1
|
Scelfo A, Fachinetti D. Centromere: A Trojan horse for genome stability. DNA Repair (Amst) 2023; 130:103569. [PMID: 37708591 DOI: 10.1016/j.dnarep.2023.103569] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Centromeres play a key role in the maintenance of genome stability to prevent carcinogenesis and diseases. They are specialized chromosome loci essential to ensure faithful transmission of genomic information across cell generations by mediating the interaction with spindle microtubules. Nonetheless, while fulfilling these essential roles, their distinct repetitive composition and susceptibility to mechanical stresses during cell division render them susceptible to breakage events. In this review, we delve into the present understanding of the underlying causes of centromere fragility, from the mechanisms governing its DNA replication and repair, to the pathways acting to counteract potential challenges. We propose that the centromere represents a "Trojan horse" exerting vital functions that, at the same time, potentially threatens whole genome stability.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, CNRS, UMR 144, Sorbonne University, 26 rue d'Ulm, 75005 Paris, France.
| | - Daniele Fachinetti
- Institut Curie, CNRS, UMR 144, Sorbonne University, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
2
|
Mesdaghi S, Price RM, Madine J, Rigden DJ. Deep Learning-based structure modelling illuminates structure and function in uncharted regions of β-solenoid fold space. J Struct Biol 2023; 215:108010. [PMID: 37544372 DOI: 10.1016/j.jsb.2023.108010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Repeat proteins are common in all domains of life and exhibit a wide range of functions. One class of repeat protein contains solenoid folds where the repeating unit consists of β-strands separated by tight turns. β-solenoids have distinguishing structural features such as handedness, twist, oligomerisation state, coil shape and size which give rise to their diversity. Characterised β-solenoid repeat proteins are known to form regions in bacterial and viral virulence factors, antifreeze proteins and functional amyloids. For many of these proteins, the experimental structure has not been solved, as they are difficult to crystallise or model. Here we use various deep learning-based structure-modelling methods to discover novel predicted β-solenoids, perform structural database searches to mine further structural neighbours and relate their predicted structure to possible functions. We find both eukaryotic and prokaryotic adhesins, confirming a known functional linkage between adhesin function and the β-solenoid fold. We further identify exceptionally long, flat β-solenoid folds as possible structures of mucin tandem repeat regions and unprecedentedly small β-solenoid structures. Additionally, we characterise a novel β-solenoid coil shape, the FapC Greek key β-solenoid as well as plausible complexes between it and other proteins involved in Pseudomonas functional amyloid fibres.
Collapse
Affiliation(s)
- Shahram Mesdaghi
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom; Computational Biology Facility, MerseyBio, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Rebecca M Price
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Jillian Madine
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom.
| | - Daniel J Rigden
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
3
|
White LJ, Russell AJ, Pizzey AR, Dasmahapatra KK, Pownall ME. The Presence of Two MyoD Genes in a Subset of Acanthopterygii Fish Is Associated with a Polyserine Insert in MyoD1. J Dev Biol 2023; 11:jdb11020019. [PMID: 37218813 DOI: 10.3390/jdb11020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
The MyoD gene was duplicated during the teleost whole genome duplication and, while a second MyoD gene (MyoD2) was subsequently lost from the genomes of some lineages (including zebrafish), many fish lineages (including Alcolapia species) have retained both MyoD paralogues. Here we reveal the expression patterns of the two MyoD genes in Oreochromis (Alcolapia) alcalica using in situ hybridisation. We report our analysis of MyoD1 and MyoD2 protein sequences from 54 teleost species, and show that O. alcalica, along with some other teleosts, include a polyserine repeat between the amino terminal transactivation domains (TAD) and the cysteine-histidine rich region (H/C) in MyoD1. The evolutionary history of MyoD1 and MyoD2 is compared to the presence of this polyserine region using phylogenetics, and its functional relevance is tested using overexpression in a heterologous system to investigate subcellular localisation, stability, and activity of MyoD proteins that include and do not include the polyserine region.
