1
|
Bernaola-Galván P, Carpena P, Gómez-Martín C, Oliver JL. Compositional Structure of the Genome: A Review. BIOLOGY 2023; 12:849. [PMID: 37372134 PMCID: PMC10295253 DOI: 10.3390/biology12060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
As the genome carries the historical information of a species' biotic and environmental interactions, analyzing changes in genome structure over time by using powerful statistical physics methods (such as entropic segmentation algorithms, fluctuation analysis in DNA walks, or measures of compositional complexity) provides valuable insights into genome evolution. Nucleotide frequencies tend to vary along the DNA chain, resulting in a hierarchically patchy chromosome structure with heterogeneities at different length scales that range from a few nucleotides to tens of millions of them. Fluctuation analysis reveals that these compositional structures can be classified into three main categories: (1) short-range heterogeneities (below a few kilobase pairs (Kbp)) primarily attributed to the alternation of coding and noncoding regions, interspersed or tandem repeats densities, etc.; (2) isochores, spanning tens to hundreds of tens of Kbp; and (3) superstructures, reaching sizes of tens of megabase pairs (Mbp) or even larger. The obtained isochore and superstructure coordinates in the first complete T2T human sequence are now shared in a public database. In this way, interested researchers can use T2T isochore data, as well as the annotations for different genome elements, to check a specific hypothesis about genome structure. Similarly to other levels of biological organization, a hierarchical compositional structure is prevalent in the genome. Once the compositional structure of a genome is identified, various measures can be derived to quantify the heterogeneity of such structure. The distribution of segment G+C content has recently been proposed as a new genome signature that proves to be useful for comparing complete genomes. Another meaningful measure is the sequence compositional complexity (SCC), which has been used for genome structure comparisons. Lastly, we review the recent genome comparisons in species of the ancient phylum Cyanobacteria, conducted by phylogenetic regression of SCC against time, which have revealed positive trends towards higher genome complexity. These findings provide the first evidence for a driven progressive evolution of genome compositional structure.
Collapse
Affiliation(s)
- Pedro Bernaola-Galván
- Department of Applied Physics II and Institute Carlos I for Theoretical and Computational Physics, University of Málaga, 29071 Málaga, Spain; (P.B.-G.); (P.C.)
| | - Pedro Carpena
- Department of Applied Physics II and Institute Carlos I for Theoretical and Computational Physics, University of Málaga, 29071 Málaga, Spain; (P.B.-G.); (P.C.)
| | - Cristina Gómez-Martín
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Department of Genetics, Faculty of Sciences, 18071 and Laboratory of Bioinformatics, Institute of Biotechnology, Center of Biomedical Research, University of Granada, 18100 Granada, Spain
| | - Jose L. Oliver
- Department of Genetics, Faculty of Sciences, 18071 and Laboratory of Bioinformatics, Institute of Biotechnology, Center of Biomedical Research, University of Granada, 18100 Granada, Spain
| |
Collapse
|
2
|
Replication Stress, Genomic Instability, and Replication Timing: A Complex Relationship. Int J Mol Sci 2021; 22:ijms22094764. [PMID: 33946274 PMCID: PMC8125245 DOI: 10.3390/ijms22094764] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
The replication-timing program constitutes a key element of the organization and coordination of numerous nuclear processes in eukaryotes. This program is established at a crucial moment in the cell cycle and occurs simultaneously with the organization of the genome, thus indicating the vital significance of this process. With recent technological achievements of high-throughput approaches, a very strong link has been confirmed between replication timing, transcriptional activity, the epigenetic and mutational landscape, and the 3D organization of the genome. There is also a clear relationship between replication stress, replication timing, and genomic instability, but the extent to which they are mutually linked to each other is unclear. Recent evidence has shown that replication timing is affected in cancer cells, although the cause and consequence of this effect remain unknown. However, in-depth studies remain to be performed to characterize the molecular mechanisms of replication-timing regulation and clearly identify different cis- and trans-acting factors. The results of these studies will potentially facilitate the discovery of new therapeutic pathways, particularly for personalized medicine, or new biomarkers. This review focuses on the complex relationship between replication timing, replication stress, and genomic instability.
Collapse
|
3
|
Watanabe Y, Shibata K, Maekawa M. Cell line differences in replication timing of human glutamate receptor genes and other large genes associated with neural disease. Epigenetics 2014; 9:1350-9. [PMID: 25437050 PMCID: PMC4622467 DOI: 10.4161/15592294.2014.967585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 01/30/2023] Open
Abstract
There is considerable current interest in the function of epigenetic mechanisms in neuroplasticity with regard to learning and memory formation and to a range of neural diseases. Previously, we described replication timing on human chromosome 21q in the THP-1 human cell line (2n = 46, XY) and showed that several genes associated with neural diseases, such as the neuronal glutamate receptor subunit GluR-5 (GRIK1) and amyloid precursor protein (APP), were located in regions where replication timing transitioned from early to late S phase. Here, we compared replication timing of all known human glutamate receptor genes (26 genes in total) and APP in 6 different human cell lines including human neuron-related cell lines. Replication timings were obtained by integrating our previously reported data with new data generated here and information from the online database ReplicationDomain. We found that many of the glutamate receptor genes were clearly located in replication timing transition zones in neural precursor cells, but this relationship was less clear in embryonic stem cells before neural differentiation; in the latter, the genes were often located in later replication timing zones that displayed DNA hypermethylation. Analysis of selected large glutamate receptor genes (> 200 kb), and of APP, showed that their precise replication timing patterns differed among the cell lines. We propose that the transition zones of DNA replication timing are altered by epigenetic mechanisms, and that these changes may affect the neuroplasticity that is important to memory and learning, and may also have a role in the development of neural diseases.
Collapse
Affiliation(s)
- Yoshihisa Watanabe
- Department of Laboratory Medicine; Hamamatsu University School of Medicine; Hamamatsu, Japan
| | - Kiyoshi Shibata
- Research Equipment Center; Hamamatsu University School of Medicine; Hamamatsu, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine; Hamamatsu University School of Medicine; Hamamatsu, Japan
| |
Collapse
|
4
|
Zhang R, Ou HY, Gao F, Luo H. Identification of Horizontally-transferred Genomic Islands and Genome Segmentation Points by Using the GC Profile Method. Curr Genomics 2014; 15:113-21. [PMID: 24822029 PMCID: PMC4009839 DOI: 10.2174/1389202915999140328163125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/28/2013] [Accepted: 11/29/2013] [Indexed: 11/29/2022] Open
Abstract
The nucleotide composition of genomes undergoes dramatic variations among all three kingdoms of life. GC content, an important characteristic for a genome, is related to many important functions, and therefore GC content and its distribution are routinely reported for sequenced genomes. Traditionally, GC content distribution is assessed by computing GC contents in windows that slide along the genome. Disadvantages of this routinely used window-based method include low resolution and low sensitivity. Additionally, different window sizes result in different GC content distribution patterns within the same genome. We proposed a windowless method, the GC profile, for displaying GC content variations across the genome. Compared to the window-based method, the GC profile has the following advantages: 1) higher sensitivity, because of variation-amplifying procedures; 2) higher resolution, because boundaries between domains can be determined at one single base pair; 3) uniqueness, because the GC profile is unique for a given genome and 4) the capacity to show both global and regional GC content distributions. These characteristics are useful in identifying horizontally-transferred genomic islands and homogenous GC-content domains. Here, we review the applications of the GC profile in identifying genomic islands and genome segmentation points, and in serving as a platform to integrate with other algorithms for genome analysis. A web server generating GC profiles and implementing relevant genome segmentation algorithms is available at: www.zcurve.net.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China
| | - Feng Gao
- Department of Physics, Tianjin University, Tianjin, 300072, China
| | - Hao Luo
- Department of Physics, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
R/G-band boundaries: genomic instability and human disease. Clin Chim Acta 2013; 419:108-12. [PMID: 23434413 DOI: 10.1016/j.cca.2013.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/29/2013] [Accepted: 02/03/2013] [Indexed: 01/19/2023]
Abstract
The human genome is composed of large-scale compartmentalized structures resulting from variations in the amount of guanine and cytosine residues (GC%) and in the timing of DNA replication. These compartmentalized structures are related to the light- and dark-staining bands along chromosomes after the appropriate staining. Here we describe our current understanding of the biological importance of the boundaries between these light and dark bands (the so-called R/G boundaries). These R/G boundaries were identified following integration of information obtained from analyses of chromosome bands and genome sequences. This review also discusses the potential medical significance of these chromosomal regions for conditions related to genomic instability, such as cancer and neural disease. We propose that R/G-chromosomal boundaries, which correspond to regions showing a switch in replication timing from early to late S phase (early/late-switch regions) and of transition in GC%, have an extremely low number of replication origins and more non-B-form DNA structures than other genomic regions. Further, we suggest that genes located at R/G boundaries and which contain such DNA sequences have an increased risk of genetic instability and of being associated with human diseases. Finally, we propose strategies for genome and epigenome analyses based on R/G boundaries.
