1
|
Saenno R, Suwannakot K, Prajit R, Sirichoat A, Aranarochana A, Sritawan N, Pannangrong W, Wigmore P, Welbat JU. Caffeic Acid Attenuates Neuronal Apoptosis, Oxidative Stress, and Memory Deficits via Antioxidant Properties in Aging Rats Induced by D-Galactose. Mol Neurobiol 2025; 62:5143-5155. [PMID: 39516391 DOI: 10.1007/s12035-024-04610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Aging is a main factor related to cognitive deficits. D-Galactose (D-gal), a monosaccharide, increases oxidative stress leading to cellular senescence, memory deficits, and neuronal apoptosis. Caffeic acid (CA) is an antioxidant that can interrupt free radicals and reduce oxidative stress. The present study purposely evaluated the benefits of CA in attenuating loss of neuronal apoptosis, oxidative stress, and memory in D-gal-activated rat brain aging. Male Sprague-Dawley rats were arbitrarily allocated into 6 groups (9 rats per group). The D-gal group was intraperitoneal (i.p.) injected with D-gal (50 mg/kg). The CA groups were orally given 20 or 40 mg/kg CA for 8 weeks. During that time, the co-treatment groups were given 50 mg/kg of D-gal and 20 or 40 mg/kg of CA. The results reveal that animals receiving only D-gal showed memory deficit in both the novel object location (NOL) and novel object recognition (NOR) tests. Reduction in scavenging enzyme activities and levels of B-cell lymphoma 2 (Bcl-2) protein expression were detected in the D-gal group. Furthermore, D-gal treatment significantly enhanced in the number of p21 positive cells in the subgranular zone (SGZ) of the hippocampal dentate gyrus, Bcl-2 associated X protein (Bax) and caspase3 protein expression, and malondialdehyde (MDA) levels. By contrast, both 20 and 40 mg/kg CA treatment alleviated these effects. These consequences confirmed that D-gal-activated brain aging led to enhancing apoptotic protein expression including Bcl-2, Bax, and caspase3 and memory impairments. Nevertheless, CA attenuated these effects in brain aging induced by D-gal via antioxidant properties.
Collapse
Affiliation(s)
- Rasa Saenno
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kornrawee Suwannakot
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand
| | - Ram Prajit
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nattaya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Tilton M, Liao J, Kim C, Shaygani H, Potes MA, Cordova DJ, Kirkland JL, Miller KM. Tracing Cellular Senescence in Bone: Time-Dependent Changes in Osteocyte Cytoskeleton Mechanics and Morphology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2408517. [PMID: 40026102 DOI: 10.1002/smll.202408517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/22/2025] [Indexed: 03/04/2025]
Abstract
Aging-related bone loss significantly impacts the growing elderly population globally, leading to debilitating conditions such as osteoporosis. Senescent osteocytes play a crucial role in the aging process of bone. This longitudinal study examines the impact of continuous local and paracrine exposure to senescence-associated secretory phenotype (SASP) factors on biophysical and biomolecular markers in osteocytes. Significant cytoskeletal stiffening in irradiated (IR) osteocytes are found, accompanied by expansion of F-actin areas and a decline in dendritic integrity. These changes, correlating with alterations in pro-inflammatory cytokine levels and osteocyte-specific gene expression, support the reliability of biophysical markers for identifying senescent osteocytes. Notably, local accumulation of SASP factors have a more pronounced impact on osteocyte biophysical properties than paracrine effects, suggesting that the interplay between local and paracrine exposure can substantially influence cellular aging. This study underscores the importance of osteocyte mechanical and morphological properties as biophysical markers of senescence, highlighting their time dependence and differential effects of local and paracrine SASP exposure. Collectively, the investigation into biophysical senescence markers offers unique and reliable functional hallmarks for the non-invasive identification of senescent osteocytes, providing insights that can inform therapeutic strategies to mitigate aging-related bone loss.
Collapse
Affiliation(s)
- Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78701, USA
| | - Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78701, USA
| | - Chanul Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78701, USA
| | - Hossein Shaygani
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78701, USA
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55902, USA
| | - Domenic J Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78701, USA
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Kyle M Miller
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30307, USA
| |
Collapse
|
3
|
Tilton M, Liao J, Kim C, Shaygani H, Potes MA, Cordova D, Kirkland JL, Miller KM. Tracing Cellular Senescence in Bone: Time-Dependent Changes in Osteocyte Cytoskeleton Mechanics and Morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.28.615585. [PMID: 39896626 PMCID: PMC11785097 DOI: 10.1101/2024.09.28.615585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Aging-related bone loss significantly impacts the growing elderly population globally, leading to debilitating conditions such as osteoporosis. Senescent osteocytes play a crucial role in the aging process of bone. This longitudinal study examines the impact of continuous local and paracrine exposure to senescence-associated secretory phenotype (SASP) factors on senescence-associated biophysical and biomolecular markers in osteocytes. We found significant cytoskeletal stiffening in irradiated osteocytes, accompanied by expansion of F-actin areas and a decline in dendritic integrity. These changes, correlating with alterations in pro-inflammatory cytokine levels and osteocyte-specific gene expression, support the reliability of biophysical markers for identifying senescent osteocytes. Notably, local accumulation of SASP factors had a more pronounced impact on osteocyte properties than paracrine effects, suggesting that the interplay between local and paracrine exposure could substantially influence cellular aging. This study underscores the importance of osteocyte mechanical and morphological properties as biophysical markers of senescence, highlighting their time-dependence and differential effects of local and paracrine SASP exposure. Collectively, our investigation into biophysical senescence markers offer unique and reliable functional hallmarks for non-invasive identification of senescent osteocytes, providing insights that could inform therapeutic strategies to mitigate aging-related bone loss.
Collapse
Affiliation(s)
- Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chanul Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hossein Shaygani
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Domenic Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - James L. Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kyle M. Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Zhu B, Zhang Z, Pardeshi L, Chen Y, Ge W. Y box-binding protein 1 regulates zebrafish folliculogenesis partly through p21-mediated control of follicle cell proliferation. Development 2024; 151:dev202898. [PMID: 39470059 DOI: 10.1242/dev.202898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Y box-binding protein 1 (Ybx1/ybx1) regulates gene expression through DNA/RNA binding. In zebrafish, Ybx1 is highly abundant in primary growth (PG) follicles in the ovary, but decreases precipitously as the follicles enter the secondary growth (SG). To understand Ybx1 function in folliculogenesis, we created a ybx1 mutant using TALEN and observed disrupted folliculogenesis during the previtellogenic (PV) to early vitellogenic (EV) transition of SG, resulting in underdeveloped ovaries and infertility. Expression and western blot analyses revealed differential gene expression between ybx1-/- and control ovaries, with significantly increased expression of cdkn1a (p21), a cell cycle inhibitor, in ybx1-/- follicles. While cdkn1a knockout via CRISPR/Cas9 was embryonically lethal, the heterozygote (cdkn1a+/-) displayed advanced follicle activation and maturation, contrasting with the ybx1-/- phenotype. Partial loss of p21 alleviated the ybx1-/- phenotype, restoring folliculogenesis with normal PG-PV and PV-EV transitions in ybx1-/-;cdkn1a+/- mutants. While ybx1-/- mutant follicle cells displayed poor proliferation in vivo and in vitro, the cells from the ybx1-/-;cdkn1a+/- follicles resumed normal proliferation. In conclusion, Ybx1 is crucial for early folliculogenesis in zebrafish, potentially by repressing cdkn1a expression, either directly or indirectly.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), University of Macau, Taipa, Macau, China
| | - Zhiwei Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), University of Macau, Taipa, Macau, China
| | - Lakhansing Pardeshi
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Yingying Chen
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), University of Macau, Taipa, Macau, China
| |
Collapse
|
5
|
Tundo GR, Cavaterra D, Pandino I, Zingale GA, Giammaria S, Boccaccini A, Michelessi M, Roberti G, Tanga L, Carnevale C, Figus M, Grasso G, Coletta M, Bocedi A, Oddone F, Sbardella D. The Delayed Turnover of Proteasome Processing of Myocilin upon Dexamethasone Stimulation Introduces the Profiling of Trabecular Meshwork Cells' Ubiquitylome. Int J Mol Sci 2024; 25:10017. [PMID: 39337505 PMCID: PMC11432723 DOI: 10.3390/ijms251810017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma is chronic optic neuropathy whose pathogenesis has been associated with the altered metabolism of Trabecular Meshwork Cells, which is a cell type involved in the synthesis and remodeling of the trabecular meshwork, the main drainage pathway of the aqueous humor. Starting from previous findings supporting altered ubiquitin signaling, in this study, we investigated the ubiquitin-mediated turnover of myocilin (MYOC/TIGR gene), which is a glycoprotein with a recognized role in glaucoma pathogenesis, in a human Trabecular Meshwork strain cultivated in vitro in the presence of dexamethasone. This is a validated experimental model of steroid-induced glaucoma, and myocilin upregulation by glucocorticoids is a phenotypic marker of Trabecular Meshwork strains. Western blotting and native-gel electrophoresis first uncovered that, in the presence of dexamethasone, myocilin turnover by proteasome particles was slower than in the absence of the drug. Thereafter, co-immunoprecipitation, RT-PCR and gene-silencing studies identified STUB1/CHIP as a candidate E3-ligase of myocilin. In this regard, dexamethasone treatment was found to downregulate STUB1/CHIP levels by likely promoting its proteasome-mediated turnover. Hence, to strengthen the working hypothesis about global alterations of ubiquitin-signaling, the first profiling of TMCs ubiquitylome, in the presence and absence of dexamethasone, was here undertaken by diGLY proteomics. Application of this workflow effectively highlighted a robust dysregulation of key pathways (e.g., phospholipid signaling, β-catenin, cell cycle regulation) in dexamethasone-treated Trabecular Meshwork Cells, providing an ubiquitin-centered perspective around the effect of glucocorticoids on metabolism and glaucoma pathogenesis.
Collapse
Affiliation(s)
- Grazia Raffaella Tundo
- Department of Clinical Sciences and Translational Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Dario Cavaterra
- Department of Chemical Sciences and Technologies, University of Tor Vergata, 00133 Rome, Italy (A.B.)
| | - Irene Pandino
- IRCCS-Fondazione Bietti, 00168 Rome, Italy (G.R.); (M.C.)
| | | | - Sara Giammaria
- IRCCS-Fondazione Bietti, 00168 Rome, Italy (G.R.); (M.C.)
| | | | | | - Gloria Roberti
- IRCCS-Fondazione Bietti, 00168 Rome, Italy (G.R.); (M.C.)
| | - Lucia Tanga
- IRCCS-Fondazione Bietti, 00168 Rome, Italy (G.R.); (M.C.)
| | | | - Michele Figus
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, 56124 Pisa, Italy;
| | - Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy;
| | | | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Tor Vergata, 00133 Rome, Italy (A.B.)
| | | | | |
Collapse
|
6
|
Lin L, Zhao J, Kubota N, Li Z, Lam YL, Nguyen LP, Yang L, Pokharel SP, Blue SM, Yee BA, Chen R, Yeo GW, Chen CW, Chen L, Zheng S. Epistatic interactions between NMD and TRP53 control progenitor cell maintenance and brain size. Neuron 2024; 112:2157-2176.e12. [PMID: 38697111 PMCID: PMC11446168 DOI: 10.1016/j.neuron.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024]
Abstract
Mutations in human nonsense-mediated mRNA decay (NMD) factors are enriched in neurodevelopmental disorders. We show that deletion of key NMD factor Upf2 in mouse embryonic neural progenitor cells causes perinatal microcephaly but deletion in immature neurons does not, indicating NMD's critical roles in progenitors. Upf2 knockout (KO) prolongs the cell cycle of radial glia progenitor cells, promotes their transition into intermediate progenitors, and leads to reduced upper-layer neurons. CRISPRi screening identified Trp53 knockdown rescuing Upf2KO progenitors without globally reversing NMD inhibition, implying marginal contributions of most NMD targets to the cell cycle defect. Integrated functional genomics shows that NMD degrades selective TRP53 downstream targets, including Cdkn1a, which, without NMD suppression, slow the cell cycle. Trp53KO restores the progenitor cell pool and rescues the microcephaly of Upf2KO mice. Therefore, one physiological role of NMD in the developing brain is to degrade selective TRP53 targets to control progenitor cell cycle and brain size.