Collapse
Affiliation(s)
- Lewis J White
- Biology Department, University of York, York YO10 5DD, UK
| | | | | | | | - Mary E Pownall
- Biology Department, University of York, York YO10 5DD, UK
| |
Collapse
|
4
|
Mei H, Zhao T, Dong Z, Han J, Xu B, Chen R, Zhang J, Zhang J, Hu Y, Zhang T, Fang L. Population-Scale Polymorphic Short Tandem Repeat Provides an Alternative Strategy for Allele Mining in Cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:916830. [PMID: 35599867 PMCID: PMC9120961 DOI: 10.3389/fpls.2022.916830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Short tandem repeats (STRs), which vary in size due to featuring variable numbers of repeat units, are present throughout most eukaryotic genomes. To date, few population-scale studies identifying STRs have been reported for crops. Here, we constructed a high-density polymorphic STR map by investigating polymorphic STRs from 911 Gossypium hirsutum accessions. In total, we identified 556,426 polymorphic STRs with an average length of 21.1 bp, of which 69.08% were biallelic. Moreover, 7,718 (1.39%) were identified in the exons of 6,021 genes, which were significantly enriched in transcription, ribosome biogenesis, and signal transduction. Only 5.88% of those exonic STRs altered open reading frames, of which 97.16% were trinucleotide. An alternative strategy STR-GWAS analysis revealed that 824 STRs were significantly associated with agronomic traits, including 491 novel alleles that undetectable by previous SNP-GWAS methods. For instance, a novel polymorphic STR consisting of GAACCA repeats was identified in GH_D06G1697, with its (GAACCA)5 allele increasing fiber length by 1.96-4.83% relative to the (GAACCA)4 allele. The database CottonSTRDB was further developed to facilitate use of STR datasets in breeding programs. Our study provides functional roles for STRs in influencing complex traits, an alternative strategy STR-GWAS for allele mining, and a database serving the cotton community as a valuable resource.
Collapse
Affiliation(s)
- Huan Mei
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zeyu Dong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Biyu Xu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rui Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Juncheng Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
5
|
Barela Hudgell MA, Smith LC. Sequence Diversity, Locus Structure, and Evolutionary History of the SpTransformer Genes in the Sea Urchin Genome. Front Immunol 2021; 12:744783. [PMID: 34867968 PMCID: PMC8634487 DOI: 10.3389/fimmu.2021.744783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
The generation of large immune gene families is often driven by evolutionary pressure exerted on host genomes by their pathogens, which has been described as the immunological arms race. The SpTransformer (SpTrf) gene family from the California purple sea urchin, Strongylocentrotus purpuratus, is upregulated upon immune challenge and encodes the SpTrf proteins that interact with pathogens during an immune response. Native SpTrf proteins bind both bacteria and yeast, and augment phagocytosis of a marine Vibrio, while a recombinant SpTrf protein (rSpTrf-E1) binds a subset of pathogens and a range of pathogen associated molecular patterns. In the sequenced sea urchin genome, there are four SpTrf gene clusters for a total of 17 genes. Here, we report an in-depth analysis of these genes to understand the sequence complexities of this family, its genomic structure, and to derive a putative evolutionary history for the formation of the gene clusters. We report a detailed characterization of gene structure including the intron type and UTRs with conserved transcriptional start sites, the start codon and multiple stop codons, and locations of polyadenylation signals. Phylogenetic and percent mismatch analyses of the genes and the intergenic regions allowed us to predict the last common ancestral SpTrf gene and a theoretical evolutionary history of the gene family. The appearance of the gene clusters from the theoretical ancestral gene may have been driven by multiple duplication and deletion events of regions containing SpTrf genes. Duplications and ectopic insertion events, indels, and point mutations in the exons likely resulted in the extant genes and family structure. This theoretical evolutionary history is consistent with the involvement of these genes in the arms race in responses to pathogens and suggests that the diversification of these genes and their encoded proteins have been selected for based on the survival benefits of pathogen binding and host protection.