Collapse
|
6
|
Abstract
Although distinct chromatin types have been long known to replicate at different timepoints of S phase, fine replication control has only recently become considered as an epigenetic phenomenon. It is now clear that in course of differentiation significant changes in genome replication timing occur, and these changes are intimately linked with the changes in transcriptional activity and nuclear architecture. Temporally coordinate replication is organized spatially into discrete units having specific chromosomal organization and function. Even though the functional aspects of such tight control of replication timing remain to be explored, one can confidently consider the replication program as yet another fundamental feature characteristic of the given differentiation state. The present review touches upon the molecular mechanisms of spatial and temporal control of replication timing, involving individual replication origins as well as large chromatin domains.
Collapse
|
7
|
Replication timing in a single human chromosome 11 transferred into the Chinese hamster ovary (CHO) cell line. Gene 2012; 510:1-6. [DOI: 10.1016/j.gene.2012.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/10/2012] [Accepted: 08/20/2012] [Indexed: 01/21/2023]
|
8
|
Abstract
Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Global changes in the epigenetic landscape are a hallmark of cancer. Methylation of cytosine bases in DNA provides a layer of epigenetic control in many eukaryotes that has important implications for normal biology and disease. DNA methylation is a crucial epigenetic modification of the genome that is involved in regulating many cellular processes. These include embryonic development, transcription, chromatin structure, X-chromosome inactivation, genomic imprinting, and chromosome stability. Consistent with these important roles, a growing number of human diseases including cancer have been found to be associated with aberrant DNA methylation. Recent advancements in the rapidly evolving field of cancer epigenetics have described extensive reprogramming of every component of the epigenetic machinery in cancer, such as DNA demethylation. Hypomethylation of the genome largely affects the intergenic and intronic regions of the DNA, particularly repeat sequences and transposable elements, and it is believed to result in chromosomal instability and increased mutation events. Therefore, we propose that R/G-chromosome band boundaries, which correspond with the early/late-switch regions of replication timing and a transition in relative GC content, correspond to "unstable" genomic regions in which concentrated occurrences of repetitive sequences and transposable elements including LINE and Alu elements are hypomethylated during tumorigenesis. In this review, we discuss the current understanding of alterations in DNA methylation composing the epigenetic landscape that occurs in cancer compared with normal cells, the roles of these changes in cancer initiation and progression, and the potential use of this knowledge in designing more effective treatment strategies.
Collapse
Affiliation(s)
- Yoshihisa Watanabe
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | | |
Collapse
|
9
|
Zeitz MJ, Marella NV, Malyavantham KS, Goetze S, Bode J, Raska I, Berezney R. Organization of the amplified type I interferon gene cluster and associated chromosome regions in the interphase nucleus of human osteosarcoma cells. Chromosome Res 2009; 17:305-19. [PMID: 19283497 DOI: 10.1007/s10577-009-9023-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 12/01/2008] [Accepted: 12/01/2008] [Indexed: 12/13/2022]
Abstract
The organization of the amplified type I interferon (IFN) gene cluster and surrounding chromosomal regions was studied in the interphase cell nucleus of the human osteosarcoma cell line MG63. Rather than being arranged in a linear ladder-like array as in mitotic chromosomes, a cluster of approximately 15 foci was detected that was preferentially associated along the periphery of both the cell nucleus and a chromosome territory containing components of chromosomes 4, 8, and 9. Interspersed within the IFN gene foci were corresponding foci derived from amplified centromere 4 and 9 sequences. Other copies of chromosomes 4 and 8 were frequently detected in pairs or higher-order arrays lacking discrete borders between the chromosomes. In contrast, while chromosomes 4 and 8 in normal WI38 human fibroblast and osteoblast cells were occasionally found to associate closely, discrete boundaries were always detected between the two. DNA replication timing of the IFN gene cluster in early- to mid-S phase of WI38 cells was conserved in the amplified IFN gene cluster of MG63. Quantitative RT-PCR demonstrated a approximately 3-fold increase in IFN beta transcripts in MG63 compared with WI38 and RNA/DNA FISH experiments revealed 1-5 foci of IFN beta transcripts per cell with only approximately 5% of the cells showing foci within the highly amplified IFN gene cluster.
Collapse
Affiliation(s)
- Michael J Zeitz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Watanabe Y, Abe T, Ikemura T, Maekawa M. Relationships between replication timing and GC content of cancer-related genes on human chromosomes 11q and 21q. Gene 2009; 433:26-31. [DOI: 10.1016/j.gene.2008.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/28/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
11
|
Abstract
Although early replication has long been associated with accessible chromatin, replication timing is not included in most discussions of epigenetic marks. This is partly due to a lack of understanding of the mechanisms behind this association but the issue has also been confounded by studies concluding that there are very few changes in replication timing during development. Recently, the first genome-wide study of replication timing during the course of differentiation revealed extensive changes that were strongly associated with changes in transcriptional activity and subnuclear organization. Domains of temporally coordinate replication delineate discrete units of chromosome structure and function that are characteristic of particular differentiation states. Hence, although we are still a long way from understanding the functional significance of replication timing, it is clear that replication timing is a distinct epigenetic signature of cell differentiation state.
Collapse
Affiliation(s)
- Ichiro Hiratani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
12
|
Watanabe Y, Shibata K, Ikemura T, Maekawa M. Replication timing of extremely large genes on human chromosomes 11q and 21q. Gene 2008; 421:74-80. [DOI: 10.1016/j.gene.2008.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 01/10/2023]
|
13
|
Schmidt T, Frishman D. Assignment of isochores for all completely sequenced vertebrate genomes using a consensus. Genome Biol 2008; 9:R104. [PMID: 18590563 PMCID: PMC2481423 DOI: 10.1186/gb-2008-9-6-r104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/22/2008] [Accepted: 06/30/2008] [Indexed: 11/16/2022] Open
Abstract
A new consensus isochore assignment method and a database of isochore maps for all completely sequenced vertebrate genomes are presented. We show that although the currently available isochore mapping methods agree on the isochore classification of about two-thirds of the human DNA, they produce significantly different results with regard to the location of isochore boundaries and isochore length distribution. We present a new consensus isochore assignment method based on majority voting and provide IsoBase, a comprehensive on-line database of isochore maps for all completely sequenced vertebrate genomes.