Collapse
Affiliation(s)
- Lin Lin
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Jingrong Zhao
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Naoto Kubota
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhelin Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Yi-Li Lam
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Lauren P Nguyen
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sheela P Pokharel
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Renee Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA; City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA; Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA 92521, USA; Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Fernando W, MacLean E, Monro S, Power Coombs MR, Marcato P, Rupasinghe HPV, Hoskin DW. Phloridzin Docosahexaenoate, an Omega-3 Fatty Acid Ester of a Flavonoid Precursor, Inhibits Angiogenesis by Suppressing Endothelial Cell Proliferation, Migration, and Differentiation. Biomolecules 2024; 14:769. [PMID: 39062483 PMCID: PMC11274491 DOI: 10.3390/biom14070769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Angiogenesis is a normal physiological process that also contributes to diabetic retinopathy-related complications and facilitates tumor metastasis by promoting the hematogenic dissemination of malignant cells from solid tumors. Here, we investigated the in vitro, ex vivo, and in vivo anti-angiogenic activity of phloridzin docosahexaenoate (PZ-DHA), a novel ω-3 fatty acid ester of a flavonoid precursor. Human umbilical vein endothelial cells (HUVEC) and human dermal microvascular endothelial cells (HMVEC) treated with a sub-cytotoxic concentration of PZ-DHA to assess in vitro anti-angiogenic activity showed impaired tubule formation on a Matrigel matrix. Ex vivo angiogenesis was measured using rat thoracic aortas, which exhibited reduced vessel sprouting and tubule formation in the presence of PZ-DHA. Female BALB/c mice bearing VEGF165- and basic fibroblast growth factor-containing Matrigel plugs showed a significant reduction in blood vessel development following PZ-DHA treatment. PZ-DHA inhibited HUVEC and HMVEC proliferation, as well as the migration of HUVECs in gap closure and trans-well cell migration assays. PZ-DHA inhibited upstream and downstream components of the Akt pathway and vascular endothelial growth factor (VEGF165)-induced overexpression of small molecular Rho GTPases in HUVECs, suggesting a decrease in actin cytoskeletal-mediated stress fiber formation and migration. Taken together, these findings reveal the potential of combined food biomolecules in PZ-DHA to inhibit angiogenesis.
Collapse
Affiliation(s)
- Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (P.M.); (H.P.V.R.)
| | - Emma MacLean
- Department of Medical Sciences, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Susan Monro
- Department of Biology, Faculty of Science, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (M.R.P.C.)
| | - Melanie R. Power Coombs
- Department of Biology, Faculty of Science, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (M.R.P.C.)
| | - Paola Marcato
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (P.M.); (H.P.V.R.)
| | - H. P. Vasantha Rupasinghe
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (P.M.); (H.P.V.R.)
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B3H 4R2, Canada
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (W.F.); (P.M.); (H.P.V.R.)
| |
Collapse
|
8
|
Schaufelberger SA, Schaettin M, Azzarito G, Rosselli M, Leeners B, Dubey RK. 2-Methoxyestradiol, an Endogenous 17β-Estradiol Metabolite, Induces Antimitogenic and Apoptotic Actions in Oligodendroglial Precursor Cells and Triggers Endoreduplication via the p53 Pathway. Cells 2024; 13:1086. [PMID: 38994940 PMCID: PMC11240791 DOI: 10.3390/cells13131086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
The abnormal growth of oligodendrocyte precursor cells (OPCs) significantly contributes to the progression of glioblastoma tumors. Hence, molecules that block OPC growth may be of therapeutic importance in treating gliomas. 2-Methoxyestradiol (2ME), an endogenous tubulin-interacting metabolite of estradiol, is effective against multiple proliferative disorders. Based on its anti-carcinogenic and anti-angiogenic actions, it is undergoing phase II clinical trials. We hypothesize that 2ME may prevent glioma growth by targeting OPC growth. Here, we tested this hypothesis by assessing the impact of 2ME on the growth of an OPC line, "Oli-neu", and dissected the underlying mechanism(s). Treatment with 2ME inhibited OPC growth in a concentration-dependent manner, accompanied by significant upregulation in the expression of p21 and p27, which are negative cell-cycle regulators. Moreover, treatment with 2ME altered OPC morphology from multi-arm processes to rounded cells. At concentrations of 1uM and greater, 2ME induced apoptosis, with increased expressions of caspase 3, PARP, and caspase-7 fragments, externalized phosphatidylserine staining/APOPercentage, and increased mitochondrial activity. Flow cytometry and microscopic analysis demonstrated that 2ME triggers endoreduplication in a concentration-dependent fashion. Importantly, 2ME induced cyclin E, JNK1/2, and p53 expression, as well as OPC fusion, which are key mechanisms driving endoreduplication and whole-genome duplication. Importantly, the inhibition of p53 with pifithrin-α rescued 2ME-induced endoreduplication. The pro-apoptotic and endoreduplication actions of 2ME were accompanied by the upregulation of survivin, cyclin A, Cyclin B, Cyclin D2, and ppRB. Similar growth inhibitory, apoptotic, and endoreduplication effects of 2ME were observed in CG4 cells. Taken together, our findings provide evidence that 2ME not only inhibits OPC growth and triggers apoptosis, but also activates OPCs into survival (fight or flight) mode, leading to endoreduplication. This inherent survival characteristic of OPCs may, in part, be responsible for drug resistance in gliomas, as observed for many tubulin-interacting drugs. Importantly, the fate of OPCs after 2ME treatment may depend on the cell-cycle status of individual cells. Combining tubulin-interfering molecules with drugs such as pifithrin-α that inhibit endoreduplication may help inhibit OPC/glioma growth and limit drug resistance.
Collapse
Affiliation(s)
- Sara. A. Schaufelberger
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland (G.A.); (M.R.); (B.L.)
| | - Martina Schaettin
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland (G.A.); (M.R.); (B.L.)
| | - Giovanna Azzarito
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland (G.A.); (M.R.); (B.L.)
| | - Marinella Rosselli
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland (G.A.); (M.R.); (B.L.)
| | - Brigitte Leeners
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland (G.A.); (M.R.); (B.L.)
| | - Raghvendra K. Dubey
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland (G.A.); (M.R.); (B.L.)
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
9
|
Centeno D, Farsinejad S, Kochetkova E, Volpari T, Gladych-Macioszek A, Klupczynska-Gabryszak A, Polotaye T, Greenberg M, Kung D, Hyde E, Alshehri S, Pavlovic T, Sullivan W, Plewa S, Vakifahmetoglu-Norberg H, Monsma FJ, Muller PAJ, Matysiak J, Zaborowski M, DiFeo A, Norberg E, Martin LA, Iwanicki M. Modeling of Intracellular Taurine Levels Associated with Ovarian Cancer Reveals Activation of p53, ERK, mTOR and DNA-damage-sensing-dependent Cell Protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.24.529893. [PMID: 36909636 PMCID: PMC10002676 DOI: 10.1101/2023.02.24.529893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Taurine, a non-proteogenic amino acid, and commonly used nutritional supplement can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We have found that OC ascites-derived cells contained significantly more intracellular taurine than cell cultures modeling OC. In culture, elevation of intracellular taurine concentration to OC ascites-cells-associated levels suppressed proliferation of various OC cell lines and patient-derived organoids, reduced glycolysis, and induced cell protection from cisplatin. Taurine cell protection was associated with decreased DNA damage in response to cisplatin. A combination of RNA sequencing, reverse phase protein arrays, live-cell microscopy, flow cytometry, and biochemical validation experiments provided evidence for taurine-mediated induction of mutant- or wild-type p53 binding to DNA, and activation of p53 effectors involved in negative regulation of the cell cycle (p21), and glycolysis (TIGAR). Paradoxically, taurine's suppression of cell proliferation was associated with activation of pro-mitogenic signal transduction including ERK, mTOR, and increased mRNA expression of major DNA damage sensing molecules such as DNAPK, ATM and ATR. While inhibition of ERK or p53 did not interfere with taurine's ability to protect cells from cisplatin, suppression of mTOR with Torin2, a clinically relevant inhibitor that also targets DNAPK and ATM/ATR, broke taurine's cell protection. Our studies implicate that elevation of intracellular taurine could suppress cell growth, metabolism, and activate cell protective mechanisms involving mTOR and DNA damage sensing signal transduction.
Collapse
|
10
|
Wang P, Nie J, Li J, Ye C, Chen J, Zhang Z, Li B. VDRA downregulate β-catenin/Smad3 and DNA damage and repair associated with improved prognosis in ccRCC patients. Int J Biol Macromol 2024; 263:130405. [PMID: 38403213 DOI: 10.1016/j.ijbiomac.2024.130405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The clear cell renal cell carcinoma (ccRCC) spotlighted the poorest survival, while chromophobe renal cell carcinoma (chRCC) was associated with the best survival. Earlier studies corroborated vitamin D receptor (VDR) was a promising molecular for improving the prognosis of RCC. In contrast to VDRA, the one of VDR isoforms, VDRB1 (VDR isoform B1) has an N-terminal extension of 50 amino acids and is less ligand-dependent. However, the functional differences between VDRA and VDRB1, and their roles in the prognosis of ccRCC and chRCC, have not been investigated. In the present study, we uncovered that the transcripts related to vitamin D pathway and cellular calcium signaling were effectively decreased in the context of ccRCC, yet failed to exert a comparable effect within chRCC. Specially, minimally levels of VDRA wherein kidneys of patients suffering from ccRCC predict shorter survival time. In addition, the protein expressions for β-catenin/Smad3 pathway and DNA damage and repair pathways were obviously impeded in VDRA-overexpressed ccRCC cells, yet this inhibitory effect was conspicuously absent in enable VDRB1 cells. Our results provide a new idea to improve the prognosis of ccRCC via VDRA upregulation.
Collapse
Affiliation(s)
- Ping Wang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jin Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jiafu Li
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Caiyong Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jianwu Chen
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Fujian Province, China.
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China.
| | - Bingyan Li
- Deparment of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Sánchez-Castillo A, Heylen E, Hounjet J, Savelkouls KG, Lieuwes NG, Biemans R, Dubois LJ, Reynders K, Rouschop KM, Vaes RDW, De Keersmaecker K, Lambrecht M, Hendriks LEL, De Ruysscher DKM, Vooijs M, Kampen KR. Targeting serine/glycine metabolism improves radiotherapy response in non-small cell lung cancer. Br J Cancer 2024; 130:568-584. [PMID: 38160212 PMCID: PMC10876524 DOI: 10.1038/s41416-023-02553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Lung cancer is the most lethal cancer, and 85% of cases are classified as non-small cell lung cancer (NSCLC). Metabolic rewiring is a cancer hallmark that causes treatment resistance, and lacks insights into serine/glycine pathway adaptations upon radiotherapy. METHODS We analyzed radiotherapy responses using mass-spectrometry-based metabolomics in NSCLC patient's plasma and cell lines. Efficacy of serine/glycine conversion inhibitor sertraline with radiotherapy was investigated by proliferation, clonogenic and spheroid assays, and in vivo using a serine/glycine dependent NSCLC mouse model by assessment of tumor growth, metabolite and cytokine levels, and immune signatures. RESULTS Serine/glycine pathway metabolites were significantly consumed in response to radiotherapy in NSCLC patients and cell models. Combining sertraline with radiotherapy impaired NSCLC proliferation, clonogenicity and stem cell self-renewal capacity. In vivo, NSCLC tumor growth was reduced solely in the sertraline plus radiotherapy combination treatment group. Tumor weights linked to systemic serine/glycine pathway metabolite levels, and were inhibited in the combination therapy group. Interestingly, combination therapy reshaped the tumor microenvironment via cytokines associated with natural killer cells, supported by eradication of immune checkpoint galectin-1 and elevated granzyme B levels. CONCLUSION Our findings highlight that targeting serine/glycine metabolism using sertraline restricts cancer cell recovery from radiotherapy and provides tumor control through immunomodulation in NSCLC.