Collapse
Affiliation(s)
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
6
|
Al-Zain AM, Symington LS. The dark side of homology-directed repair. DNA Repair (Amst) 2021; 106:103181. [PMID: 34311272 DOI: 10.1016/j.dnarep.2021.103181] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
DNA double strand breaks (DSB) are cytotoxic lesions that can lead to genome rearrangements and genomic instability, which are hallmarks of cancer. The two main DSB repair pathways are non-homologous end joining and homologous recombination (HR). While HR is generally highly accurate, it has the potential for rearrangements that occur directly or through intermediates generated during the repair process. Whole genome sequencing of cancers has revealed numerous types of structural rearrangement signatures that are often indicative of repair mediated by sequence homology. However, it can be challenging to delineate repair mechanisms from sequence analysis of rearrangement end products from cancer genomes, or even model systems, because the same rearrangements can be generated by different pathways. Here, we review homology-directed repair pathways and their consequences. Exploring those pathways can lead to a greater understanding of rearrangements that occur in cancer cells.
Collapse
Affiliation(s)
- Amr M Al-Zain
- Program in Biological Sciences, Columbia University, New York, NY, 10027, United States; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, United States
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, United States; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, 10032, United States.
| |
Collapse
|
7
|
Pappalardo XG, Barra V. Losing DNA methylation at repetitive elements and breaking bad. Epigenetics Chromatin 2021; 14:25. [PMID: 34082816 PMCID: PMC8173753 DOI: 10.1186/s13072-021-00400-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
Background DNA methylation is an epigenetic chromatin mark that allows heterochromatin formation and gene silencing. It has a fundamental role in preserving genome stability (including chromosome stability) by controlling both gene expression and chromatin structure. Therefore, the onset of an incorrect pattern of DNA methylation is potentially dangerous for the cells. This is particularly important with respect to repetitive elements, which constitute the third of the human genome. Main body Repetitive sequences are involved in several cell processes, however, due to their intrinsic nature, they can be a source of genome instability. Thus, most repetitive elements are usually methylated to maintain a heterochromatic, repressed state. Notably, there is increasing evidence showing that repetitive elements (satellites, long interspersed nuclear elements (LINEs), Alus) are frequently hypomethylated in various of human pathologies, from cancer to psychiatric disorders. Repetitive sequences’ hypomethylation correlates with chromatin relaxation and unscheduled transcription. If these alterations are directly involved in human diseases aetiology and how, is still under investigation. Conclusions Hypomethylation of different families of repetitive sequences is recurrent in many different human diseases, suggesting that the methylation status of these elements can be involved in preservation of human health. This provides a promising point of view towards the research of therapeutic strategies focused on specifically tuning DNA methylation of DNA repeats.
Collapse
Affiliation(s)
- Xena Giada Pappalardo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125, Catania, Italy.,National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, 95125, Catania, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| |
Collapse
|
8
|
Accurate contact-based modelling of repeat proteins predicts the structure of new repeats protein families. PLoS Comput Biol 2021; 17:e1008798. [PMID: 33857128 PMCID: PMC8078820 DOI: 10.1371/journal.pcbi.1008798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/27/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Repeat proteins are abundant in eukaryotic proteomes. They are involved in many eukaryotic specific functions, including signalling. For many of these proteins, the structure is not known, as they are difficult to crystallise. Today, using direct coupling analysis and deep learning it is often possible to predict a protein’s structure. However, the unique sequence features present in repeat proteins have been a challenge to use direct coupling analysis for predicting contacts. Here, we show that deep learning-based methods (trRosetta, DeepMetaPsicov (DMP) and PconsC4) overcomes this problem and can predict intra- and inter-unit contacts in repeat proteins. In a benchmark dataset of 815 repeat proteins, about 90% can be correctly modelled. Further, among 48 PFAM families lacking a protein structure, we produce models of forty-one families with estimated high accuracy. Repeat proteins are widespread among organisms and particularly abundant in eukaryotic proteomes. Their primary sequence presents repetition in the amino acid sequences that origin structures with repeated folds/domains. Although the repeated units often can be recognised from the sequence alone, often structural information is missing. Here, we used contact prediction for predicting the structure of repeats protein directly from their primary sequences. We benchmark the methods on a dataset comprehensive of all the known repeated structures. We evaluate the contact predictions and the obtained models for different classes of repeat proteins. Further, we develop and benchmark a quality assessment (QA) method specific for repeat proteins. Finally, we used the prediction pipeline for all PFAM repeat families without resolved structures and found that forty-one of them could be modelled with high accuracy.