Collapse
Affiliation(s)
- Thorsten Schmidt
- Department of Genome-Oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, D-85350 Freising, Germany
| | | |
Collapse
|
14
|
Gao F, Zhang CT. Prediction of replication time zones at single nucleotide resolution in the human genome. FEBS Lett 2008; 582:2441-4. [PMID: 18555015 DOI: 10.1016/j.febslet.2008.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 10/22/2022]
Abstract
The human genome is structured at multiple levels: it is organized into a series of replication time zones, and meanwhile it is composed of isochores. Accumulating evidence suggests a match between these two genome features. Based on newly developed software GC-Profile, we obtained a complete coverage of the human genome by 3198 isochores with boundaries at single nucleotide resolution. Interestingly, the experimentally confirmed replication timing sites in the regions of 1p36.1, 6p21.32, 17q11.2 and 22q12.1 nearly all coincide with the determined isochore boundaries. The precise boundaries of the 3198 isochores are available via the website: http://tubic.tju.edu.cn/isomap/.
Collapse
Affiliation(s)
- Feng Gao
- Department of Physics, Tianjin University, Tianjin 300072, China
| | | |
Collapse
|
15
|
Zheng WX, Zhang CT. Biological Implications of Isochore Boundaries in the Human Genome. J Biomol Struct Dyn 2008; 25:327-36. [DOI: 10.1080/07391102.2008.10507181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Abstract
In higher eukaryotes there is a link between time of replication and transcription. It is generally accepted that genes that are actively transcribed are replicated in the first half of S phase while inactive genes replicate in the second half of S phase. We have recently reported that in normal human fibroblasts there are some functionally related genes that replicate at the same time in S phase. This had been previously reported for functionally related genes that are located in clusters, for example the alpha- and beta-globin complexes. We have shown, however, that this also occurs with some functionally related genes that are not organized in a cluster, but rather are distributed throughout the genome. For example, using GOstat analysis of data from our and other groups, we found an overrepresentation of genes involved in the apoptotic process among sequences that are replicated very early (approximately in the first hour of S phase) in both fibroblasts and lymphoblastoid cells. This finding leads us to question how and why the replication of genes in the apoptotic pathway is temporally organized in this manner. Here we discuss the possible explanations and implications of this observation.
Collapse
Affiliation(s)
- Stephanie M Cohen
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7525, USA
| | | | | |
Collapse
|
17
|
Watanabe Y, Shibata K, Sugimura H, Maekawa M. p53-Dependent change in replication timing of the human genome. Biochem Biophys Res Commun 2007; 364:289-93. [PMID: 17949684 DOI: 10.1016/j.bbrc.2007.09.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 09/30/2007] [Indexed: 10/22/2022]
|
18
|
Karnani N, Taylor C, Malhotra A, Dutta A. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res 2007; 17:865-76. [PMID: 17568004 PMCID: PMC1891345 DOI: 10.1101/gr.5427007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In eukaryotes, accurate control of replication time is required for the efficient completion of S phase and maintenance of genome stability. We present a high-resolution genome-tiling array-based profile of replication timing for approximately 1% of the human genome studied by The ENCODE Project Consortium. Twenty percent of the investigated segments replicate asynchronously (pan-S). These areas are rich in genes and CpG islands, features they share with early-replicating loci. Interphase FISH showed that pan-S replication is a consequence of interallelic variation in replication time and is not an artifact derived from a specific cell cycle synchronization method or from aneuploidy. The interallelic variation in replication time is likely due to interallelic variation in chromatin environment, because while the early- or late-replicating areas were exclusively enriched in activating or repressing histone modifications, respectively, the pan-S areas had both types of histone modification. The replication profile of the chromosomes identified contiguous chromosomal segments of hundreds of kilobases separated by smaller segments where the replication time underwent an acute transition. Close examination of one such segment demonstrated that the delay of replication time was accompanied by a decrease in level of gene expression and appearance of repressive chromatin marks, suggesting that the transition segments are boundary elements separating chromosomal domains with different chromatin environments.
Collapse
Affiliation(s)
- Neerja Karnani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Christopher Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Computer Science, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Ankit Malhotra
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
- Department of Computer Science, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
- Corresponding author.E-mail ; fax (434) 924-5069
| |
Collapse
|
19
|
Schmegner C, Hameister H, Vogel W, Assum G. Isochores and replication time zones: a perfect match. Cytogenet Genome Res 2007; 116:167-72. [PMID: 17317955 DOI: 10.1159/000098182] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/10/2006] [Indexed: 11/19/2022] Open
Abstract
The mammalian genome is not a random sequence but shows a specific, evolutionarily conserved structure that becomes manifest in its isochore pattern. Isochores, i.e. stretches of DNA with a distinct sequence composition and thus a specific GC content, cause the chromosomal banding pattern. This fundamental level of genome organization is related to several functional features like the replication timing of a DNA sequence. GC richness of genomic regions generally corresponds to an early replication time during S phase. Recently, we demonstrated this interdependency on a molecular level for an abrupt transition from a GC-poor isochore to a GC-rich one in the NF1 gene region; this isochore boundary also separates late from early replicating chromatin. Now, we analyzed another genomic region containing four isochores separated by three sharp isochore transitions. Again, the GC-rich isochores were found to be replicating early, the GC-poor isochores late in S phase; one of the replication time zones was discovered to consist of one single replicon. At the boundaries between isochores, that all show no special sequence elements, the replication machinery stopped for several hours. Thus, our results emphasize the importance of isochores as functional genomic units, and of isochore transitions as genomic landmarks with a key function for chromosome organization and basic biological properties.
Collapse
Affiliation(s)
- C Schmegner
- Institut fur Humangenetik, Universitat Ulm, Ulm, Germany.
| | | | | | | |
Collapse
|
20
|
Sugimura K, Takebayashi SI, Ogata S, Taguchi H, Okumura K. Non-denaturing fluorescence in situ hybridization to find replication origins in a specific genome region on the DNA fiber. Biosci Biotechnol Biochem 2007; 71:627-32. [PMID: 17284819 DOI: 10.1271/bbb.60662] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence in situ hybridization (FISH) is a useful method of determining the replication timing of specific genomic loci in mammals and of delineating replicon structures on DNA fibers in combination with in vivo replication labeling. In the case of simultaneous detection of a FISH probe and replicated forks, however, the DNA fibers are damaged by the DNA denaturation step for FISH detection, and the resulting fragmented fluorescence signals prevent analysis at high resolution. Here we found that hybridization of the probe to the genomic DNA was possible even under non-denaturing condition, but only at the time its genomic region replicated. Using the method designated non-denaturing FISH, we determined the replication timing of a specific BAC clone and the standard clones, and found that at least one replication origin exists within the genomic region covered by its BAC clone as an example.
Collapse
Affiliation(s)
- Kazuto Sugimura
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | | | | | | | | |
Collapse
|
21
|
Cohen SM, Furey TS, Doggett NA, Kaufman DG. Genome-wide sequence and functional analysis of early replicating DNA in normal human fibroblasts. BMC Genomics 2006; 7:301. [PMID: 17134498 PMCID: PMC1702361 DOI: 10.1186/1471-2164-7-301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 11/29/2006] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The replication of mammalian genomic DNA during the S phase is a highly coordinated process that occurs in a programmed manner. Recent studies have begun to elucidate the pattern of replication timing on a genomic scale. Using a combination of experimental and computational techniques, we identified a genome-wide set of the earliest replicating sequences. This was accomplished by first creating a cosmid library containing DNA enriched in sequences that replicate early in the S phase of normal human fibroblasts. Clone ends were then sequenced and aligned to the human genome. RESULTS By clustering adjacent or overlapping early replicating clones, we identified 1759 "islands" averaging 100 kb in length, allowing us to perform the most detailed analysis to date of DNA characteristics and genes contained within early replicating DNA. Islands are enriched in open chromatin, transcription related elements, and Alu repetitive elements, with an underrepresentation of LINE elements. In addition, we found a paucity of LTR retroposons, DNA transposon sequences, and an enrichment in all classes of tandem repeats, except for dinucleotides. CONCLUSION An analysis of genes associated with islands revealed that nearly half of all genes in the WNT family, and a number of genes in the base excision repair pathway, including four of ten DNA glycosylases, were associated with island sequences. Also, we found an overrepresentation of members of apoptosis-associated genes in very early replicating sequences from both fibroblast and lymphoblastoid cells. These data suggest that there is a temporal pattern of replication for some functionally related genes.