Collapse
Affiliation(s)
- Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Elien Heylen
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven, and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Judith Hounjet
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kim G Savelkouls
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Natasja G Lieuwes
- Department of Precision Medicine, The M-Lab, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Rianne Biemans
- Department of Precision Medicine, The M-Lab, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Ludwig J Dubois
- Department of Precision Medicine, The M-Lab, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Kobe Reynders
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Oncology, Experimental Radiation Oncology, KU Leuven, and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Kasper M Rouschop
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Rianne D W Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kim De Keersmaecker
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven, and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Maarten Lambrecht
- Department of Radiation Oncology, University Hospital Leuven, Leuven, Belgium
| | - Lizza E L Hendriks
- Department of Pulmonology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Dirk K M De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kim R Kampen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, KU Leuven, and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
12
|
Liu J, Zhang J, Zheng Y, Zhao G, Jiang H, Yuan B. miR-302d Targeting of CDKN1A Regulates DNA Damage and Steroid Hormone Secretion in Bovine Cumulus Cells. Genes (Basel) 2023; 14:2195. [PMID: 38137018 PMCID: PMC10743266 DOI: 10.3390/genes14122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: DNA damage in cumulus cells hinders oocyte maturation and affects steroid hormone secretion. It is crucial to identify the key factors that regulate cellular DNA damage and steroid hormone secretion. (2) Methods: Treatment of bovine cumulus cells with bleomycin to induce DNA damage. The effects of DNA damage on cell biology were determined by detecting changes in DNA damage degree, cell cycle, viability, apoptosis, and steroid hormones. It was verified that mir-302d targeted regulation of CDKN1A expression, and then affected DNA damage and steroid hormone secretion in cumulus cells. (3) Results: Bleomycin induced increased DNA damage, decreased G1-phase cells, increased S-phase cells, inhibited proliferation, promoted apoptosis, affected E2 and P4 secretion, increased CDKN1A expression, and decreased miR-302d expression. Knockdown of CDKN1A reduced DNA damage, increased G1-phase cells, decreased G2-phase cells, promoted proliferation, inhibited apoptosis, increased E2 and P4 secretion, and increased the expression of BRCA1, MRE11, ATM, CDK1, CDK2, CCNE2, STAR, CYP11A1, and HSD3B1. The expression of RAD51, CCND1, p53, and FAS was decreased. Overexpression of CDKN1A resulted in the opposite results. miR-302d targets CDKN1A expression to regulate DNA damage and then affects the cell cycle, proliferation, apoptosis, steroid hormone secretion, and the expression of related genes. (4) Conclusions: miR-302d and CDKN1A were candidate molecular markers for the diagnosis of DNA damage in bovine cumulus cells.
Collapse
Affiliation(s)
- Jianbo Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
- Experimental Testing Center, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Jiabao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| | - Guokun Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (J.L.); (J.Z.); (G.Z.); (H.J.)
| |
Collapse
|
13
|
Pei YA, Mikaeiliagah E, Wang B, Zhang X, Pei M. The matrix microenvironment influences but does not dominate tissue-specific stem cell lineage differentiation. Mater Today Bio 2023; 23:100805. [PMID: 37766896 PMCID: PMC10519827 DOI: 10.1016/j.mtbio.2023.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play a pivotal role in tissue engineering and regenerative medicine, with their clinical application often hindered by cell senescence during ex vivo expansion. Recent studies suggest that MSC-deposited decellularized extracellular matrix (dECM) offers a conducive microenvironment that fosters cell proliferation and accentuates stem cell differentiation. However, the ability of this matrix environment to govern lineage differentiation of tissue-specific stem cells remains ambiguous. This research employs human adipose-derived MSCs (ADSCs) and synovium-derived MSCs (SDSCs) as models for adipogenesis and chondrogenesis differentiation pathways, respectively. Genetically modified dECM (GMdECM), produced by SV40LT-transduced immortalized cells, was studied for its influence on cell differentiation. Both types of immortalized cells displayed a reduction in chondrogenic ability but an enhancement in adipogenic potential. ADSCs grown on ADSC-deposited dECM showed stable chondrogenic potential but increased adipogenic capacity; conversely, SDSCs expanded on SDSC-generated dECM displayed elevated chondrogenic capacity and diminished adipogenic potential. This cell-dependent response was confirmed through GMdECM expansion, with SDSCs showing enhanced chondrogenesis. However, ADSCs did not exhibit improved chondrogenic potential on GMdECM, suggesting that the matrix microenvironment does not dictate the final differentiation path of tissue-specific stem cells. Potential molecular mechanisms, such as elevated basement membrane protein expression in GMdECMs and dynamic TWIST1 expression during expansion and chondrogenic induction, may underpin the strong chondrogenic differentiation of GMdECM-expanded SDSCs.
Collapse
Affiliation(s)
- Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elmira Mikaeiliagah
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Bin Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
- Department of Foot and Hand Surgery, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Xiaobing Zhang
- Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Peking Union Medical College, Tianjin, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
14
|
Čižmáriková M, Michalková R, Mirossay L, Mojžišová G, Zigová M, Bardelčíková A, Mojžiš J. Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence. Biomolecules 2023; 13:1653. [PMID: 38002335 PMCID: PMC10669545 DOI: 10.3390/biom13111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a complex and multifaceted disease with a high global incidence and mortality rate. Although cancer therapy has evolved significantly over the years, numerous challenges persist on the path to effectively combating this multifaceted disease. Natural compounds derived from plants, fungi, or marine organisms have garnered considerable attention as potential therapeutic agents in the field of cancer research. Ellagic acid (EA), a natural polyphenolic compound found in various fruits and nuts, has emerged as a potential cancer prevention and treatment agent. This review summarizes the experimental evidence supporting the role of EA in targeting key hallmarks of cancer, including proliferation, angiogenesis, apoptosis evasion, immune evasion, inflammation, genomic instability, and more. We discuss the molecular mechanisms by which EA modulates signaling pathways and molecular targets involved in these cancer hallmarks, based on in vitro and in vivo studies. The multifaceted actions of EA make it a promising candidate for cancer prevention and therapy. Understanding its impact on cancer biology can pave the way for developing novel strategies to combat this complex disease.
Collapse
Affiliation(s)
- Martina Čižmáriková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Martina Zigová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Annamária Bardelčíková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| |
Collapse
|
15
|
Dicitore A, Gaudenzi G, Carra S, Cantone MC, Oldani M, Saronni D, Borghi MO, Grotteschi J, Persani L, Vitale G. Antitumor Activity of Axitinib in Lung Carcinoids: A Preclinical Study. Cancers (Basel) 2023; 15:5375. [PMID: 38001635 PMCID: PMC10669991 DOI: 10.3390/cancers15225375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/22/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Lung carcinoids (LCs) comprise well-differentiated neuroendocrine tumors classified as typical (TCs) and atypical (ACs) carcinoids. Unfortunately, curative therapies remain elusive for metastatic LCs, which account for 25-30% of cases. This study evaluated the antitumor activity of axitinib (AXI), a second-generation tyrosine kinase inhibitor selectively targeting vascular endothelial growth factor receptors (VEGFR-1, VEGFR-2, VEGFR-3) in human lung TC (NCI-H727, UMC-11, NCI-H835) and AC (NCI-H720) cell lines. In vitro and in vivo (zebrafish) assays were performed following AXI treatment to gather several read-outs about cell viability, cell cycle, the secretion of proangiogenic factors, apoptosis, tumor-induced angiogenesis and migration. AXI demonstrated relevant antitumor activity in human LC cells, with pronounced effects observed in UMC-11 and NCI-H720, characterized by cell cycle perturbation and apoptosis induction. AXI significantly hindered tumor induced-angiogenesis in Tg(fli1a:EGFP)y1 zebrafish embryos implanted with all LC cell lines and also reduced the invasiveness of NCI-H720 cells, as well as the secretion of several proangiogenic factors. In conclusion, our study provides initial evidence supporting the potential anti-tumor activity of AXI in LC, offering a promising basis for future investigations in mammalian animal models and, eventually, progressing to clinical trials.
Collapse
Affiliation(s)
- Alessandra Dicitore
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy; (A.D.); (D.S.); (J.G.); (L.P.)
| | - Germano Gaudenzi
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; (G.G.); (M.C.C.); (M.O.)
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy;
| | - Maria Celeste Cantone
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; (G.G.); (M.C.C.); (M.O.)
| | - Monica Oldani
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; (G.G.); (M.C.C.); (M.O.)
| | - Davide Saronni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy; (A.D.); (D.S.); (J.G.); (L.P.)
| | - Maria Orietta Borghi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Experimental Laboratory of Immuno-Rheumatology, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Jacopo Grotteschi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy; (A.D.); (D.S.); (J.G.); (L.P.)
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy; (A.D.); (D.S.); (J.G.); (L.P.)
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy;
| | - Giovanni Vitale
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy; (A.D.); (D.S.); (J.G.); (L.P.)
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, 20145 Milan, Italy; (G.G.); (M.C.C.); (M.O.)
| |
Collapse
|
16
|
Chevalier RL. Why is chronic kidney disease progressive? Evolutionary adaptations and maladaptations. Am J Physiol Renal Physiol 2023; 325:F595-F617. [PMID: 37675460 DOI: 10.1152/ajprenal.00134.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
Despite significant advances in renal physiology, the global prevalence of chronic kidney disease (CKD) continues to increase. The emergence of multicellular organisms gave rise to increasing complexity of life resulting in trade-offs reflecting ancestral adaptations to changing environments. Three evolutionary traits shape CKD over the lifespan: 1) variation in nephron number at birth, 2) progressive nephron loss with aging, and 3) adaptive kidney growth in response to decreased nephron number. Although providing plasticity in adaptation to changing environments, the cell cycle must function within constraints dictated by available energy. Prioritized allocation of energy available through the placenta can restrict fetal nephrogenesis, a risk factor for CKD. Moreover, nephron loss with aging is a consequence of cell senescence, a pathway accelerated by adaptive nephron hypertrophy that maintains metabolic homeostasis at the expense of increased vulnerability to stressors. Driven by reproductive fitness, natural selection operates in early life but diminishes thereafter, leading to an exponential increase in CKD with aging, a product of antagonistic pleiotropy. A deeper understanding of the evolutionary constraints on the cell cycle may lead to manipulation of the balance between progenitor cell renewal and differentiation, regulation of cell senescence, and modulation of the balance between cell proliferation and hypertrophy. Application of an evolutionary perspective may enhance understanding of adaptation and maladaptation by nephrons in the progression of CKD, leading to new therapeutic advances.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, The University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
17
|
Hao Q, Wu H, Liu E, Wang L. BUB1, BUB1B, CCNA2, and CDCA8, along with miR-524-5p, as clinically relevant biomarkers for the diagnosis and treatment of endometrial carcinoma. BMC Cancer 2023; 23:995. [PMID: 37853361 PMCID: PMC10585751 DOI: 10.1186/s12885-023-11515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Endometrial carcinoma (EC) is a malignant tumor of the female reproductive tract that has been associated with increased morbidity and mortality. This study aimed to identify biomarkers and potential therapeutic targets for EC. METHODS A publicly available transcriptome data set comprising 587 EC cases was subjected to a comprehensive bioinformatics analysis to identify candidate genes responsible for EC occurrence and development. Next, we used clinical samples and cell experiments for validation. RESULTS A total of 1,617 differentially expressed genes (DEGs) were identified. Analysis of patient survival outcomes revealed that BUB1, BUB1B, CCNA2, and CDCA8 were correlated with prognosis in patients with EC. Moreover, assessment of clinical samples confirmed that BUB1, BUB1B, CCNA2 and CDCA8 were strongly expressed in EC tissues. Additionally, bioinformatics and luciferase reporter assays confirmed that miR-524-5p can target and regulate these four genes. Overexpression of miR-524-5p significantly inhibited EC Ishikawa cells viability, migration and invasion. Inhibition of miR-524-5p showed the opposite results. CONCLUSIONS Expression of miR-524-5p reduced the migration and invasion of Ishikawa EC cells, and decreased BUB1, BUB1B, CCNA2, and CDCA8 expression. miR-524-5p, as well as BUB1, BUB1B, CCNA2, and CDCA8, may be clinically relevant biomarkers for the diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Qirong Hao
- Department of Obstetrics and Gynecology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Hongqin Wu
- Department of Obstetrics and Gynecology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Erniao Liu
- Department of Obstetrics and Gynecology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Lina Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
18
|
Rodak O, Mrozowska M, Rusak A, Gomułkiewicz A, Piotrowska A, Olbromski M, Podhorska-Okołów M, Ugorski M, Dzięgiel P. Targeting SOX18 Transcription Factor Activity by Small-Molecule Inhibitor Sm4 in Non-Small Lung Cancer Cell Lines. Int J Mol Sci 2023; 24:11316. [PMID: 37511076 PMCID: PMC10379584 DOI: 10.3390/ijms241411316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The transcription factor SOX18 has been shown to play a crucial role in lung cancer progression and metastasis. In this study, we investigated the effect of Sm4, a SOX18 inhibitor, on cell cycle regulation in non-small cell lung cancer (NSCLC) cell lines LXF-289 and SK-MES-1, as well as normal human lung fibroblast cell line IMR-90. Our results demonstrated that Sm4 treatment induced cytotoxic effects on all three cell lines, with a greater effect observed in NSCLC adenocarcinoma cells. Sm4 treatment led to S-phase cell accumulation and upregulation of p21, a key regulator of the S-to-G2/M phase transition. While no significant changes in SOX7 or SOX17 protein expression were observed, Sm4 treatment resulted in a significant upregulation of SOX17 gene expression. Furthermore, our findings suggest a complex interplay between SOX18 and p21 in the context of lung cancer, with a positive correlation observed between SOX18 expression and p21 nuclear presence in clinical tissue samples obtained from lung cancer patients. These results suggest that Sm4 has the potential to disrupt the cell cycle and target cancer cell growth by modulating SOX18 activity and p21 expression. Further investigation is necessary to fully understand the relationship between SOX18 and p21 in lung cancer and to explore the therapeutic potential of SOX18 inhibition in lung cancer.