Collapse
|
9
|
Copy Number Variations of Glycoside Hydrolase 45 Genes in Bursaphelenchus xylophilus and Their Impact on the Pathogenesis of Pine Wilt Disease. FORESTS 2021. [DOI: 10.3390/f12030275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pine wood nematode Bursaphelenchus xylophilus parasitizes millions of pine trees worldwide each year, causing severe wilt and the death of host trees. Glycoside hydrolase 45 genes of B. xylophilus are reported to have been acquired by horizontal gene transfer from fungi and are responsible for cell wall degradation during nematode infection. Previous studies ignored the possibility of copy number variations of such genes. In this study, we determined that two of the glycoside hydrolase 45 genes evolved to maintain multiple copies with distinct expression levels, enabling the nematode to infect a variety of pine hosts. Additionally, tandem repeat variations within coding regions were also detected between different copies of glycoside hydrolase 45 genes that could result in changes in protein sequences and serve as an effective biological marker to detect copy number variations among different B. xylophilus populations. Consequently, we were able to further identify the copy number variations of glycoside hydrolase 45 genes among B. xylophilus strains with different virulence. Our results provide new insights into the pathogenicity of B. xylophilus, provide a practical marker to genotype copy number variations and may aid in population classification.
Collapse
|
10
|
Nanopore Sequencing Resolves Elusive Long Tandem-Repeat Regions in Mitochondrial Genomes. Int J Mol Sci 2021; 22:ijms22041811. [PMID: 33670420 PMCID: PMC7918261 DOI: 10.3390/ijms22041811] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 01/06/2023] Open
Abstract
Long non-coding, tandem-repetitive regions in mitochondrial (mt) genomes of many metazoans have been notoriously difficult to characterise accurately using conventional sequencing methods. Here, we show how the use of a third-generation (long-read) sequencing and informatic approach can overcome this problem. We employed Oxford Nanopore technology to sequence genomic DNAs from a pool of adult worms of the carcinogenic parasite, Schistosoma haematobium, and used an informatic workflow to define the complete mt non-coding region(s). Using long-read data of high coverage, we defined six dominant mt genomes of 33.4 kb to 22.6 kb. Although no variation was detected in the order or lengths of the protein-coding genes, there was marked length (18.5 kb to 7.6 kb) and structural variation in the non-coding region, raising questions about the evolution and function of what might be a control region that regulates mt transcription and/or replication. The discovery here of the largest tandem-repetitive, non-coding region (18.5 kb) in a metazoan organism also raises a question about the completeness of some of the mt genomes of animals reported to date, and stimulates further explorations using a Nanopore-informatic workflow.