Collapse
Affiliation(s)
- Stephanie M Cohen
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Terrence S Furey
- Institute for Genome Sciences and Policy, Duke University, Durham, NC, 27708, USA
| | - Norman A Doggett
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David G Kaufman
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
22
|
Schmegner C, Hoegel J, Vogel W, Assum G. The rate, not the spectrum, of base pair substitutions changes at a GC-content transition in the human NF1 gene region: implications for the evolution of the mammalian genome structure. Genetics 2006; 175:421-8. [PMID: 17057231 PMCID: PMC1775011 DOI: 10.1534/genetics.106.064386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human genome is composed of long stretches of DNA with distinct GC contents, called isochores or GC-content domains. A boundary between two GC-content domains in the human NF1 gene region is also a boundary between domains of early- and late-replicating sequences and of regions with high and low recombination frequencies. The perfect conservation of the GC-content distribution in this region between human and mouse demonstrates that GC-content stabilizing forces must act regionally on a fine scale at this locus. To further elucidate the nature of these forces, we report here on the spectrum of human SNPs and base pair substitutions between human and chimpanzee. The results show that the mutation rate changes exactly at the GC-content transition zone from low values in the GC-poor sequences to high values in GC-rich ones. The GC content of the GC-poor sequences can be explained by a bias in favor of GC > AT mutations, whereas the GC content of the GC-rich segment may result from a fixation bias in favor of AT > GC substitutions. This fixation bias may be explained by direct selection by the GC content or by biased gene conversion.
Collapse
|
23
|
Ko WY, Piao S, Akashi H. Strong regional heterogeneity in base composition evolution on the Drosophila X chromosome. Genetics 2006; 174:349-62. [PMID: 16547109 PMCID: PMC1569809 DOI: 10.1534/genetics.105.054346] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 05/08/2006] [Indexed: 11/18/2022] Open
Abstract
Fluctuations in base composition appear to be prevalent in Drosophila and mammal genome evolution, but their timescale, genomic breadth, and causes remain obscure. Here, we study base composition evolution within the X chromosomes of Drosophila melanogaster and five of its close relatives. Substitutions were inferred on six extant and two ancestral lineages for 14 near-telomeric and 9 nontelomeric genes. GC content evolution is highly variable both within the genome and within the phylogenetic tree. In the lineages leading to D. yakuba and D. orena, GC content at silent sites has increased rapidly near telomeres, but has decreased in more proximal (nontelomeric) regions. D. orena shows a 17-fold excess of GC-increasing vs. AT-increasing synonymous changes within a small (approximately 130-kb) region close to the telomeric end. Base composition changes within introns are consistent with changes in mutation patterns, but stronger GC elevation at synonymous sites suggests contributions of natural selection or biased gene conversion. The Drosophila yakuba lineage shows a less extreme elevation of GC content distributed over a wider genetic region (approximately 1.2 Mb). A lack of change in GC content for most introns within this region suggests a role of natural selection in localized base composition fluctuations.
Collapse
Affiliation(s)
- Wen-Ya Ko
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
24
|
Holmquist GP, Ashley T. Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genome Res 2006; 114:96-125. [PMID: 16825762 DOI: 10.1159/000093326] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/15/2005] [Indexed: 11/19/2022] Open
Abstract
Histone modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution.
Collapse
Affiliation(s)
- G P Holmquist
- Biology Department, City of Hope Medical Center, Duarte, CA, USA.
| | | |
Collapse
|
25
|
Ohno M, Miura T, Furuichi M, Tominaga Y, Tsuchimoto D, Sakumi K, Nakabeppu Y. A genome-wide distribution of 8-oxoguanine correlates with the preferred regions for recombination and single nucleotide polymorphism in the human genome. Genome Res 2006; 16:567-75. [PMID: 16651663 PMCID: PMC1457041 DOI: 10.1101/gr.4769606] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
8-Oxoguanine (8-oxoG), a major spontaneous form of oxidative DNA damage, is considered to be a natural cause of genomic diversity in organisms because of its mutagenic potential. The steady-state level of 8-oxoG in the nuclear genome of a human cell has been estimated to be several residues per 10(6) guanines. In the present study, to clarify the genome-wide distribution of 8-oxoG in the steady state, we performed fluorescence in situ detection of 8-oxoG on human metaphase chromosomes using a monoclonal antibody. Multiple dot-like signals were observed on each metaphase chromosome. We then mapped the position of the signal at megabase resolution referring to the cytogenetically identified chromosomal band, and demonstrated that 8-oxoG is unevenly distributed in the normal human genome and that the distribution pattern is conserved among different individuals. Moreover, we found that regions with a high frequency of recombination and single nucleotide polymorphisms (SNPs) are preferentially located within chromosomal regions with a high density of 8-oxoG. Our findings suggest that 8-oxoG is one of the main causes of frequent recombinations and SNPs in the human genome, which largely contribute to the genomic diversity in human beings.
Collapse
Affiliation(s)
- Mizuki Ohno
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Tomofumi Miura
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
- Department of Neuropsychiatry, Graduate School of Medical Sciences
| | - Masato Furuichi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
- Radioisotope Center, Kyushu University, Fukuoka 812-8582, Japan
| | - Yohei Tominaga
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Daisuke Tsuchimoto
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
- Corresponding author.E-mail ; fax +81-92-642-6791
| |
Collapse
|
26
|
Abstract
The availability of the complete chicken genome sequence provides an unprecedented opportunity to study the global genome organization at the sequence level. Delineating compositionally homogeneous G + C domains in DNA sequences can provide much insight into the understanding of the organization and biological functions of the chicken genome. A new segmentation algorithm, which is simple and fast, has been proposed to partition a given genome or DNA sequence into compositionally distinct domains. By applying the new segmentation algorithm to the draft chicken genome sequence, the mosaic organization of the chicken genome can be confirmed at the sequence level. It is shown herein that the chicken genome is also characterized by a mosaic structure of isochores, long DNA segments that are fairly homogeneous in the G + C content. Consequently, 25 isochores longer than 2 Mb (megabases) have been identified in the chicken genome. These isochores have a fairly homogeneous G + C content and often correspond to meaningful biological units. With the aid of the technique of cumulative GC profile, we proposed an intuitive picture to display the distribution of segmentation points. The relationships between G + C content and the distributions of genes (CpG islands, and other genomic elements) were analyzed in a perceivable manner. The cumulative GC profile, equipped with the new segmentation algorithm, would be an appropriate starting point for analyzing the isochore structures of higher eukaryotic genomes.