Collapse
Affiliation(s)
- Olga Rodak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Gomułkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
19
|
Mehdizadeh R, Madjid Ansari A, Forouzesh F, Shahriari F, Shariatpanahi SP, Salaritabar A, Javidi MA. P53 status, and G2/M cell cycle arrest, are determining factors in cell-death induction mediated by ELF-EMF in glioblastoma. Sci Rep 2023; 13:10845. [PMID: 37407632 DOI: 10.1038/s41598-023-38021-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
The average survival of patients with glioblastoma is 12-15 months. Therefore, finding a new treatment method is important, especially in cases that show resistance to treatment. Extremely low-frequency electromagnetic fields (ELF-EMF) have characteristics and capabilities that can be proposed as a new cancer treatment method with low side effects. This research examines the antitumor effect of ELF-EMF on U87 and U251 glioblastoma cell lines. Flowcytometry determined the viability/apoptosis and distribution of cells in different phases of the cell cycle. The size of cells was assessed by TEM. Important cell cycle regulation genes mRNA expression levels were investigated by real-time PCR. ELF-EMF induced apoptosis in U87cells much more than U251 (15% against 2.43%) and increased G2/M cell population in U87 (2.56%, p value < 0.05), and S phase in U251 (2.4%) (data are normalized to their sham exposure). The size of U87 cells increased significantly after ELF-EMF exposure (overexpressing P53 in U251 cells increased the apoptosis induction by ELF-EMF). The expression level of P53, P21, and MDM2 increased and CCNB1 decreased in U87. Among the studied genes, MCM6 expression decreased in U251. Increasing expression of P53, P21 and decreasing CCNB1, induction of cell G2/M cycle arrest, and consequently increase in the cell size can be suggested as one of the main mechanisms of apoptosis induction by ELF-EMF; furthermore, our results demonstrate the possible footprint of P53 in the apoptosis induction by ELF-EMF, as U87 carry the wild type of P53 and U251 has the mutated form of this gene.
Collapse
Affiliation(s)
- Romina Mehdizadeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Madjid Ansari
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Shahriari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Ali Salaritabar
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Amin Javidi
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
20
|
Gupta S, Panda PK, Silveira DA, Ahuja R, Hashimoto RF. Quadra-Stable Dynamics of p53 and PTEN in the DNA Damage Response. Cells 2023; 12:cells12071085. [PMID: 37048159 PMCID: PMC10093226 DOI: 10.3390/cells12071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Cell fate determination is a complex process that is frequently described as cells traveling on rugged pathways, beginning with DNA damage response (DDR). Tumor protein p53 (p53) and phosphatase and tensin homolog (PTEN) are two critical players in this process. Although both of these proteins are known to be key cell fate regulators, the exact mechanism by which they collaborate in the DDR remains unknown. Thus, we propose a dynamic Boolean network. Our model incorporates experimental data obtained from NSCLC cells and is the first of its kind. Our network's wild-type system shows that DDR activates the G2/M checkpoint, and this triggers a cascade of events, involving p53 and PTEN, that ultimately lead to the four potential phenotypes: cell cycle arrest, senescence, autophagy, and apoptosis (quadra-stable dynamics). The network predictions correspond with the gain-and-loss of function investigations in the additional two cell lines (HeLa and MCF-7). Our findings imply that p53 and PTEN act as molecular switches that activate or deactivate specific pathways to govern cell fate decisions. Thus, our network facilitates the direct investigation of quadruplicate cell fate decisions in DDR. Therefore, we concluded that concurrently controlling PTEN and p53 dynamics may be a viable strategy for enhancing clinical outcomes.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | | | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Ronaldo F Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil
| |
Collapse
|
21
|
Specific Forms of Graphene Quantum Dots Induce Apoptosis and Cell Cycle Arrest in Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24044046. [PMID: 36835458 PMCID: PMC9968019 DOI: 10.3390/ijms24044046] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Graphene quantum dots (GQDs), nanomaterials derived from graphene and carbon dots, are highly stable, soluble, and have exceptional optical properties. Further, they have low toxicity and are excellent vehicles for carrying drugs or fluorescein dyes. Specific forms of GQDs can induce apoptosis and could be used to treat cancers. In this study, three forms of GQDs (GQD (nitrogen:carbon = 1:3), ortho-GQD, and meta-GQD) were screened and tested for their potential to inhibit breast cancer cell (MCF-7, BT-474, MDA-MB-231, and T-47D) growth. All three GQDs decreased cell viability after 72 h of treatment and specifically affected breast cancer cell proliferation. An assay for the expression of apoptotic proteins revealed that p21 and p27 were up-regulated (1.41-fold and 4.75-fold) after treatment. In particular, ortho-GQD-treated cells showed G2/M phase arrest. The GQDs specifically induced apoptosis in estrogen receptor-positive breast cancer cell lines. These results indicate that these GQDs induce apoptosis and G2/M cell cycle arrest in specific breast cancer subtypes and could potentially be used for treating breast cancers.
Collapse
|
22
|
INO80 Is Required for the Cell Cycle Control, Survival, and Differentiation of Mouse ESCs by Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms232315402. [PMID: 36499727 PMCID: PMC9740483 DOI: 10.3390/ijms232315402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Precise regulation of the cell cycle of embryonic stem cells (ESCs) is critical for their self-maintenance and differentiation. The cell cycle of ESCs differs from that of somatic cells and is different depending on the cell culture conditions. However, the cell cycle regulation in ESCs via epigenetic mechanisms remains unclear. Here, we showed that the ATP-dependent chromatin remodeler Ino80 regulates the cell cycle genes in ESCs under primed conditions. Ino80 loss led to a significantly extended length of the G1-phase in ESCs grown under primed culture conditions. Ino80 directly bound to the transcription start site and regulated the expression of cell cycle-related genes. Furthermore, Ino80 loss induced cell apoptosis. However, the regulatory mechanism of Ino80 in differentiating ESC cycle slightly differed; an extended S-phase was detected in differentiating inducible Ino80 knockout ESCs. RNA-seq analysis of differentiating ESCs revealed that the expression of genes associated with organ development cell cycle is persistently altered in Ino80 knockout cells, suggesting that cell cycle regulation by Ino80 is not limited to undifferentiated ESCs. Therefore, our study establishes the function of Ino80 in ESC cycle via transcriptional regulation, at least partly. Moreover, this Ino80 function may be universal to other cell types.
Collapse
|
23
|
Kawamura E, Matsubara T, Daikoku A, Deguchi S, Kinoshita M, Yuasa H, Urushima H, Odagiri N, Motoyama H, Kotani K, Kozuka R, Hagihara A, Fujii H, Uchida‐Kobayashi S, Tanaka S, Takemura S, Iwaisako K, Enomoto M, Taguchi YH, Tamori A, Kubo S, Ikeda K, Kawada N. Suppression of intrahepatic cholangiocarcinoma cell growth by SKI via upregulation of the CDK inhibitor p21. FEBS Open Bio 2022; 12:2122-2135. [PMID: 36114826 PMCID: PMC9714377 DOI: 10.1002/2211-5463.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023] Open
Abstract
Cholangiocarcinoma (CC) has a poor prognosis and different driver genes depending on the site of onset. Intrahepatic CC is the second-most common liver cancer after hepatocellular carcinoma, and novel therapeutic targets are urgently needed. The present study was conducted to identify novel therapeutic targets by exploring differentially regulated genes in human CC. MicroRNA (miRNA) and mRNA microarrays were performed using tissue and serum samples obtained from 24 surgically resected hepatobiliary tumor cases, including 10 CC cases. We conducted principal component analysis to identify differentially expressed miRNA, leading to the identification of miRNA-3648 as a differentially expressed miRNA. We used an in silico screening approach to identify its target mRNA, the tumor suppressor Sloan Kettering Institute (SKI). SKI protein expression was decreased in human CC cells overexpressing miRNA-3648, endogenous SKI protein expression was decreased in human CC tumor tissues, and endogenous SKI mRNA expression was suppressed in human CC cells characterized by rapid growth. SKI-overexpressing OZ cells (human intrahepatic CC cells) showed upregulation of cyclin-dependent kinase inhibitor p21 mRNA and protein expression and suppressed cell proliferation. Nuclear expression of CDT1 (chromatin licensing and DNA replication factor 1), which is required for the G1/S transition, was suppressed in SKI-overexpressing OZ cells. SKI knockdown resulted in the opposite effects. Transgenic p21-luciferase was activated in SKI-overexpressing OZ cells. These data indicate SKI involvement in p21 transcription and that SKI-p21 signaling causes cell cycle arrest in G1, suppressing intrahepatic CC cell growth. Therefore, SKI may be a potential therapeutic target for intrahepatic CC.
Collapse
Affiliation(s)
- Etsushi Kawamura
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Atsuko Daikoku
- Department of Anatomy and Regenerative Biology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Sanae Deguchi
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Masahiko Kinoshita
- Department of Hepato‐Biliary‐Pancreatic Surgery, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Hideto Yuasa
- Department of Anatomy and Regenerative Biology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Hayato Urushima
- Department of Anatomy and Regenerative Biology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Naoshi Odagiri
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Hiroyuki Motoyama
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Kohei Kotani
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Ritsuzo Kozuka
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Atsushi Hagihara
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | | | - Shogo Tanaka
- Department of Hepato‐Biliary‐Pancreatic Surgery, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Shigekazu Takemura
- Department of Hepato‐Biliary‐Pancreatic Surgery, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Keiko Iwaisako
- Department of Medical Life SystemsDoshisha University Graduate School of Life and Medical SciencesKyotoJapan
| | - Masaru Enomoto
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | | | - Akihiro Tamori
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Shoji Kubo
- Department of Hepato‐Biliary‐Pancreatic Surgery, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| |
Collapse
|
24
|
p53 Isoforms as Cancer Biomarkers and Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14133145. [PMID: 35804915 PMCID: PMC9264937 DOI: 10.3390/cancers14133145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The well-known tumor suppressor protein p53 plays important roles in tumor prevention through transcriptional regulation of its target genes. Reactivation of p53 activity has been a potent strategy for cancer treatment. Accumulating evidences indicate that p53 isoforms truncated/modified in the N- or C-terminus can modulate the p53 pathway in a p53-dependent or p53-independent manner. It is thus imperative to characterize the roles of the p53 isoforms in cancer development. This review illustrates how p53 isoforms participate in tumor development and/or suppression. It also summarizes the knowledge about the p53 isoforms as promising cancer biomarkers and therapeutic targets. Abstract This review aims to summarize the implications of the major isoforms of the tumor suppressor protein p53 in aggressive cancer development. The current knowledge of p53 isoforms, their involvement in cell-signaling pathways, and their interactions with other cellular proteins or factors suggests the existence of an intricate molecular network that regulates their oncogenic function. Moreover, existing literature about the involvement of the p53 isoforms in various cancers leads to the proposition of therapeutic solutions by altering the cellular levels of the p53 isoforms. This review thus summarizes how the major p53 isoforms Δ40p53α/β/γ, Δ133p53α/β/γ, and Δ160p53α/β/γ might have clinical relevance in the diagnosis and effective treatments of cancer.
Collapse
|
25
|
Li B, Ge YZ, Yan WW, Gong B, Cao K, Zhao R, Li C, Zhang YW, Jiang YH, Zuo S. DNASE1L3 inhibits proliferation, invasion and metastasis of hepatocellular carcinoma by interacting with β-catenin to promote its ubiquitin degradation pathway. Cell Prolif 2022; 55:e13273. [PMID: 35748106 PMCID: PMC9436914 DOI: 10.1111/cpr.13273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
As a member of the deoxyribonuclease 1 family, DNASE1L3 plays a significant role both inside and outside the cell. However, the role of DNASE1L3 in hepatocellular carcinoma (HCC) and its molecular basis remains to be further investigated. In this study, we report that DNASE1L3 is downregulated in clinical HCC samples and evaluate the relationship between its expression and HCC clinical features. In vivo and in vitro experiments showed that DNASE1L3 negatively regulates the proliferation, invasion and metastasis of HCC cells. Mechanistic studies showed that DNASE1L3 recruits components of the cytoplasmic β‐catenin destruction complex (GSK‐3β and Axin), promotes the ubiquitination degradation of β‐catenin, and inhibits its nuclear transfer, thus, decreasing c‐Myc, P21 and P27 level. Ultimately, cell cycle and EMT signals are restrained. In general, this study provides new insight into the mechanism for HCC and suggests that DNASE1L3 can become a considerable target for HCC.