Collapse
|
11
|
Mackenroth B, Alani E. Collaborations between chromatin and nuclear architecture to optimize DNA repair fidelity. DNA Repair (Amst) 2021; 97:103018. [PMID: 33285474 PMCID: PMC8486310 DOI: 10.1016/j.dnarep.2020.103018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 01/22/2023]
Abstract
Homologous recombination (HR), considered the highest fidelity DNA double-strand break (DSB) repair pathway that a cell possesses, is capable of repairing multiple DSBs without altering genetic information. However, in "last resort" scenarios, HR can be directed to low fidelity subpathways which often use non-allelic donor templates. Such repair mechanisms are often highly mutagenic and can also yield chromosomal rearrangements and/or deletions. While the choice between HR and its less precise counterpart, non-homologous end joining (NHEJ), has received much attention, less is known about how cells manage and prioritize HR subpathways. In this review, we describe work focused on how chromatin and nuclear architecture orchestrate subpathway choice and repair template usage to maintain genome integrity without sacrificing cell survival. Understanding the relationships between nuclear architecture and recombination mechanics will be critical to understand these cellular repair decisions.
Collapse
Affiliation(s)
- Beata Mackenroth
- Department of Molecular Biology and Genetics, Cornell University, 459 Biotechnology Building, Ithaca, NY, 14853-2703, United States
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, 459 Biotechnology Building, Ithaca, NY, 14853-2703, United States.
| |
Collapse
|
12
|
Persi E, Wolf YI, Horn D, Ruppin E, Demichelis F, Gatenby RA, Gillies RJ, Koonin EV. Mutation-selection balance and compensatory mechanisms in tumour evolution. Nat Rev Genet 2020; 22:251-262. [PMID: 33257848 DOI: 10.1038/s41576-020-00299-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Intratumour heterogeneity and phenotypic plasticity, sustained by a range of somatic aberrations, as well as epigenetic and metabolic adaptations, are the principal mechanisms that enable cancers to resist treatment and survive under environmental stress. A comprehensive picture of the interplay between different somatic aberrations, from point mutations to whole-genome duplications, in tumour initiation and progression is lacking. We posit that different genomic aberrations generally exhibit a temporal order, shaped by a balance between the levels of mutations and selective pressures. Repeat instability emerges first, followed by larger aberrations, with compensatory effects leading to robust tumour fitness maintained throughout the tumour progression. A better understanding of the interplay between genetic aberrations, the microenvironment, and epigenetic and metabolic cellular states is essential for early detection and prevention of cancer as well as development of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Erez Persi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David Horn
- School of Physics and Astronomy, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Demichelis
- Department for Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.,Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Robert A Gatenby
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Gnügge R, Symington LS. Efficient DNA double-strand break formation at single or multiple defined sites in the Saccharomyces cerevisiae genome. Nucleic Acids Res 2020; 48:e115. [PMID: 33053188 PMCID: PMC7672422 DOI: 10.1093/nar/gkaa833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/18/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
DNA double-strand breaks (DSBs) are common genome lesions that threaten genome stability and cell survival. Cells use sophisticated repair machineries to detect and heal DSBs. To study DSB repair pathways and associated factors, inducible site-specific endonucleases have proven to be fundamental tools. In Saccharomyces cerevisiae, galactose-inducible rare-cutting endonucleases are commonly used to create a single DSB at a unique cleavage site. Galactose induction requires cell cultivation in suboptimal growth media, which is tedious especially when working with slow growing DSB repair mutants. Moreover, endonucleases that simultaneously create DSBs in multiple defined and unique loci of the yeast genome are not available, hindering studies of DSB repair in different genomic regions and chromatin contexts. Here, we present new tools to overcome these limitations. We employ a heterologous media-independent induction system to express the yeast HO endonuclease or bacterial restriction enzymes for single or multiple DSB formation, respectively. The systems facilitate tightly controlled and efficient DSB formation at defined genomic sites and will be valuable tools to study DSB repair at a local and genome-wide scale.