Collapse
Affiliation(s)
- Feng Gao
- Department of Physics, Tianjin University, China
| | | |
Collapse
|
27
|
Zhang CT, Gao F, Zhang R. Segmentation algorithm for DNA sequences. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:041917. [PMID: 16383430 DOI: 10.1103/physreve.72.041917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Indexed: 05/05/2023]
Abstract
A new measure, to quantify the difference between two probability distributions, called the quadratic divergence, has been proposed. Based on the quadratic divergence, a new segmentation algorithm to partition a given genome or DNA sequence into compositionally distinct domains is put forward. The new algorithm has been applied to segment the 24 human chromosome sequences, and the boundaries of isochores for each chromosome were obtained. Compared with the results obtained by using the entropic segmentation algorithm based on the Jensen-Shannon divergence, both algorithms resulted in all identical coordinates of segmentation points. An explanation of the equivalence of the two segmentation algorithms is presented. The new algorithm has a number of advantages. Particularly, it is much simpler and faster than the entropy-based method. Therefore, the new algorithm is more suitable for analyzing long genome sequences, such as human and other newly sequenced eukaryotic genome sequences.
Collapse
Affiliation(s)
- Chun-Ting Zhang
- Department of Physics, Tianjin University, Tianjin 300072, China.
| | | | | |
Collapse
|
28
|
Schmegner C, Berger A, Vogel W, Hameister H, Assum G. An isochore transition zone in the NF1 gene region is a conserved landmark of chromosome structure and function. Genomics 2005; 86:439-45. [PMID: 16081245 DOI: 10.1016/j.ygeno.2005.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 06/15/2005] [Indexed: 11/30/2022]
Abstract
The mammalian genome is organized as a mosaic of isochores, stretches of DNA with a distinct sequence composition. Isochores form the basis of the chromosomal banding pattern, which is tightly correlated with a number of structural and functional features. We have recently demonstrated that the transition from a GC-poor isochore to a GC-rich one in the NF1 gene region occurs within 5 kb and demarcates genomic regions with high and low recombination frequency. We now report that the same transition zone separates early replicating from late replicating chromatin on the molecular level. At the isochore transition the replication fork is stalled in mid-S phase and can be visualized by fiber-FISH techniques as a Y-shaped structure. The switch in GC content and in replication timing is conserved between human and mouse, emphasizing the importance of the transition zones as landmarks of chromosome organization and function.
Collapse
Affiliation(s)
- Claudia Schmegner
- Abteilung Humangenetik, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
29
|
Zhang CT, Zhang R. Isochore structures in the mouse genome. Genomics 2004; 83:384-94. [PMID: 14962664 DOI: 10.1016/j.ygeno.2003.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Accepted: 09/04/2003] [Indexed: 10/26/2022]
Abstract
The distribution of the G+C content in the mouse genome has been studied using a windowless technique. We have found that: (i). Abrupt variations of the G+C content from a GC-rich region to a GC-poor region, and vice versa, occur frequently at some sites along the sequence of the mouse genome. (ii). Long domains with relatively homogeneous G+C content (isochores) exist, which usually have sharp boundaries. Consequently, 28 isochores longer than 1 Mb have been identified in the mouse genome. A homogeneity index was used to quantify the variations of the G+C content within isochores. The precise boundaries, sizes, and G+C contents of these isochores have been determined. The windowless technique for the G+C content computation was also used to analyze the DNA sequence containing the mouse MHC region, which has a GC-poor isochore. This isochore is located at the central part of the sequence with boundaries at 468459 and 812716 bp, where the sequence is extended from the centromeric end to the telomeric end. In addition, the analysis of a segment of the rat genome shows that the rat genome also has clear isochore structures.
Collapse
Affiliation(s)
- Chun-Ting Zhang
- Department of Physics, Tianjin University, Tianjin 300072, China.
| | | |
Collapse
|
30
|
Takebayashi SI, Sugimura K, Saito T, Sato C, Fukushima Y, Taguchi H, Okumura K. Regulation of replication at the R/G chromosomal band boundary and pericentromeric heterochromatin of mammalian cells. Exp Cell Res 2004; 304:162-74. [PMID: 15707583 DOI: 10.1016/j.yexcr.2004.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2004] [Revised: 10/17/2004] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
Mammalian chromosomes consist of multiple replicons; however, in contrast to yeast, the details of this replication process (origin firing, fork progression and termination) relative to specific chromosomal domains remain unclear. Using direct visualization of DNA fibers, here we show that the rate of replication fork movement typically decreases in the early-mid S phase when the replication fork proceeds through the R/G chromosomal band boundary and pericentromeric heterochromatin. To support this, fluorescence in situ hybridization (FISH)-based replication profiles at the human 1q31.1 (R-band)-32.1 (G-band) regions revealed that replication timing switched around at the putative R/G chromosomal band boundary predicted by marked changes in GC content at the sequence level. Thus, the slowdown of replication fork movement is thought to be the general property of the band boundaries separating the functionally different chromosomal domains. By simultaneous visualization of replication fork movement and pericentromeric heterochromatin sequences on DNA fibers, we observed that this region is duplicated by many replication forks, some of which proceed unidirectionally, that originate from clustered replication origins. We showed that histone hyperacetylation is tightly associated with changes in the replication timing of pericentromeric heterochromatin induced by 5-aza-2'-deoxycytidine treatment. These results suggest that, similar to the yeast system, histone modification is involved in controlling the timing of origin firing in mammals.
Collapse
Affiliation(s)
- Shin-Ichiro Takebayashi
- Laboratory of Molecular and Cellular Biology, Faculty of Bioresources, Mie University, Tsu, Mie 514-8507, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhang L, Kasif S, Cantor CR, Broude NE. GC/AT-content spikes as genomic punctuation marks. Proc Natl Acad Sci U S A 2004; 101:16855-60. [PMID: 15548610 PMCID: PMC534751 DOI: 10.1073/pnas.0407821101] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large-scale analysis of the GC-content distribution at the gene level reveals both common features and basic differences in genomes of different groups of species. Sharp changes in GC content are detected at the transcription boundaries for all species analyzed, including human, mouse, rat, chicken, fruit fly, and worm. However, two substantially distinct groups of GC-content profiles can be recognized: warm-blooded vertebrates including human, mouse, rat, and chicken, and invertebrates including fruit fly and worm. In vertebrates, sharp positive and negative spikes of GC content are observed at the transcription start and stop sites, respectively, and there is also a progressive decrease in GC content from the 5' untranslated region to the 3' untranslated region along the gene. In invertebrates, the positive and negative GC-content spikes at the transcription start and stop sites are preceded by spikes of opposite value, and the highest GC content is found in the coding regions of the genes. Cross-correlation analysis indicates high frequencies of GC-content spikes at transcription start and stop sites. The strong conservation of this genomic feature seen in comparisons of the human/mouse and human/rat orthologs, and the clustering of genes with GC-content spikes on chromosomes imply a biological function. The GC-content spikes at transcription boundaries may reflect a general principle of genomic punctuation. Our analysis also provides means for identifying these GC-content spikes in individual genomic sequences.
Collapse
Affiliation(s)
- Lingang Zhang
- Center for Advanced Biotechnology, Boston University, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
32
|
Watanabe Y, Ikemura T, Sugimura H. Amplicons on human chromosome 11q are located in the early/late-switch regions of replication timing. Genomics 2004; 84:796-805. [PMID: 15475258 DOI: 10.1016/j.ygeno.2004.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 08/04/2004] [Indexed: 11/16/2022]
Abstract
Amplicons are frequently found in human tumor genomes, but the mechanism of their generation is still poorly understood. We previously measured the replication timing of the genes along the entire length of human chromosomes 11q and 21q and found that many "disease-related" genes are located in timing-transition regions. In this study, further scrutiny of the updated replication-timing map of human chromosome 11q revealed that both amplicons on human chromosomal bands 11q13 and 11q22 are located in the early/late-switch regions of replication timing in two human cell lines (THP-1 and Jurkat). Moreover, examination of synteny in the human and mouse genomes revealed that synteny breakage in both genomes occurred primarily at the early/late-switch regions of replication timing that we had identified. In conclusion, we found that the early/late-switch regions of replication timing coincided with "unstable" regions of the genome.