Collapse
Affiliation(s)
- Bo Li
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu-Zhen Ge
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei-Wei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Bin Gong
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kun Cao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Rui Zhao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chao Li
- Department of General Surgery, The First People's Hospital of Fuquan, Fuquan, Guizhou, China
| | - Ye-Wei Zhang
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi-Heng Jiang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi Zuo
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
26
|
Wang Z, Chang Y, Liu Y, Liu B, Zhen J, Li X, Lin J, Yu Q, Lv Z, Wang R. Inhibition of the lncRNA MIAT prevents podocyte injury and mitotic catastrophe in diabetic nephropathy. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:136-153. [PMID: 35402074 PMCID: PMC8956887 DOI: 10.1016/j.omtn.2022.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
Podocyte damage is strongly associated with the progression of diabetic nephropathy. Mitotic catastrophe plays an essential role in accelerating podocyte loss and detachment from the glomerular basement membrane. In the current study, we observed that the long non-coding RNA (lncRNA) MIAT was noticeably upregulated in the plasma and kidney tissues of patients with diabetic nephropathy, and this upregulation was accompanied by higher albumin/creatinine ratios and serum creatinine levels. By generating CRISPR-Cas9 Miat-knockout (KO) mice in vivo and employing vectors in vitro, we found that the depletion of Miat expression significantly restored slit-diaphragm integrity, attenuated foot process effacement, prevented dedifferentiation, and suppressed mitotic catastrophe in podocytes during hyperglycemia. The mechanistic investigation revealed that Miat increased Sox4 expression and subsequently regulated p53 ubiquitination and acetylation, thereby inhibiting the downstream factors CyclinB/cdc2 by enhancing p21cip1/waf1 activity, and that Miat interacted with Sox4 by sponging miR-130b-3p. Additionally, the inhibition of miR-130b-3p with an antagomir in vivo effectively enhanced glomerular podocyte injury and mitotic dysfunction, eventually exacerbating proteinuria. Based on these findings, MIAT may represent a therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Ying Chang
- Department of Geriatrics, Chongqing General Hospital, Chongqing 401147, China
| | - Yue Liu
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Bing Liu
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| | - Junhui Zhen
- Department of Pathology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaobing Li
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Jiangong Lin
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| | - Qun Yu
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, China
| |
Collapse
|
27
|
Huang Y, Zhu Y, Yang J, Pan Q, Zhao J, Song M, Yang C, Han Y, Tang Y, Wang Q, He J, Li Y, He J, Chen H, Weng D, Xiang T, Xia JC. CMTM6 inhibits tumor growth and reverses chemoresistance by preventing ubiquitination of p21 in hepatocellular carcinoma. Cell Death Dis 2022; 13:251. [PMID: 35304440 PMCID: PMC8933468 DOI: 10.1038/s41419-022-04676-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 02/08/2023]
Abstract
AbstractHepatocellular carcinoma is one of the most common malignancies and has a poor prognosis. The ubiquitin-proteasome pathway is required for the degradation of most short-lived proteins. CMTM6 has been implicated in the progression of various tumors, but its biological function and the underlying molecular mechanisms in HCC are still unknown. In this study, we found that the expression of CMTM6 was significantly reduced in HCC and predicted better prognosis of HCC patients. Through in vitro and in vivo experiments, CMTM6 was shown to inhibit the proliferation of HCC cells by blocking the G1/S phase transition. Mechanistically, CMTM6 interacted with p21 and prevented its ubiquitination mediated by SCFSKP2, CRL4CDT2 and APC/CCDC20 in a cell-cycle–independent manner. As a result, CMTM6 stabilized p21 protein, leading to the inactivation of pRB/E2F pathway. Additionally, CMTM6 sensitized HCC cells to doxorubicin and cisplatin, positively correlated with better clinical outcomes of the transarterial chemoembolization (TACE) treatment for postoperative recurrence. Taken together, our study reports a novel mechanism by which p21 can be stabilized by CMTM6 and pinpoints a crucial role of the CMTM6-p21 axis in suppressing the progression of HCC and sensitizing patients with postoperative recurrence to TACE treatment.
Collapse
|
28
|
Teakell S, Chen LS, Stellrecht CM, Gandhi V. The role of p53 and p21 on 8-chloro-adenosine-induced cellular response. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1359-1374. [PMID: 35227162 DOI: 10.1080/15257770.2022.2038200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
8-Chloro-adenosine (8-Cl-Ado) is currently in phase I clinical trial. Activation of p53 and transactivation of p21 regulate cell fate after genotoxic insult. Using HCT-116-isogenic-cell-lines, we evaluated the role of p53/p21 after 8-Cl-Ado-mediated response. Following 30 µM 8-Cl-Ado treatment, RNA synthesis was inhibited, p53 protein was stabilized, and p21 expression was activated. None of the cell types were arrested in G1/S phase, however, cells lacking p53 were blocked in G2/M. These cells had the least increase in apoptotic cells, although clonogenic survival demonstrated equal inhibition in all 4 cell types. Collectively, irrespective of p53 and p21 status, 8-Cl-Ado-induced cytotoxicity was similar.
Collapse
Affiliation(s)
- Scott Teakell
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Lisa S Chen
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Christine M Stellrecht
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
29
|
Kim J, Ahn D, Park CJ. Biophysical investigation of the dual binding surfaces of human transcription factors FOXO4 and p53. FEBS J 2021; 289:3163-3182. [PMID: 34954873 DOI: 10.1111/febs.16333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/21/2021] [Accepted: 12/23/2021] [Indexed: 01/20/2023]
Abstract
Cellular senescence is protective against external oncogenic stress, but its accumulation causes aging-related diseases. Forkhead box O4 (FOXO4) and p53 are human transcription factors known to promote senescence by interacting with each other and activating p21 transcription. Inhibition of the interaction is a strategy for inducing apoptosis of senescent cells, but the binding surfaces that mediate the FOXO4-p53 interaction remain elusive. Here, we investigated two binding sites involved in the interaction between FOXO4 and p53 by NMR spectroscopy. NMR chemical shift perturbation analysis showed that the binding between FOXO4's forkhead domain (FHD) and p53's transactivation domain (TAD), and between FOXO4's C-terminal transactivation domain (CR3) and p53's DNA-binding domain (DBD), mediate the FOXO4-p53 interaction. Isothermal titration calorimetry data showed that both interactions have micromolar Kd values, and FOXO4 FHD-p53 TAD interaction has a higher binding affinity. We also showed that the intramolecular CR3-binding surface of FOXO4 FHD interacts with p53 TAD2, and FOXO4 CR3 interacts with the DNA/p53 TAD-binding surface of p53 DBD, suggesting a network of potentially competitive and/or coordinated interactions. Based on these results, we propose that a network of intramolecular and intermolecular interactions contributes to the two transcription factors' proper localisation on the p21 promoter and consequently promotes p21 transcription and cell senescence. This work provides structural information at the molecular level that is key to understanding the interplay of two proteins responsible for cellular senescence.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Korea
| | - Dabin Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Korea
| |
Collapse
|
30
|
Cheng Y, Wang G, Zhao L, Dai S, Han J, Hu X, Zhou C, Wang F, Ma H, Li B, Meng Z. Periplocymarin Induced Colorectal Cancer Cells Apoptosis Via Impairing PI3K/AKT Pathway. Front Oncol 2021; 11:753598. [PMID: 34900704 PMCID: PMC8655334 DOI: 10.3389/fonc.2021.753598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, and approximately one-third of CRC patients present with metastatic disease. Periplocymarin (PPM), a cardiac glycoside isolated from Periploca sepium, is a latent anticancer compound. The purpose of this study was to explore the effect of PPM on CRC cells. CRC cells were treated with PPM and cell viability was evaluated by CCK-8 assay. Flow cytometry and TUNEL staining were performed to assess cell cycle and apoptosis. Quantitative proteomics has been used to check the proteins differentially expressed by using tandem mass tag (TMT) labeling and liquid chromatography–tandem mass spectrometry. Bioinformatic analysis was undertaken to identify the biological processes that these differentially expressed proteins are involved in. Gene expression was analyzed by western blotting. The effect of PPM in vivo was primarily checked in a subcutaneous xenograft mouse model of CRC, and the gene expression of tumor was checked by histochemistry staining. PPM could inhibit the proliferation of CRC cells in a dose-dependent manner, induce cell apoptosis and promote G0/G1 cell cycle arrest. A total of 539 proteins were identified differentially expressed following PPM treatment, where among those there were 286 genes upregulated and 293 downregulated. PPM treatment caused a pro-apoptosis gene expression profile both in vivo and in vitro, and impaired PI3K/AKT signaling pathway might be involved. In addition, PPM treatment caused less detrimental effects on blood cell, hepatic and renal function in mice, and the anti-cancer effect was found exaggerated by PPM+5-FU combination treatment. PPM may perform anti-CRC effects by promoting cell apoptosis and this might be achieved by targeting PI3K/AKT pathway. PPM might be a safe and promising anti-cancer drug that needs to be further studied.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Scientific Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suli Dai
- Scientific Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Han
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuhua Hu
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaoxi Zhou
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feifei Wang
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongqing Ma
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baokun Li
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zesong Meng
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
31
|
Wang Y, Pei YA, Sun Y, Zhou S, Zhang XB, Pei M. Stem cells immortalized by hTERT perform differently from those immortalized by SV40LT in proliferation, differentiation, and reconstruction of matrix microenvironment. Acta Biomater 2021; 136:184-198. [PMID: 34551328 PMCID: PMC8627502 DOI: 10.1016/j.actbio.2021.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
Although matrix microenvironment has the potential to improve expanded stem cell proliferation and differentiation capacity, decellularized extracellular matrix (dECM) deposited by senescent cells does not contribute to the rejuvenation of adult stem cells, which has become a barrier to personalized stem cell therapy. Genetic modification is an effective strategy to protect cells from senescence but it carries the increased risk of malignant transformation and genetic instability. In this study, lentivirus carrying either human telomerase reverse transcriptase (hTERT) or simian virus 40 large T antigen (SV40LT) was used to transduce human infrapatellar fat pad-derived stem cells (IPFSCs). We found that virus transduction modified the proliferative, chondrogenic, and adipogenic abilities of IPFSCs. Interestingly, dECM deposited by immortalized cells significantly influenced replicative senescent IPFSCs in proliferation and differentiation preference, the effect of which is hinged on the approach of immortalization using either SV40LT or hTERT. Our findings indicate both dECM expansion and immortalization strategies can be used for replicative senescent adult stem cells' proliferation and lineage-specific differentiation, which benefits future stem cell-based tissue regeneration. This approach may also work for adult stem cells with premature senescence in elderly/aged patients, which needs further investigation. STATEMENT OF SIGNIFICANCE: Adult stem cells are a promising solution for autologous cell-based therapy. Unfortunately, cell senescence due to donor age and/or ex vivo expansion prevents clinical application. Recent progress with decellularized extracellular matrix provides a potential for the rejuvenation of senescent stem cells by improving their proliferation and differentiation capacities. Given the fact that the young matrix can provide a healthy and energetic microenvironment, in this study, two approaches using lentivirus transduction of hTERT and SV40LT were compared. The goal was to immortalize donor cells for deposition of decellularized extracellular matrix. The matrix was demonstrated to contribute diverging effects on the chondrogenic and adipogenic differentiation of expanded stem cells and exhibited proliferation benefits as well. These findings provide an invaluable asset for stem cell-based tissue regeneration.
Collapse
Affiliation(s)
- Yiming Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA; Department of Joint Surgery, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yuan Sun
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | - Sheng Zhou
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, Tianjin, China; Department of Medicine, Loma Linda University, Loma Linda, CA, USA.