Collapse
Affiliation(s)
- Robert Gnügge
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
14
|
Jalal D, Chalissery J, Iqbal M, Hassan AH. The ATPase Irc20 facilitates Rad51 chromatin enrichment during homologous recombination in yeast Saccharomyces cerevisiae. DNA Repair (Amst) 2020; 97:103019. [PMID: 33202365 DOI: 10.1016/j.dnarep.2020.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
DNA double-strand breaks (DSBs) constitute one of the most cytotoxic forms of DNA damage and pose a significant threat to cell viability, survival, and homeostasis. DSBs have the potential to promote aneuploidy, cell death and potentially deleterious mutations that promote tumorigenesis. Homologous recombination (HR) is one of the main DSB repair pathways and while being essential for cell survival under genotoxic stress, it requires proper regulation to avoid chromosome rearrangements. Here, we characterize the Saccharomyces cerevisiae E3 ubiquitin ligase/putative helicase Irc20 as a regulator of HR. Using purified Irc20, we show that it can hydrolyze ATP in the presence and absence of DNA, but does not increase access to DNA within a nucleosome. In addition, we show that both the ATPase and ubiquitin ligase activities of Irc20 are required for suppressing the spontaneous formation of recombination foci. Finally, we demonstrate a role for Irc20 in promoting Rad51 chromatin association and the removal of Rad52 recombinase from chromatin, thus facilitating subsequent HR steps and directing recombination to more error-free modes.
Collapse
Affiliation(s)
- Deena Jalal
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - Jisha Chalissery
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - Mehwish Iqbal
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - Ahmed H Hassan
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates.
| |
Collapse
|
15
|
Linthorst J, Meert W, Hestand MS, Korlach J, Vermeesch JR, Reinders MJT, Holstege H. Extreme enrichment of VNTR-associated polymorphicity in human subtelomeres: genes with most VNTRs are predominantly expressed in the brain. Transl Psychiatry 2020; 10:369. [PMID: 33139705 PMCID: PMC7608644 DOI: 10.1038/s41398-020-01060-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The human genome harbors numerous structural variants (SVs) which, due to their repetitive nature, are currently underexplored in short-read whole-genome sequencing approaches. Using single-molecule, real-time (SMRT) long-read sequencing technology in combination with FALCON-Unzip, we generated a de novo assembly of the diploid genome of a 115-year-old Dutch cognitively healthy woman. We combined this assembly with two previously published haploid assemblies (CHM1 and CHM13) and the GRCh38 reference genome to create a compendium of SVs that occur across five independent human haplotypes using the graph-based multi-genome aligner REVEAL. Across these five haplotypes, we detected 31,680 euchromatic SVs (>50 bp). Of these, ~62% were comprised of repetitive sequences with 'variable number tandem repeats' (VNTRs), ~10% were mobile elements (Alu, L1, and SVA), while the remaining variants were inversions and indels. We observed that VNTRs with GC-content >60% and repeat patterns longer than 15 bp were 21-fold enriched in the subtelomeric regions (within 5 Mb of the ends of chromosome arms). VNTR lengths can expand to exceed a critical length which is associated with impaired gene transcription. The genes that contained most VNTRs, of which PTPRN2 and DLGAP2 are the most prominent examples, were found to be predominantly expressed in the brain and associated with a wide variety of neurological disorders. Repeat-induced variation represents a sizeable fraction of the genetic variation in human genomes and should be included in investigations of genetic factors associated with phenotypic traits, specifically those associated with neurological disorders. We make available the long and short-read sequence data of the supercentenarian genome, and a compendium of SVs as identified across 5 human haplotypes.