Collapse
Affiliation(s)
- Yoshihisa Watanabe
- First Department of Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | |
Collapse
|
33
|
Paces J, Zíka R, Paces V, Pavlícek A, Clay O, Bernardi G. Representing GC variation along eukaryotic chromosomes. Gene 2004; 333:135-41. [PMID: 15177688 DOI: 10.1016/j.gene.2004.02.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 02/10/2004] [Indexed: 02/03/2023]
Abstract
Genome sequencing now permits direct visual representation, at any scale, of GC heterogeneity along the chromosomes of several higher eukaryotes. Plots can be easily obtained from the chromosomal sequences, yet sequence releases of mammalian or plant chromosomes still tend to use small scales or window sizes that obscure important large-scale compositional features. To faithfully reveal, at one glance, the compositional variation at a given scale, we have devised a simple scheme that combines line plots with color-coded shading of the regions underneath the plots. The scheme can be applied to different eukaryotic genomes to facilitate their comparison, as illustrated here for a sample of chromosomes chosen from seven selected species. As a complement to a previously published compact view of isochores in the human genome sequence, we include here an analogous map for the recently sequenced mouse genome, and discuss the contribution of repetitive DNA to the GC variation along the plots. Supplementary information, including a database of color-coded GC profiles for all recently sequenced eukaryotes and the program draw_chromosomes_gc.pl used to obtain them, are available at.
Collapse
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo 2, Prague CZ-16637, Czech Republic
| | | | | | | | | | | |
Collapse
|
34
|
Zhang R, Zhang CT. Isochore Structures in the Genome of the Plant Arabidopsis thaliana. J Mol Evol 2004; 59:227-38. [PMID: 15486696 DOI: 10.1007/s00239-004-2617-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 02/10/2004] [Indexed: 10/26/2022]
Abstract
Arabidopsis thaliana is an important model system for the study of plant biology. We have analyzed the complete genome sequences of Arabidopsis by using a newly developed windowless method for the GC content computation, the cumulative GC profile. It is shown that the Arabidopsis genome is organized into a mosaic structure of isochores. All the centromeric regions are located in GC-rich isochores, called centromere-isochores, which are characterized by a high GC content but low gene and T-DNA insertion densities. This characteristic distinguishes centromere-isochores from the other class of GC-rich isochores, called GC-isochores, which have high gene and T-DNA insertion densities. Consequently, 15 isochores have been identified, i.e., 7 AT-isochores, 3 GC-isochores, and 5 centromere-isochores. The genes in centromere-isochores, which have the highest GC content, have much shorter intron lengths and lower intron numbers, compared to those of the other two types. There is also considerable difference in the numbers and lengths of transposable elements (TEs) between AT and GC-isochores, i.e., the TE number (length) of AT-isochores is 6.3 (7.3) times that of GC-isochores. It is generally believed that TEs are accumulated in the regions surrounding the centromeres. However, within these TE-rich regions, there are regions of extremely low TE numbers (TE deserts), which correspond to the positions of centromere-isochores. In addition, a heterochromatic knob is located at the boundary of an AT-isochore. Furthermore, we show that the differences in GC content among isochores are mainly due to the GC content variation of introns, the third codon positions and intergenic regions.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Epidemiology and Biostatistics, Tianjin Cancer Institute and Hospital, 300060 Tianjin, China
| | | |
Collapse
|
35
|
Oliver JL, Carpena P, Hackenberg M, Bernaola-Galván P. IsoFinder: computational prediction of isochores in genome sequences. Nucleic Acids Res 2004; 32:W287-92. [PMID: 15215396 PMCID: PMC441537 DOI: 10.1093/nar/gkh399] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 03/04/2004] [Accepted: 03/25/2004] [Indexed: 11/13/2022] Open
Abstract
Isochores are long genome segments homogeneous in G+C. Here, we describe an algorithm (IsoFinder) running on the web (http://bioinfo2.ugr.es/IsoF/isofinder.html) able to predict isochores at the sequence level. We move a sliding pointer from left to right along the DNA sequence. At each position of the pointer, we compute the mean G+C values to the left and to the right of the pointer. We then determine the position of the pointer for which the difference between left and right mean values (as measured by the t-statistic) reaches its maximum. Next, we determine the statistical significance of this potential cutting point, after filtering out short-scale heterogeneities below 3 kb by applying a coarse-graining technique. Finally, the program checks whether this significance exceeds a probability threshold. If so, the sequence is cut at this point into two subsequences; otherwise, the sequence remains undivided. The procedure continues recursively for each of the two resulting subsequences created by each cut. This leads to the decomposition of a chromosome sequence into long homogeneous genome regions (LHGRs) with well-defined mean G+C contents, each significantly different from the G+C contents of the adjacent LHGRs. Most LHGRs can be identified with Bernardi's isochores, given their correlation with biological features such as gene density, SINE and LINE (short, long interspersed repetitive elements) densities, recombination rate or single nucleotide polymorphism variability. The resulting isochore maps are available at our web site (http://bioinfo2.ugr.es/isochores/), and also at the UCSC Genome Browser (http://genome.cse.ucsc.edu/).
Collapse
Affiliation(s)
- José L Oliver
- Departamento de Genética, Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Spain.
| | | | | | | |
Collapse
|
36
|
Wen SY, Zhang CT. Identification of isochore boundaries in the human genome using the technique of wavelet multiresolution analysis. Biochem Biophys Res Commun 2004; 311:215-22. [PMID: 14575716 DOI: 10.1016/j.bbrc.2003.09.198] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Incorporated with the Z curve method, the technique of wavelet multiresolution (also known as multiscale) analysis has been proposed to identify the boundaries of isochores in the human genome. The human MHC sequence and the longest contigs of human chromosomes 21 and 22 are used as examples. The boundary between the isochores of Class III and Class II in the MHC sequence has been detected and found to be situated at the position 2,490,368bp. This result is in good agreement with the experimental evidence. An isochore with a length of about 7Mb in chromosome 21 has been identified and found to be gene- and Alu-poor. We have also found that the G+C content of chromosome 21 is more homogeneous than that of chromosome 22. Compared with the window-based methods, the present method has the highest resolution for identifying the boundaries of isochores, even at a scale of single base. Compared with the entropic segmentation method, the present method has the merits of more intuitiveness and less calculations. The important conclusion drawn in this study is that the segmentation points, at which the G+C content undergoes relatively dramatic changes, do exist in the human genome. These 'singularity' points may be considered to be candidates of isochore boundaries in the human genome. The method presented is a general one and can be used to analyze any other genomes.
Collapse
|
37
|
Brylawski BP, Cohen SM, Horne H, Irani N, Cordeiro-Stone M, Kaufman DG. Transitions in replication timing in a 340 kb region of human chromosomal R-Band 1p36.1. J Cell Biochem 2004; 92:755-69. [PMID: 15211573 DOI: 10.1002/jcb.20101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA replication is initiated within a few chromosomal bands as normal human fibroblasts enter the S phase. In the present study, we determined the timing of replication of sequences along a 340 kb region in one of these bands, 1p36.13, an R band on chromosome 1. Within this region, we identified a segment of DNA (approximately 140 kb) that is replicated in the first hour of the S phase and is flanked by segments replicated 1-2 h later. Using a quantitative PCR-based assay to measure sequence abundance in size-fractionated (900-1,700 nt) nascent DNA, we mapped two functional origins of replication separated by 54 kb and firing 1 h apart. One origin was found to be functional during the first hour of S and was located within a CpG island associated with a predicted gene of unknown function (Genscan NT_004610.2). The second origin was activated in the second hour of S and was mapped to a CpG island near the promoter of the aldehyde dehydrogenase 4A1 (ALDH4A1) gene. At the opposite end of the early replicating segment, a more gradual change in replication timing was observed within the span of approximately 100 kb. These data suggest that DNA replication in adjacent segments of band 1p36.13 is organized differently, perhaps in terms of replicon number and length, or rate of fork progression. In the transition areas that mark the boundaries between different temporal domains, the replication forks initiated in the early replicated region are likely to pause or delay progression before replication of the 340 kb contig is completed.