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA; WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
32
|
Song Y, Okazaki R, Yoshida Y. Senescence-associated secretory phenotype and activation of NF-κB in splenocytes of old mice exposed to irradiation at a young age. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104124. [PMID: 33974965 DOI: 10.1016/j.dci.2021.104124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
DNA damage-induced cellular senescence is involved in aging. We reported previously that p53+/- mice subjected to irradiation at a young age exhibited an increased number of splenic lymphocytes in the S and G2/M phases. However, the detailed nature of splenic disorders in these mice is not fully understood. In this study, we investigated the effects on molecules in splenocytes, especially on senescence factors after early exposure of mice to radiation. Mice, 8- (young) or 17-, 30-, and 41-week-old (old) p53+/- were subjected to 3-Gy whole-body irradiation. Splenocytes were prepared at 56 weeks of age. Immunoblot showed that irradiation at 8 weeks enhanced the expression and phosphorylation of p53, cyclin-dependent kinase 2, cell division cycle 6, and the MDM2 proto-oncogene in splenocytes. However, these molecules were not affected by irradiation at 17, 30, and 41 weeks of age. Similarly, irradiation at 8, but not 17, 30, or 41 weeks, induced phosphorylation of IKKα, NF-κB inhibitor alpha, and p65. Electrophoretic mobility shift assay demonstrated that active forms of NF-κB were increased. In addition, enzyme-linked immunosorbent assay showed that lipopolysaccharide-induced IL-6 production was enhanced in splenocytes of mice irradiated at 8 weeks. ATP levels were increased in splenocytes of mice irradiated at 8, but not 17, 30, or 41 weeks. CDK2 expression and p65 phosphorylation were induced in CD45R/B220+ cells from irradiated mice. Overall, irradiation induced a NF-κB-related immune response in the spleen with an increase in senescence marker proteins, such as CDKs and IL-6, which are known to be typical senescence-associated secretory phenotype factors related to stresses, such as DNA damage.
Collapse
Affiliation(s)
- Yuan Song
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan; Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, No. 169 Tian Shan Street, Shijiazhuang, 050035, China
| | - Ryuji Okazaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences Group for Environmental Evaluation, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
33
|
Induction of G2/M Cell Cycle Arrest via p38/p21 Waf1/Cip1-Dependent Signaling Pathway Activation by Bavachinin in Non-Small-Cell Lung Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26175161. [PMID: 34500594 PMCID: PMC8434044 DOI: 10.3390/molecules26175161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022]
Abstract
Lung cancer is the most commonly diagnosed malignant cancer in the world. Non-small-cell lung cancer (NSCLC) is the major category of lung cancer. Although effective therapies have been administered, for improving the NSCLC patient’s survival, the incident rate is still high. Therefore, searching for a good strategy for preventing NSCLC is urgent. Traditional Chinese medicine (TCM) are brilliant materials for cancer chemoprevention, because of their high biological safety and low cost. Bavachinin, which is an active flavanone of Proralea corylifolia L., possesses anti-inflammation, anti-angiogenesis, and anti-cancer activities. The present study’s aim was to evaluate the anti-cancer activity of bavachinin on NSCLC, and its regulating molecular mechanisms. The results exhibited that a dose-dependent decrease in the cell viability and colony formation capacity of three NSCLC cell lines, by bavachinin, were through G2/M cell cycle arrest induction. Meanwhile, the expression of the G2/M cell cycle regulators, such as cyclin B, p-cdc2Y15, p-cdc2T161, and p-wee1, was suppressed. With the dramatic up-regulation of the cyclin-dependent kinase inhibitor, p21Waf1/Cip1, the expression and association of p21Waf1/Cip1 with the cyclin B/cdc2 complex was observed. Silencing the p21Waf1/Cip1 expression significantly rescued bavachinin-induced G2/M cell accumulation. Furthermore, the expression of p21Waf1/Cip1 mRNA was up-regulated in bavachinin-treated NSCLC cells. In addition, MAPK and AKT signaling were activated in bavachinin-added NSCLC cells. Interestingly, bavachinin-induced p21Waf1/Cip1 expression was repressed after restraint p38 MAPK activation. The inhibition of p38 MAPK activation reversed bavachinin-induced p21Waf1/Cip1 mRNA expression and G2/M cell cycle arrest. Collectively, bavachinin-induced G2/M cell cycle arrest was through the p38 MAPK-mediated p21Waf1/Cip1-dependent signaling pathway in the NSCLC cells.
Collapse
|
34
|
Li W, Li Y, Zhang H, Liu M, Gong H, Yuan Y, Shi R, Zhang Z, Liu C, Chen C, Liu H, Chen J. HOTAIR promotes gefitinib resistance through modification of EZH2 and silencing p16 and p21 in non-small cell lung cancer. J Cancer 2021; 12:5562-5572. [PMID: 34405017 PMCID: PMC8364642 DOI: 10.7150/jca.56093] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
The long non-coding RNA Hox transcript antisense intergenic RNA (HOTAIR) plays a critical role in tumorigenesis as well as drug resistance in various cancers. However, the molecular mechanism by which HOTAIR induces gefitinib resistance in non-small cell lung cancer is to date unclear. In the present study, we revealed that HOTAIR is upregulated in gefitinib-resistant lung cancer cells and over-expression of HOTAIR enhances gefitinib resistance in lung cancer cells. In addition, the overexpression of HOTAIR promotes cell cycle progression through epigenetic regulation of EZH2/H3K27. Silencing of EZH2 by either siRNA or inhibitors sensitized the lung cancer cells to gefitinib. Inhibition of EZH2 induces expression of p16 and p21, whereas levels of CDK4, cyclinD1, E2F1, and LSD1 are significantly decreased in PC-9 cells overexpressing HOTAIR. ChIP-PCR experiments indicate that HOTAIR increases H3K27me3 recruitment to the promoter of p16 and p21 in PC-9 lung cancer cells overexpressing HOTAIR. In xenograft mouse models, overexpressing HOTAIR in lung cancer tissues decreased p16 and p21 proteins. Taken together, these data suggest that HOTAIR contributes to gefitinib resistance by regulating EZH2 and p16 and p21. Targeting HOTAIR may be a novel therapeutic strategy for treating gefitinib-resistance in non-small cell lung cancer.
Collapse
Affiliation(s)
- Weiting Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Minghui Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hao Gong
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yin Yuan
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Ruifeng Shi
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zihe Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chao Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
35
|
Chung Y, Jeong S, Lee IK, Yun BS, Lee JS, Ro S, Park JK. Regulation of p53 Activity by (+)-Epiloliolide Isolated from Ulva lactuca. Mar Drugs 2021; 19:450. [PMID: 34436289 PMCID: PMC8399812 DOI: 10.3390/md19080450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Ulva lactuca (U. lactuca) is a green alga distributed worldwide and used as a food and cosmetic material. In our previous study, we determined the effects of U. lactuca methanol extracts on the UVB-induced DNA repair. In the present study, we fractionated U. lactuca methanol extracts to identify the effective compound for the DNA repair. MTT assay demonstrated that (+)-epiloliolide showed no cytotoxicity up to 100 μM in BJ-5ta human dermal fibroblast. Upon no treatment, exposure to UVB 400 J/m2 decreased cell viability by 45%, whereas (+)-epiloliolide treatment for 24 h after UVB exposure significantly increased the cell viability. In GO and GESA analysis, a number of differentially expressed genes were uniquely expressed in (+)-epiloliolide treated cells, which were enriched in the p53 signaling pathway and excision repair. Immunofluorescence demonstrated that (+)-epiloliolide increased the nuclear localization of p53. Comet assay demonstrated that (+)-epiloliolide decreased tail moment increased by UVB. Western blot analysis demonstrated that (+)-epiloliolide decreased the levels of p-p53, p21, Bax, and Bim, but increased that of Bcl-2. Reverse transcription PCR (RT-PCR) demonstrated that (+)-epiloliolide decreased the levels of MMP 1, 9, and 13, but increased that of COL1A1. These results suggest that (+)-epiloliolide regulates p53 activity and has protective effects against UVB.
Collapse
Affiliation(s)
- Yuheon Chung
- Division of Biological Science, Wonkwang University, Ikasn 54538, Korea; (Y.C.); (S.J.)
| | - Seula Jeong
- Division of Biological Science, Wonkwang University, Ikasn 54538, Korea; (Y.C.); (S.J.)
| | - In-Kyoung Lee
- Division of Biotechnoloy, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Korea; (I.-K.L.); (B.-S.Y.)
| | - Bong-Sik Yun
- Division of Biotechnoloy, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Korea; (I.-K.L.); (B.-S.Y.)
| | - Jung Sup Lee
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea;
| | - Seungil Ro
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA;
| | - Jong Kun Park
- Division of Biological Science, Wonkwang University, Ikasn 54538, Korea; (Y.C.); (S.J.)
| |
Collapse
|
36
|
Maeda M, Tomita M, Maeda M, Matsumoto H, Usami N, Kume K, Kobayashi K. Exposure of the cytoplasm to low-dose X-rays modifies ataxia telangiectasia mutated-mediated DNA damage responses. Sci Rep 2021; 11:13113. [PMID: 34219128 PMCID: PMC8255317 DOI: 10.1038/s41598-021-92213-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022] Open
Abstract
We recently showed that when a low X-ray dose is used, cell death is enhanced in nucleus-irradiated compared with whole-cell-irradiated cells; however, the role of the cytoplasm remains unclear. Here, we show changes in the DNA damage responses with or without X-ray microbeam irradiation of the cytoplasm. Phosphorylated histone H2AX foci, a surrogate marker for DNA double-strand breaks, in V79 and WI-38 cells are not observed in nucleus irradiations at ≤ 2 Gy, whereas they are observed in whole-cell irradiations. Addition of an ataxia telangiectasia mutated (ATM) kinase inhibitor to whole-cell irradiations suppresses foci formation at ≤ 2 Gy. ABL1 and p73 expression is upregulated following nucleus irradiation, suggesting the induction of p73-dependent cell death. Furthermore, CDKN1A (p21) is upregulated following whole-cell irradiation, indicating the induction of cell cycle arrest. These data reveal that cytoplasmic radioresponses modify ATM-mediated DNA damage responses and determine the fate of cells irradiated at low doses.
Collapse
Affiliation(s)
- Munetoshi Maeda
- Proton Medical Research Division, Research and Development Department, The Wakasa Wan Energy Research Center, WERC, 64-52-1 Nagatani, Tsuruga, Fukui, 914-0192, Japan.
| | - Masanori Tomita
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, CRIEPI, 2-11-1 Iwado Kita, Komae, Tokyo, 201-8511, Japan
| | - Mika Maeda
- Proton Medical Research Division, Research and Development Department, The Wakasa Wan Energy Research Center, WERC, 64-52-1 Nagatani, Tsuruga, Fukui, 914-0192, Japan
| | - Hideki Matsumoto
- Department of Experimental Radiology and Health Physics, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaitsuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Noriko Usami
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, KEK, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kyo Kume
- Proton Medical Research Division, Research and Development Department, The Wakasa Wan Energy Research Center, WERC, 64-52-1 Nagatani, Tsuruga, Fukui, 914-0192, Japan
| | - Katsumi Kobayashi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, KEK, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| |
Collapse
|
37
|
Li H, Wang J, Huang K, Zhang T, Gao L, Yang S, Yi W, Niu Y, Liu H, Wang Z, Wang G, Tao K, Wang L, Cai K. Nkx2.5 Functions as a Conditional Tumor Suppressor Gene in Colorectal Cancer Cells via Acting as a Transcriptional Coactivator in p53-Mediated p21 Expression. Front Oncol 2021; 11:648045. [PMID: 33869046 PMCID: PMC8047315 DOI: 10.3389/fonc.2021.648045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
NK2 homeobox 5 (Nkx2.5), a homeobox-containing transcription factor, is associated with a spectrum of congenital heart diseases. Recently, Nkx2.5 was also found to be differentially expressed in several kinds of tumors. In colorectal cancer (CRC) tissue and cells, hypermethylation of Nkx2.5 was observed. However, the roles of Nkx2.5 in CRC cells have not been fully elucidated. In the present study, we assessed the relationship between Nkx2.5 and CRC by analyzing the expression pattern of Nkx2.5 in CRC samples and the adjacent normal colonic mucosa (NCM) samples, as well as in CRC cell lines. We found higher expression of Nkx2.5 in CRC compared with NCM samples. CRC cell lines with poorer differentiation also had higher expression of Nkx2.5. Although this expression pattern makes Nkx2.5 seem like an oncogene, in vitro and in vivo tumor suppressive effects of Nkx2.5 were detected in HCT116 cells by establishing Nkx2.5-overexpressed CRC cells. However, Nkx2.5 overexpression was incapacitated in SW480 cells. To further assess the mechanism, different expression levels and mutational status of p53 were observed in HCT116 and SW480 cells. The expression of p21WAF1/CIP1, a downstream antitumor effector of p53, in CRC cells depends on both expression level and mutational status of p53. Overexpressed Nkx2.5 could elevate the expression of p21WAF1/CIP1 only in CRC cells with wild-type p53 (HCT116), rather than in CRC cells with mutated p53 (SW480). Mechanistically, Nkx2.5 could interact with p53 and increase the transcription of p21WAF1/CIP1 without affecting the expression of p53. In conclusion, our findings demonstrate that Nkx2.5 could act as a conditional tumor suppressor gene in CRC cells with respect to the mutational status of p53. The tumor suppressive effect of Nkx2.5 could be mediated by its role as a transcriptional coactivator in wild-type p53-mediated p21WAF1/CIP1 expression.