Collapse
Affiliation(s)
- Jasper Linthorst
- grid.484519.5Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands ,grid.5292.c0000 0001 2097 4740Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Wim Meert
- grid.5596.f0000 0001 0668 7884Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Matthew S. Hestand
- grid.5596.f0000 0001 0668 7884Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jonas Korlach
- grid.423340.20000 0004 0640 9878Pacific Biosciences, Menlo Park, CA USA
| | | | - Marcel J. T. Reinders
- grid.5292.c0000 0001 2097 4740Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Henne Holstege
- Department of Clinical Genetics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands. .,Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands. .,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Kinkar L, Young ND, Sohn WM, Stroehlein AJ, Korhonen PK, Gasser RB. First record of a tandem-repeat region within the mitochondrial genome of Clonorchis sinensis using a long-read sequencing approach. PLoS Negl Trop Dis 2020; 14:e0008552. [PMID: 32845881 PMCID: PMC7449408 DOI: 10.1371/journal.pntd.0008552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background Mitochondrial genomes provide useful genetic markers for systematic and population genetic studies of parasitic helminths. Although many such genome sequences have been published and deposited in public databases, there is evidence that some of them are incomplete relating to an inability of conventional techniques to reliably sequence non-coding (repetitive) regions. In the present study, we characterise the complete mitochondrial genome—including the long, non-coding region—of the carcinogenic Chinese liver fluke, Clonorchis sinensis, using long-read sequencing. Methods The mitochondrial genome was sequenced from total high molecular-weight genomic DNA isolated from a pool of 100 adult worms of C. sinensis using the MinION sequencing platform (Oxford Nanopore Technologies), and assembled and annotated using an informatic approach. Results From > 93,500 long-reads, we assembled a 18,304 bp-mitochondrial genome for C. sinensis. Within this genome we identified a novel non-coding region of 4,549 bp containing six tandem-repetitive units of 719–809 bp each. Given that genomic DNA from pooled worms was used for sequencing, some variability in length/sequence in this tandem-repetitive region was detectable, reflecting population variation. Conclusions For C. sinensis, we report the complete mitochondrial genome, which includes a long (> 4.5 kb) tandem-repetitive region. The discovery of this non-coding region using a nanopore-sequencing/informatic approach now paves the way to investigating the nature and extent of length/sequence variation in this region within and among individual worms, both within and among C. sinensis populations, and to exploring whether this region has a functional role in the regulation of replication and transcription, akin to the mitochondrial control region in mammals. Although applied to C. sinensis, the technological approach established here should be broadly applicable to characterise complex tandem-repetitive or homo-polymeric regions in the mitochondrial genomes of a wide range of taxa. In the present study, we characterised the complete mitochondrial genome of Clonorchis sinensis—a carcinogenic liver fluke. To do this, we sequenced from total genomic DNA from multiple adult worms using a new method (Oxford Nanopore technology) to obtain data for long stretches of DNA, and then assembled these data to construct a mitochondrial genome of 18,304 bp, containing a > 4.5 kb-long tandem-repetitive region—not previously detected in this species. The results demonstrate that this method is effective at sequencing long and complex non-coding elements—not achievable using conventional techniques. The discovery of this long tandem-repetitive region in C. sinensis provides an opportunity to now explore its origin(s) and length/sequence diversity in populations of this species, and also to characterise its function(s). The technological approach employed here should have broad applicability to characterise previously-elusive non-coding mitochondrial genomic regions in a wide range of taxa.
Collapse
Affiliation(s)
- Liina Kinkar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Andreas J. Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| |
Collapse
|
17
|
Galpern EA, Freiberger MI, Ferreiro DU. Large Ankyrin repeat proteins are formed with similar and energetically favorable units. PLoS One 2020; 15:e0233865. [PMID: 32579546 PMCID: PMC7314423 DOI: 10.1371/journal.pone.0233865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/13/2020] [Indexed: 11/19/2022] Open
Abstract
Ankyrin containing proteins are one of the most abundant repeat protein families present in all extant organisms. They are made with tandem copies of similar amino acid stretches that fold into elongated architectures. Here, we built and curated a dataset of 200 thousand proteins that contain 1.2 million Ankyrin regions and characterize the abundance, structure and energetics of the repetitive regions in natural proteins. We found that there is a continuous roughly exponential variety of array lengths with an exceptional frequency at 24 repeats. We described that individual repeats are seldom interrupted with long insertions and accept few deletions, in line with the known tertiary structures. We found that longer arrays are made up of repeats that are more similar to each other than shorter arrays, and display more favourable folding energy, hinting at their evolutionary origin. The array distributions show that there is a physical upper limit to the size of an array of repeats of about 120 copies, consistent with the limit found in nature. The identity patterns within the arrays suggest that they may have originated by sequential copies of more than one Ankyrin unit.