Collapse
Affiliation(s)
- Bruna P Brylawski
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7525, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The distribution of the G+C content in the human genome has been studied by using a windowless technique derived from the Z curve method. The most important findings presented in this paper are twofold. First, abrupt variations of the G+C content along human chromosome sequences are the main variation patterns of G+C content. It is found that at some sites, the G+C content undergoes abrupt changes from a G+C-rich region to a G+C-poor region alternatively and vice versa. Second, it is shown that long domains with relatively homogeneous G+C content along each chromosome do exist. These domains are thought to be isochores, which usually have sharp boundaries. Consequently, 56 isochores longer than 3 Mb have been identified in chromosomes 1-22, X and Y. Boundaries, size and G+C content of each isochore identified are listed in detail. As an example to demonstrate the power of the method, the boundary between the Classes III and II isochores of the MHC sequence has been determined and found to be at 2,477,936, which is in good agreement with the experimental evidence. A homogeneity index is introduced to measure the homogeneity of G+C content in isochores. We emphasize that the homogeneity of G+C content is relative. The isochores in which the G+C content keeps absolutely constant do not exist. Isochore structures appear to be a basic organization of the human genome. Due to the relevance to many important biological functions, the clarification of isochore structures will provide much insight into the understanding of the human genome.
Collapse
Affiliation(s)
- Chun-Ting Zhang
- Department of Physics, Tianjin University, Nankai District, Tianjin 300072, China.
| | | |
Collapse
|
39
|
Affiliation(s)
- Bernard de Massy
- Institut de Génétique Humaine, 141 rue de la Cardonille, 34396 Montpellier cedex 5, France.
| |
Collapse
|
40
|
Clay O, Douady CJ, Carels N, Hughes S, Bucciarelli G, Bernardi G. Using analytical ultracentrifugation to study compositional variation in vertebrate genomes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2003; 32:418-26. [PMID: 12684711 DOI: 10.1007/s00249-003-0294-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Revised: 12/19/2002] [Accepted: 01/28/2003] [Indexed: 10/26/2022]
Abstract
Although much attention has recently been directed to analytical ultracentrifugation (AUC), the revival of interest has hardly addressed the applications of this technology in genome analysis, and the extent to which AUC studies can quickly and effectively complement modern sequence-based analyses of genomes, e.g. by anticipating, extending or checking results that can be obtained by cloning and sequencing. In particular, AUC yields a quick overview of the base compositional structure of a species' genome even if no DNA sequences are available and the species is unlikely to be sequenced in the near future. The link between AUC and DNA sequences dates back to 1959, when a precise linear relation was discovered between the GC (guanine+cytosine) level of DNA fragments and their buoyant density in CsCl as measured at sedimentation equilibrium. A 24-hour AUC run of a high molecular weight sample of a species' total DNA already yields the GC distribution of its genome. AUC methods based on this principle remain sensitive tools in the age of genomics, and can now be fine-tuned by comparing CsCl absorbance profiles with the corresponding sequence histograms. The CsCl profiles of vertebrates allow insight into structural and functional properties that correlate with base composition, and their changes during vertebrate evolution can be monitored by comparing CsCl profiles of different taxa. Such comparisons also allow consistency checks of phylogenetic hypotheses at different taxonomic levels. We here discuss some of the information that can be deduced from CsCl profiles, with emphasis on mammalian DNAs.
Collapse
Affiliation(s)
- Oliver Clay
- Laboratory of Molecular Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Itoh Y, Mizuno S. Molecular and cytological characterization of SspI-family repetitive sequence on the chicken W chromosome. Chromosome Res 2003; 10:499-511. [PMID: 12489831 DOI: 10.1023/a:1020944414750] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A genomic clone, pWS44, isolated from the chicken W chromosome-specific genomic library contained a partial (226-bp) sequence of a novel SspI-family repetitive sequence. A genomic clone, pWPRS09, containing a 508-bp SspI fragment (a repeating unit of the family) was subsequently obtained and sequenced. This 0.5-kb unit is tandemly repeated about 11,300 times. FISH to mitotic and lampbrush W chromosomes indicates that the SspI-family is located on the chromomere 6 between heterochromatic and distal non-heterochromatic regions on the short arm. The SspI-family sequence was proved to be a good positional marker in FISH mapping of active genes in the non-heterochromatic region on the lampbrush W chromosome. The presence of SspI-family repetitive sequence is limited to the genus Gallus (chickens and jungle fowls). The 0.5-kb repeating unit contains a 120-bp stretch of polypurine/polypyrimidine sequence (GGAGA repeats), shows no DNA curvature, and rapid electrophoretic mobility in 4% polyacrylamide gel at 4 degrees C. The SspI-family forms a relatively diffused chromatin structure in nuclei. These features are distinctly different from those of XhoI- and EcoRI-family sequences on the W chromosome. The total amount of non-repetitive DNA in the chicken W chromosome is estimated to be about 10 Mb.
Collapse
Affiliation(s)
- Yuichiro Itoh
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | |
Collapse
|
42
|
Abstract
The eukaryotic genome is divided into well-defined DNA regions that are programmed to replicate at different times during S phase. Active genes are generally associated with early replication, whereas inactive genes replicate late. This expression pattern might be facilitated by the differential restructuring of chromatin at the time of replication in early or late S phase.
Collapse
Affiliation(s)
- Alon Goren
- Department of Cellular Biochemistry and Human Genetics, Hebrew University, Ein Kerem, Jerusalem 91120, Israel
| | | |
Collapse
|
43
|
Oliver JL, Carpena P, Román-Roldán R, Mata-Balaguer T, Mejías-Romero A, Hackenberg M, Bernaola-Galván P. Isochore chromosome maps of the human genome. Gene 2002; 300:117-27. [PMID: 12468093 DOI: 10.1016/s0378-1119(02)01034-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The human genome is a mosaic of isochores, which are long DNA segments (z.Gt;300 kbp) relatively homogeneous in G+C. Human isochores were first identified by density-gradient ultracentrifugation of bulk DNA, and differ in important features, e.g. genes are found predominantly in the GC-richest isochores. Here, we use a reliable segmentation method to partition the longest contigs in the human genome draft sequence into long homogeneous genome regions (LHGRs), thereby revealing the isochore structure of the human genome. The advantages of the isochore maps presented here are: (1) sequence heterogeneities at different scales are shown in the same plot; (2) pair-wise compositional differences between adjacent regions are all statistically significant; (3) isochore boundaries are accurately defined to single base pair resolution; and (4) both gradual and abrupt isochore boundaries are simultaneously revealed. Taking advantage of the wide sample of genome sequence analyzed, we investigate the correspondence between LHGRs and true human isochores revealed through DNA centrifugation. LHGRs show many of the typical isochore features, mainly size distribution, G+C range, and proportions of the isochore classes. The relative density of genes, Alu and long interspersed nuclear element repeats and the different types of single nucleotide polymorphisms on LHGRs also coincide with expectations in true isochores. Potential applications of isochore maps range from the improvement of gene-finding algorithms to the prediction of linkage disequilibrium levels in association studies between marker genes and complex traits. The coordinates for the LHGRs identified in all the contigs longer than 2 Mb in the human genome sequence are available at the online resource on isochore mapping: http://bioinfo2.ugr.es/isochores.
