.
| | | | | |
Collapse
|
14
|
Wilson DM, Carney JP, Coleman MA, Adamson AW, Christensen M, Lamerdin JE. Hex1: a new human Rad2 nuclease family member with homology to yeast exonuclease 1. Nucleic Acids Res 1998; 26:3762-8. [PMID: 9685493 PMCID: PMC147753 DOI: 10.1093/nar/26.16.3762] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nucleolytic processing of chromosomal DNA is required in operations such as DNA repair, recombination and replication. We have identified a human gene, named HEX1 forhumanexonuclease 1, by searching the EST database for cDNAs that encode a homolog to the Saccharomyces cerevisiae EXO1 gene product. Based on its homology to this and other DNA repair proteins of the Rad2 family, most notably Schizosaccharomyces pombe exonuclease 1 (Exo1), Hex1 presumably functions as a nuclease in aspects of recombination or mismatch repair. Similar to the yeast proteins, recombinant Hex1 exhibits a 5'-->3' exonuclease activity. Northern blot analysis revealed that HEX1 expression is highest in fetal liver and adult bone marrow, suggesting that the encoded protein may operate prominently in processes specific to hemopoietic stem cell development. HEX1 gene equivalents were found in all vertebrates examined. The human gene includes 14 exons and 13 introns that span approximately 42 kb of genomic DNA and maps to the chromosomal position 1q42-43, a region lost in some cases of acute leukemia and in several solid tumors.
Collapse
Affiliation(s)
- D M Wilson
- Biology and Biotechnology Research Program, L-452, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Bill CA, Duran WA, Miselis NR, Nickoloff JA. Efficient repair of all types of single-base mismatches in recombination intermediates in Chinese hamster ovary cells. Competition between long-patch and G-T glycosylase-mediated repair of G-T mismatches. Genetics 1998; 149:1935-43. [PMID: 9691048 PMCID: PMC1460289 DOI: 10.1093/genetics/149.4.1935] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Repair of all 12 single-base mismatches in recombination intermediates was investigated in Chinese hamster ovary cells. Extrachromosomal recombination was stimulated by double-strand breaks in regions of shared homology. Recombination was predicted to occur via single-strand annealing, yielding heteroduplex DNA (hDNA) with a single mismatch. Nicks were expected on opposite strands flanking hDNA, equidistant from the mismatch. Unlike studies of covalently closed artificial hDNA substrates, all mismatches were efficiently repaired, consistent with a nick-driven repair process. The average repair efficiency for all mispairs was 92%, with no significant differences among mispairs. There was significant strand-independent repair of G-T --> G-C, with a slightly greater bias in a CpG context. Repair of C-A was also biased (toward C-G), but no A-C --> G-C bias was found, a possible sequence context effect. No other mismatches showed evidence of biased repair, but among hetero-mismatches, the trend was toward retention of C or G vs. A or T. Repair of both T-T and G-T mismatches was much less efficient in mismatch repair-deficient cells (approximately 25%), and the residual G-T repair was completely biased toward G-C. Our data indicate that single-base mismatches in recombination intermediates are substrates for at least two competing repair systems.
Collapse
Affiliation(s)
- C A Bill
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
16
|
Taghian DG, Hough H, Nickoloff JA. Biased short tract repair of palindromic loop mismatches in mammalian cells. Genetics 1998; 148:1257-68. [PMID: 9539440 PMCID: PMC1460022 DOI: 10.1093/genetics/148.3.1257] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mismatch repair of palindromic loops in the presence or absence of single-base mismatches was investigated in wild-type and mismatch-binding defective mutant Chinese hamster ovary cells. Recombination intermediates with a maximum heteroduplex DNA (hDNA) region of 697 bp contained a centrally located, phenotypically silent 12-base palindromic loop mismatch, and/or five single-base mismatches. In wild-type cells, both loops and single-base mismatches were efficiently repaired (80-100%). When no other mismatches were present in hDNA, loops were retained with a 1.6-1.9:1 bias. However, this bias was eliminated when single-base mismatches were present, perhaps because single-base mismatches signal nick-directed repair. In the multiple marker crosses, most repair tracts were long and continuous, with preferential loss of markers in cis to proximal nicks, consistent with nicks directing most repair in this situation. However, approximately 25% of repair tracts were discontinuous as a result of loop-specific repair, or from segregation or short tract repair of single-base mismatches. In mutant cells, single-base mismatches were repaired less frequently, but the loop was still repaired efficiently and with bias toward loop retention, indicating that the defect in these cells does not affect loop-specific repair. Repair tracts in products from mutant cells showed a wide variety of mosaic patterns reflecting short regions of repair and segregation consistent with reduced nick-directed repair. In mutant cells, single-base mismatches were repaired more efficiently in the presence of the loop than in its absence, a likely consequence of corepair initiated at the loop.
Collapse
Affiliation(s)
- D G Taghian
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|