Collapse
Affiliation(s)
- Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangyang Yi
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, China
| | - Yanfeng Niu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Tsitsipatis D, Grammatikakis I, Driscoll RK, Yang X, Abdelmohsen K, Harris SC, Yang JH, Herman AB, Chang MW, Munk R, Martindale JL, Mazan-Mamczarz K, De S, Lal A, Gorospe M. AUF1 ligand circPCNX reduces cell proliferation by competing with p21 mRNA to increase p21 production. Nucleic Acids Res 2021; 49:1631-1646. [PMID: 33444453 PMCID: PMC7897478 DOI: 10.1093/nar/gkaa1246] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/28/2020] [Accepted: 12/11/2020] [Indexed: 01/06/2023] Open
Abstract
Mammalian circRNAs can influence different cellular processes by interacting with proteins and other nucleic acids. Here, we used ribonucleoprotein immunoprecipitation (RIP) analysis to identify systematically the circRNAs associated with the cancer-related protein AUF1. Among the circRNAs interacting with AUF1 in HeLa (human cervical carcinoma) cells, we focused on hsa_circ_0032434 (circPCNX), an abundant target of AUF1. Overexpression of circPCNX specifically interfered with the binding of AUF1 to p21 (CDKN1A) mRNA, thereby promoting p21 mRNA stability and elevating the production of p21, a major inhibitor of cell proliferation. Conversely, silencing circPCNX increased AUF1 binding to p21 mRNA, reducing p21 production and promoting cell division. Importantly, eliminating the AUF1-binding region of circPCNX abrogated the rise in p21 levels and rescued proliferation. Therefore, we propose that the interaction of circPCNX with AUF1 selectively prevents AUF1 binding to p21 mRNA, leading to enhanced p21 mRNA stability and p21 protein production, thereby suppressing cell growth.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute IRP, NIH, Bethesda, MD, USA
| | - Riley K Driscoll
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Sophia C Harris
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute IRP, NIH, Bethesda, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| |
Collapse
|
39
|
Costunolide, a Sesquiterpene Lactone, Suppresses Skin Cancer via Induction of Apoptosis and Blockage of Cell Proliferation. Int J Mol Sci 2021; 22:ijms22042075. [PMID: 33669832 PMCID: PMC7922093 DOI: 10.3390/ijms22042075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Costunolide is a naturally occurring sesquiterpene lactone that demonstrates various therapeutic actions such as anti-oxidative, anti-inflammatory, and anti-cancer properties. Costunolide has recently emerged as a potential anti-cancer agent in various types of cancer, including colon, lung, and breast cancer. However, its mode of action in skin cancer remains unclear. To determine the anti-cancer potential of costunolide in skin cancer, human epidermoid carcinoma cell line A431 was treated with costunolide. A lactate dehydrogenase assay showed that costunolide diminished the viability of A431 cells. Apoptotic cells were detected by annexin V/propidium iodide double staining and Terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay assay, and costunolide induced cell apoptosis via activation of caspase-3 as well as induction of poly-ADP ribose polymerase cleavage in A431 cells. In addition, costunolide elevated the level of the pro-apoptotic protein Bax while lowering the levels of anti-apoptotic proteins, including Bcl-2 and Bcl-xL. To address the inhibitory effect of costunolide on cell proliferation and survival, various signaling pathways, including mitogen-activated protein kinases, signal transducer and activator of transcription 3 (STAT3), nuclear factor κB (NF-κB), and Akt, were investigated. Costunolide activated the p38 and c-Jun N-terminal kinase pathways while suppressing the extracellular signal-regulated kinase (ERK), STAT3, NF-κB, and Akt pathways in A431 cells. Consequently, it was inferred that costunolide suppresses cell proliferation and survival via these signaling pathways. Taken together, our data clearly indicated that costunolide exerts anti-cancer activity in A431 cells by suppressing cell growth via inhibition of proliferation and promotion of apoptosis. Therefore, it may be employed as a potentially tumor-specific candidate in skin cancer treatment.
Collapse
|
40
|
Saida L, Tulasi CDSLN, Narasu ML. Evaluation of chemo-preventive efficacy of Ficus religiosa latex extract by flow cytometry analysis and gene expression studies performed by RT-PCR in various cell lines. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00182-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
An extract of Ficus religiosa latex has been previously found to possess potent pharmacological activity with high antioxidant content phytochemical. The present research was conducted to investigate the chemo-preventive efficacy of latex extract on human breast adenocarcinoma MDA MB 231, human neroblastoma IMR 32, and human colorectal HCT 116 cell lines.
Results
The results showed that the latex crude extract induced cytotoxicity in all the selected cell lines with IC50 value 4.8 ± 1.13 μg/ml against the IMR 32 cell line. The cell cycle analysis results indicated the arrest and accumulation of cells at G1 phase in case of MDA MB 231 cells and HCT 116 cells whereas in the case of IMR 32 cells the arrest was in G2/M phase. The clear bands of fragments observed in DNA ladder experiments showed that apoptosis is induced by extracts in the cell lines. This could be correlated with the gene level expression studies on selected pro-apoptotic (p53 and caspase-3) and anti-apoptotic (Bcl-2, AKT) genes, which got upregulated and downregulated, respectively.
Conclusion
Based on the experimental evidence, Ficus religiosa contains phytochemicals with potent antitumor activities.
Collapse
|
41
|
Kuang Y, Kang J, Li H, Liu B, Zhao X, Li L, Jin X, Li Q. Multiple functions of p21 in cancer radiotherapy. J Cancer Res Clin Oncol 2021; 147:987-1006. [PMID: 33547489 DOI: 10.1007/s00432-021-03529-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Greater than half of cancer patients experience radiation therapy, for both radical and palliative objectives. It is well known that researches on radiation response mechanisms are conducive to improve the efficacy of cancer radiotherapy. p21 was initially identified as a widespread inhibitor of cyclin-dependent kinases, transcriptionally modulated by p53 and a marker of cellular senescence. It was once considered that p21 acts as a tumour suppressor mainly to restrain cell cycle progression, thereby resulting in growth suppression. With the deepening researches on p21, p21 has been found to regulate radiation responses via participating in multiple cellular processes, including cell cycle arrest, apoptosis, DNA repair, senescence and autophagy. Hence, a comprehensive summary of the p21's functions in radiation response will provide a new perspective for radiotherapy against cancer. METHODS We summarize the recent pertinent literature from various electronic databases, including PubMed and analyzed several datasets from Gene Expression Omnibus database. This review discusses how p21 influences the effect of cancer radiotherapy via involving in multiple signaling pathways and expounds the feasibility, barrier and risks of using p21 as a biomarker as well as a therapeutic target of radiotherapy. CONCLUSION p21's complicated and important functions in cancer radiotherapy make it a promising therapeutic target. Besides, more thorough insights of p21 are needed to make it a safe therapeutic target.
Collapse
Affiliation(s)
- Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Kang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueshan Zhao
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
42
|
Dong X, Luo Y, Lu S, Ma H, Zhang W, Zhu Y, Sun G, Sun X. Ursodesoxycholic acid alleviates liver fibrosis via proregeneration by activation of the ID1-WNT2/HGF signaling pathway. Clin Transl Med 2021; 11:e296. [PMID: 33635004 PMCID: PMC7828260 DOI: 10.1002/ctm2.296] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The human liver possesses a remarkable capacity for self-repair. However, liver fibrosis remains a serious medical concern, potentially progressing to end-stage liver cirrhosis and even death. Liver fibrosis is characterized by excess accumulation of extracellular matrix in response to chronic injury. Liver regenerative ability, a strong indicator of liver health, is important in resisting fibrosis. In this study, we provide evidence that ursodesoxycholic acid (UDCA) can alleviate liver fibrosis by promoting liver regeneration via activation of the ID1-WNT2/hepatocyte growth factor (HGF) pathway. METHODS Bile duct ligation (BDL) and partial hepatectomy (PH) mouse models were used to verify the effects of UDCA on liver fibrosis, regeneration, and the ID1-WNT2/HGF pathway. An Id1 knockdown mouse model was also used to assess the role of Id1 in UDCA alleviation of liver fibrosis. RESULTS Our results demonstrate that UDCA can alleviate liver fibrosis in the BDL mice and promote liver regeneration via the ID1-WNT2/HGF pathway in PH mice. In addition, Id1 knockdown abolished the protection afforded by UDCA in BDL mice. CONCLUSIONS We conclude that UDCA protects against liver fibrosis by proregeneration via activation of the ID1-WNT2/HGF pathway.
Collapse
Affiliation(s)
- Xi Dong
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Yun Luo
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Shan Lu
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Han Ma
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingP. R. China
| | - Wenchao Zhang
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingP. R. China
| | - Yue Zhu
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Guibo Sun
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Xiaobo Sun
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| |
Collapse
|
43
|
de la Torre P, Fernández-de la Torre M, Flores AI. Premature senescence of placental decidua cells as a possible cause of miscarriage produced by mycophenolic acid. J Biomed Sci 2021; 28:3. [PMID: 33397374 PMCID: PMC7780668 DOI: 10.1186/s12929-020-00704-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Successful pregnancy is supported by a healthy maternal-fetal interface (i.e., the decidual tissues) which holds the conceptus and safeguards it against stressors from the beginning of pregnancy. Any disturbance of this interface can presumably lead to the loss of pregnancy. The use of the immunosuppressive drug mycophenolic acid (MPA) should be discontinued in pregnancy given its abortive and embryotoxic effects. Direct teratogenic effects have been observed in mammalian embryos cultured in MPA, but the underlying mechanisms of abortion by MPA are less understood. METHODS Decidual stromal cells isolated from human placentas are cultured in the presence of clinically relevant doses of MPA. Data regarding the effects of MPA on the proliferation and viability of decidua cultures are first analysed and then, molecular pathways contributing to these effects are unravelled. RESULTS MPA treatment of decidual stromal cells results in loss of proliferation capacity and a decrease in the viability of decidua cultures. The molecular pathways involved in the effects of MPA on decidual stromal cells are a reduction in pre-rRNA synthesis and subsequent disruption of the nucleolus. The nucleolar stress stabilizes p53, which in turn, leads to a p21-mediated cell cycle arrest in late S and G2 phases, preventing the progression of the decidua cells into the mitosis. Furthermore, MPA does not induce apoptosis but activate mechanisms of autophagy and senescence in decidual stromal cells. CONCLUSION The irreversible growth arrest of decidua cells, whose role in the maintenance of the pregnancy microenvironment is known, may be one cause of miscarriage in MPA treated pregnant women.
Collapse
Affiliation(s)
- Paz de la Torre
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n 28041, Madrid, Spain
| | - Miguel Fernández-de la Torre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n 28041, Madrid, Spain
| | - Ana I Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n 28041, Madrid, Spain.
| |
Collapse
|
44
|
The p53/p73 - p21 CIP1 tumor suppressor axis guards against chromosomal instability by restraining CDK1 in human cancer cells. Oncogene 2021; 40:436-451. [PMID: 33168930 PMCID: PMC7808936 DOI: 10.1038/s41388-020-01524-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Whole chromosome instability (W-CIN) is a hallmark of human cancer and contributes to the evolvement of aneuploidy. W-CIN can be induced by abnormally increased microtubule plus end assembly rates during mitosis leading to the generation of lagging chromosomes during anaphase as a major form of mitotic errors in human cancer cells. Here, we show that loss of the tumor suppressor genes TP53 and TP73 can trigger increased mitotic microtubule assembly rates, lagging chromosomes, and W-CIN. CDKN1A, encoding for the CDK inhibitor p21CIP1, represents a critical target gene of p53/p73. Loss of p21CIP1 unleashes CDK1 activity which causes W-CIN in otherwise chromosomally stable cancer cells. Consequently, induction of CDK1 is sufficient to induce abnormal microtubule assembly rates and W-CIN. Vice versa, partial inhibition of CDK1 activity in chromosomally unstable cancer cells corrects abnormal microtubule behavior and suppresses W-CIN. Thus, our study shows that the p53/p73 - p21CIP1 tumor suppressor axis, whose loss is associated with W-CIN in human cancer, safeguards against chromosome missegregation and aneuploidy by preventing abnormally increased CDK1 activity.