Collapse
Affiliation(s)
- José L Oliver
- Departamento de Genética, Instituto de Biotecnología, Universidad de Granada, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
In general, transcriptionally active euchromatin replicates during the first half of S phase, whereas silent heterochromatin replicates during the second half. Moreover, changes in replication timing accompany key stages of development. Although there is not a strict correlation between replication timing and transcription per se, recent results reveal a strong relationship between heritably repressed chromatin and late replication that is conserved in all eukaryotes. A long-standing question is whether replication timing dictates the structure of chromatin or vice versa. Mounting evidence supports a model in which replication timing is both cause and consequence of chromatin structure by providing a means to inherit chromatin states that, in turn, regulate replication timing in the subsequent cell cycle. Moreover, new findings relating aberrations in replication timing to defects in centromere function, chromosome cohesion and genome instability suggest that the role of replication timing extends beyond its relationship to transcription. Novel systems in both yeasts and mammals are finally beginning to reveal some of the determinants that regulate replication timing, which should pave the way for a long-anticipated molecular dissection of this complex liaison.
Collapse
Affiliation(s)
- David M Gilbert
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
45
|
Beck S, Trowsdale J. The human major histocompatability complex: lessons from the DNA sequence. Annu Rev Genomics Hum Genet 2002; 1:117-37. [PMID: 11701627 DOI: 10.1146/annurev.genom.1.1.117] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The entire 3.6-MbpDNA sequence of a human major histocompatibility complex derived from a composite of DNA clones from different haplotypes, was completed in 1999, primarily through the work of four main groups. At that time, it was the longest contiguous human DNA sequence to have been determined. The sequence is of extremely high quality and accuracy. In this review, we discuss how the DNA sequence has facilitated our understanding of the biology and genetics of the major histocompatibility complex. We suggest some ways in which the sequence may be exploited in the future to explore the relationship between the extraordinary polymorphism of the region and its association with both autoimmune and infectious diseases.
Collapse
Affiliation(s)
- S Beck
- The Sanger Centre, Wellcome Trust Genome Campus, University of Cambridge, Cambridge CB10 1SA United Kindgom.
| | | |
Collapse
|
46
|
Pavlícek A, Clay O, Jabbari K, Paces J, Bernardi G. Isochore conservation between MHC regions on human chromosome 6 and mouse chromosome 17. FEBS Lett 2002; 511:175-7. [PMID: 11821071 DOI: 10.1016/s0014-5793(01)03282-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Niimura Y, Gojobori T. In silico chromosome staining: reconstruction of Giemsa bands from the whole human genome sequence. Proc Natl Acad Sci U S A 2002; 99:797-802. [PMID: 11792839 PMCID: PMC117385 DOI: 10.1073/pnas.022437999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2001] [Indexed: 11/18/2022] Open
Abstract
Giemsa staining has been used for identifying individual human chromosomes. Giemsa-dark and -light bands generally are thought to correspond to GC-poor and GC-rich regions; however, several experiments showed that the correspondence is quite poor. To elucidate the precise relationship between GC content and Giemsa banding patterns, we developed an "in silico chromosome staining" method for reconstructing Giemsa bands computationally from the whole human genome sequence. Here we show that 850-level Giemsa bands are best correlated with the difference in GC content between a local window of 2.5 megabases and a regional window of 9.3 megabases along a chromosome. The correlations are of strong statistical significance for almost all 43 chromosomal arms. Our results clearly show that Giemsa-dark bands are locally GC-poor regions compared with the flanking regions. These findings are consistent with the model that matrix-associated regions, which are known to be AT-rich, are present more densely in Giemsa-dark bands than in -light bands.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, 1111, Yata, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
48
|
Mostoslavsky R, Singh N, Tenzen T, Goldmit M, Gabay C, Elizur S, Qi P, Reubinoff BE, Chess A, Cedar H, Bergman Y. Asynchronous replication and allelic exclusion in the immune system. Nature 2001; 414:221-5. [PMID: 11700561 DOI: 10.1038/35102606] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of mature B cells involves a series of molecular decisions which culminate in the expression of a single light-chain and heavy-chain antigen receptor on the cell surface. There are two alleles for each receptor locus, so the ultimate choice of one receptor type must involve a process of allelic exclusion. One way to do this is with a feedback mechanism that downregulates rearrangement after the generation of a productive receptor molecule, but recent work suggests that monoallelic epigenetic changes may also take place even before rearrangement. To better understand the basis for distinguishing between alleles, we have analysed DNA replication timing. Here we show that all of the B-cell-receptor loci (mu, kappa and lambda) and the TCRbeta locus replicate asynchronously. This pattern, which is established randomly in each cell early in development and maintained by cloning, represents an epigenetic mark for allelic exclusion, because it is almost always the early-replicating allele which is initially selected to undergo rearrangement in B cells. These results indicate that allelic exclusion in the immune system may be very similar to the process of X chromosome inactivation.
Collapse
Affiliation(s)
- R Mostoslavsky
- Department of Cellular Biochemistry & Human Genetics, and Experimental Medicine & Cancer Research, PO Box 12272, Hebrew University, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Analytical DNA ultracentrifugation revealed that eukaryotic genomes are mosaics of isochores: long DNA segments (>>300 kb on average) relatively homogeneous in G+C. Important genome features are dependent on this isochore structure, e.g. genes are found predominantly in the GC-richest isochore classes. However, no reliable method is available to rigorously partition the genome sequence into relatively homogeneous regions of different composition, thereby revealing the isochore structure of chromosomes at the sequence level. Homogeneous regions are currently ascertained by plain statistics on moving windows of arbitrary length, or simply by eye on G+C plots. On the contrary, the entropic segmentation method is able to divide a DNA sequence into relatively homogeneous, statistically significant domains. An early version of this algorithm only produced domains having an average length far below the typical isochore size. Here we show that an improved segmentation method, specifically intended to determine the most statistically significant partition of the sequence at each scale, is able to identify the boundaries between long homogeneous genome regions displaying the typical features of isochores. The algorithm precisely locates classes II and III of the human major histocompatibility complex region, two well-characterized isochores at the sequence level, the boundary between them being the first isochore boundary experimentally characterized at the sequence level. The analysis is then extended to a collection of human large contigs. The relatively homogeneous regions we find show many of the features (G+C range, relative proportion of isochore classes, size distribution, and relationship with gene density) of the isochores identified through DNA centrifugation. Isochore chromosome maps, with many potential applications in genomics, are then drawn for all the completely sequenced eukaryotic genomes available.
Collapse
Affiliation(s)
- J L Oliver
- Departamento de Genética, Instituto de Biotecnología, Universidad de Granada, E-18071, Granada, Spain.
| | | | | | | |
Collapse
|
50
|
Clay O, Bernardi G. Compositional heterogeneity within and among isochores in mammalian genomes. II. Some general comments. Gene 2001; 276:25-31. [PMID: 11591468 DOI: 10.1016/s0378-1119(01)00668-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of long-range correlations and/or mosaicism in DNA sequences results in GC fluctuations, even within individual isochores that are much larger than expected correlation-free 'random' sequences. Neglecting the presence of such fluctuations can lead to incorrect conclusions regarding relative homogeneity or isochore borders. In this commentary, we address these and other methodological issues raised by the variations in GC level within human isochores. We also discuss some recent misconceptions.
Collapse
Affiliation(s)
- O Clay
- Laboratory of Molecular Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | |
Collapse
|