Collapse
|
45
|
Wang Y, Hu G, Hill RC, Dzieciatkowska M, Hansen KC, Zhang XB, Yan Z, Pei M. Matrix reverses immortalization-mediated stem cell fate determination. Biomaterials 2021; 265:120387. [PMID: 32987274 PMCID: PMC7944411 DOI: 10.1016/j.biomaterials.2020.120387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Primary cell culture in vitro suffers from cellular senescence. We hypothesized that expansion on decellularized extracellular matrix (dECM) deposited by simian virus 40 large T antigen (SV40LT) transduced autologous infrapatellar fat pad stem cells (IPFSCs) could rejuvenate high-passage IPFSCs in both proliferation and chondrogenic differentiation. In the study, we found that SV40LT transduced IPFSCs exhibited increased proliferation and adipogenic potential but decreased chondrogenic potential. Expansion on dECMs deposited by passage 5 IPFSCs yielded IPFSCs with dramatically increased proliferation and chondrogenic differentiation capacity; however, this enhanced capacity diminished if IPFSCs were grown on dECM deposited by passage 15 IPFSCs. Interestingly, expansion on dECM deposited by SV40LT transduced IPFSCs yielded IPFSCs with enhanced proliferation and chondrogenic capacity but decreased adipogenic potential, particularly for the dECM group derived from SV40LT transduced passage 15 cells. Our immunofluorescence staining and proteomics data identify matrix components such as basement membrane proteins as top candidates for matrix mediated IPFSC rejuvenation. Both cell proliferation and differentiation were endorsed by transcripts measured by RNASeq during the process. This study provides a promising model for in-depth investigation of the matrix protein influence on surrounding stem cell differentiation.
Collapse
Affiliation(s)
- Yiming Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA; Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Bioinformatics Core, West Virginia University, Morgantown, WV, USA
| | - Ryan C Hill
- Department of Biochemistry & Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry & Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry & Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, Tianjin, China; Department of Medicine, Loma Linda University, Loma Linda, CA, USA.
| | - Zuoqin Yan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA; WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
46
|
Merkel Cell Polyomavirus Large T Antigen is Dispensable in G2 and M-Phase to Promote Proliferation of Merkel Cell Carcinoma Cells. Viruses 2020; 12:v12101162. [PMID: 33066686 PMCID: PMC7602435 DOI: 10.3390/v12101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/23/2022] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer frequently caused by the Merkel cell polyomavirus (MCPyV), and proliferation of MCPyV-positive MCC tumor cells depends on the expression of a virus-encoded truncated Large T antigen (LT) oncoprotein. Here, we asked in which phases of the cell cycle LT activity is required for MCC cell proliferation. Hence, we generated fusion-proteins of MCPyV-LT and parts of geminin (GMMN) or chromatin licensing and DNA replication factor1 (CDT1). This allowed us to ectopically express an LT, which is degraded either in the G1 or G2 phase of the cell cycle, respectively, in MCC cells with inducible T antigen knockdown. We demonstrate that LT expressed only in G1 is capable of rescuing LT knockdown-induced growth suppression while LT expressed in S and G2/M phases fails to support proliferation of MCC cells. These results suggest that the crucial function of LT, which has been demonstrated to be inactivation of the cellular Retinoblastoma protein 1 (RB1) is only required to initiate S phase entry.
Collapse
|
47
|
Impact of Losing hRpn13 Pru or UCHL5 on Proteasome Clearance of Ubiquitinated Proteins and RA190 Cytotoxicity. Mol Cell Biol 2020; 40:MCB.00122-20. [PMID: 32631902 DOI: 10.1128/mcb.00122-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/26/2020] [Indexed: 01/18/2023] Open
Abstract
hRpn13/ADRM1 links substrate recruitment with deubiquitination at the proteasome through its proteasome- and ubiquitin-binding Pru domain and DEUBAD domain, which binds and activates deubiquitinating enzyme (DUB) UCHL5/Uch37. Here, we edit the HCT116 colorectal cancer cell line to delete part of the hRpn13 Pru, producing cells that express truncated hRpn13 (trRpn13), which is competent for UCHL5 binding but defective for proteasome interaction. trRpn13 cells demonstrate reduced levels of proteasome-bound ubiquitinated proteins, indicating that the loss of hRpn13 function at proteasomes cannot be fully compensated for by the two other dedicated substrate receptors (hRpn1 and hRpn10). Previous studies indicated that the loss of full-length hRpn13 causes a corresponding reduction of UCHL5. We find UCHL5 levels unaltered in trRpn13 cells, but hRpn11 is elevated in ΔhRpn13 and trRpn13 cells, perhaps from cell stress. Despite the ∼90 DUBs in human cells, including two others in addition to UCHL5 at the proteasome, we found deletion of UCHL5 from HCT116 cells to cause increased levels of ubiquitinated proteins in whole-cell extract and at proteasomes, suggesting that UCHL5 activity cannot be fully assumed by other DUBs. We also report anticancer molecule RA190, which binds covalently to hRpn13 and UCHL5, to require hRpn13 Pru and not UCHL5 for cytotoxicity.
Collapse
|
48
|
Ito SS, Nakagawa Y, Matsubayashi M, Sakaguchi YM, Kobashigawa S, Matsui TK, Nanaura H, Nakanishi M, Kitayoshi F, Kikuchi S, Kajihara A, Tamaki S, Sugie K, Kashino G, Takahashi A, Hasegawa M, Mori E, Kirita T. Inhibition of the ATR kinase enhances 5-FU sensitivity independently of nonhomologous end-joining and homologous recombination repair pathways. J Biol Chem 2020; 295:12946-12961. [PMID: 32675286 DOI: 10.1074/jbc.ra120.013726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/13/2020] [Indexed: 10/23/2022] Open
Abstract
The anticancer agent 5-fluorouracil (5-FU) is cytotoxic and often used to treat various cancers. 5-FU is thought to inhibit the enzyme thymidylate synthase, which plays a role in nucleotide synthesis and has been found to induce single- and double-strand DNA breaks. ATR Ser/Thr kinase (ATR) is a principal kinase in the DNA damage response and is activated in response to UV- and chemotherapeutic drug-induced DNA replication stress, but its role in cellular responses to 5-FU is unclear. In this study, we examined the effect of ATR inhibition on 5-FU sensitivity of mammalian cells. Using immunoblotting, we found that 5-FU treatment dose-dependently induced the phosphorylation of ATR at the autophosphorylation site Thr-1989 and thereby activated its kinase. Administration of 5-FU with a specific ATR inhibitor remarkably decreased cell survival, compared with 5-FU treatment combined with other major DNA repair kinase inhibitors. Of note, the ATR inhibition enhanced induction of DNA double-strand breaks and apoptosis in 5-FU-treated cells. Using gene expression analysis, we found that 5-FU induced the activation of the intra-S cell-cycle checkpoint. Cells lacking BRCA2 were sensitive to 5-FU in the presence of ATR inhibitor. Moreover, ATR inhibition enhanced the efficacy of the 5-FU treatment, independently of the nonhomologous end-joining and homologous recombination repair pathways. These findings suggest that ATR could be a potential therapeutic target in 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Soichiro S Ito
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Yosuke Nakagawa
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yoshihiko M Sakaguchi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Shinko Kobashigawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Takeshi K Matsui
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan; Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Hitoki Nanaura
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan; Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Mari Nakanishi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Fumika Kitayoshi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Sotaro Kikuchi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Atsuhisa Kajihara
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Shigehiro Tamaki
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Nara, Japan
| | - Genro Kashino
- Radioisotope Research Center, Nara Medical University, Kashihara, Nara, Japan
| | | | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, Kashihara, Nara, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan.
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
49
|
Sengupta P, Chatterjee S. Inosine 5'-diphosphate, a molecular decoy rescues Nucleoside diphosphate kinase from c-MYC G-Quadruplex unfolding. Biochim Biophys Acta Gen Subj 2020; 1864:129649. [PMID: 32492501 DOI: 10.1016/j.bbagen.2020.129649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/02/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The transcription-inhibitory G-Quadruplex(Pu27-GQ) at c-MYC promoter is challenging to target due to structural heterogeneity. Nucleoside diphosphate kinase (NM23-H2) specifically binds and unfolds Pu27-GQ to increase c-MYC transcription. Here, we used Inosine 5'-diphosphate (IDP) to disrupt NM23-H2-Pu27-GQ interactions and arrest c-MYC transcription without compromising NM23-H2-mediated kinase properties. METHODS Site-directed mutagenesis,31P-NMR and STD-NMR studies delineate the epitope of NM23-H2-IDP complex and characterize specific amino acids in NM23-H2 involved in Pu27-GQ and IDP interactions. Immunoprecipitations and phosphohistidine-immunoblots reveal how IDP blocks NM23-H2-Pu27 association to downregulate c-MYC transcription in MDAMB-231 cells exempting NM23-H2-mediated kinase properties. RESULTS NMR studies show that IDP binds to the Guanosine diphosphate-binding pocket of NM23-H2 (KD = 5.0 ± 0.276 μM). Arg88-driven hydrogen bonds to the terminal phosphate of IDP restricts P-O-P bond-rotation increasing its pKa (∆pKa = 0.85 ± 0.0025).9-inosinyl moiety of IDP is stacked over Phe60 phenyl ring driving trans-conformation of inosine and axial geometry of pyrophosphates. Chromatin immunoprecipitations revealed that these interactions rescue NM23-H2-driven Pu27-GQ unfolding, which triggers Nucleolin recruitment and lowers Sp1 occupancy at c-MYC promoter stabilizing Pu27-GQ. This silences c-MYC transcription that reduces c-MYC-Sp1 association amplifying Sp1 recruitment across P21 promoter stimulating P21 transcription and G2/M arrest. CONCLUSIONS IDP synergizes the effects of Pu27-GQ-interacting compounds to abrogate c-MYC transcription and induce apoptosis in MDAMB-231 cells by disrupting NM23-H2-Pu27-GQ interactions without affecting NM23-H2-mediated kinase properties. GENERAL SIGNIFICANCE Our study provides a pragmatic approach for developing NM23-H2-targeting regulators to rescue NM23-H2 binding at structurally ambiguous Pu27-GQ that synergizes the anti-tumorigenic effects of GQ-based therapeutics with minimized off-target effects.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata 700054, India.
| |
Collapse
|
50
|
Du S, Wang H, Cai J, Ren R, Zhang W, Wei W, Shen X. Apolipoprotein E2 modulates cell cycle function to promote proliferation in pancreatic cancer cells via regulation of the c-Myc–p21Waf1signalling pathway. Biochem Cell Biol 2020; 98:191-202. [PMID: 32167787 DOI: 10.1139/bcb-2018-0230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Apolipoprotein E2 (ApoE2) is reportedly critical for cell proliferation and survival, and has been identified as a potential tumour-associated marker in many kinds of cancer. However, studies of the function and mechanisms of ApoE2 in pancreatic cancer proliferation and development are rare. In this study, we performed an analysis to determine the modulatory effects of ApoE2–LRP8 (lipoprotein receptor-related protein 8) pathway on cell cycle and cell proliferation, and explored its mechanisms in pancreatic cancer. High expression levels of ApoE2–LRP8/c-Myc were detected in tumour tissues and cell lines by immunohistochemistry and Western blotting. It was also shown that ApoE2–LRP8 induced phosphorylation of ERK1/2 to activate c-Myc and contribute to cell-cycle-related protein expression. ApoE2 conditions induced c-Myc binding to target gene sequences in the p21Waf1promoter, resulting in decreased transcription. ERK/c-Myc contributes to the promotion of the expression levels of cyclin D1, cdc2, and cyclin B1, and reduces p21Waf1activity, thereby promoting cell cycle distribution. We demonstrated the function of ApoE2–LRP8 in the activation of the ERK–c-Myc–p21Waf1signalling cascade and the modulation of G1/S and G2/M transition, indicating ApoE2–LRP8’s important role in the cancer cell proliferation. ApoE2 could serve as a diagnostic marker and chemotherapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Shaoxia Du
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hui Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jun Cai
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Runling Ren
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Wenwen Zhang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Wei Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu West Road, Tianjin 300060, China
| | - Xiaohong Shen
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|