Collapse
Affiliation(s)
- Ezequiel A. Galpern
- Protein Physiology Lab, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICE), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María I. Freiberger
- Protein Physiology Lab, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICE), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego U. Ferreiro
- Protein Physiology Lab, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICE), Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
18
|
Barré BP, Hallin J, Yue JX, Persson K, Mikhalev E, Irizar A, Holt S, Thompson D, Molin M, Warringer J, Liti G. Intragenic repeat expansion in the cell wall protein gene HPF1 controls yeast chronological aging. Genome Res 2020; 30:697-710. [PMID: 32277013 PMCID: PMC7263189 DOI: 10.1101/gr.253351.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 04/09/2020] [Indexed: 01/02/2023]
Abstract
Aging varies among individuals due to both genetics and environment, but the underlying molecular mechanisms remain largely unknown. Using a highly recombined Saccharomyces cerevisiae population, we found 30 distinct quantitative trait loci (QTLs) that control chronological life span (CLS) in calorie-rich and calorie-restricted environments and under rapamycin exposure. Calorie restriction and rapamycin extended life span in virtually all genotypes but through different genetic variants. We tracked the two major QTLs to the cell wall glycoprotein genes FLO11 and HPF1 We found that massive expansion of intragenic tandem repeats within the N-terminal domain of HPF1 was sufficient to cause pronounced life span shortening. Life span impairment by HPF1 was buffered by rapamycin but not by calorie restriction. The HPF1 repeat expansion shifted yeast cells from a sedentary to a buoyant state, thereby increasing their exposure to surrounding oxygen. The higher oxygenation altered methionine, lipid, and purine metabolism, and inhibited quiescence, which explains the life span shortening. We conclude that fast-evolving intragenic repeat expansions can fundamentally change the relationship between cells and their environment with profound effects on cellular lifestyle and longevity.
Collapse
Affiliation(s)
| | - Johan Hallin
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | | | | | - Sylvester Holt
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Dawn Thompson
- Ginkgo Bioworks Incorporated, Boston, Massachusetts 02210, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| |
Collapse
|
19
|
Mitotic Recombination and Adaptive Genomic Changes in Human Pathogenic Fungi. Genes (Basel) 2019; 10:genes10110901. [PMID: 31703352 PMCID: PMC6895784 DOI: 10.3390/genes10110901] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Genome rearrangements and ploidy alterations are important for adaptive change in the pathogenic fungal species Candida and Cryptococcus, which propagate primarily through clonal, asexual reproduction. These changes can occur during mitotic growth and lead to enhanced virulence, drug resistance, and persistence in chronic infections. Examples of microevolution during the course of infection were described in both human infections and mouse models. Recent discoveries defining the role of sexual, parasexual, and unisexual cycles in the evolution of these pathogenic fungi further expanded our understanding of the diversity found in and between species. During mitotic growth, damage to DNA in the form of double-strand breaks (DSBs) is repaired, and genome integrity is restored by the homologous recombination and non-homologous end-joining pathways. In addition to faithful repair, these pathways can introduce minor sequence alterations at the break site or lead to more extensive genetic alterations that include loss of heterozygosity, inversions, duplications, deletions, and translocations. In particular, the prevalence of repetitive sequences in fungal genomes provides opportunities for structural rearrangements to be generated by non-allelic (ectopic) recombination. In this review, we describe DSB repair mechanisms and the types of resulting genome alterations that were documented in the model yeast Saccharomyces cerevisiae. The relevance of similar recombination events to stress- and drug-related adaptations and in generating species diversity are discussed for the human fungal pathogens Candida albicans and Cryptococcus neoformans.
Collapse
|
20
|
Zheng J, Xu H, Cao H. A Long Polymorphic GT Microsatellite within a Gene Promoter Mediates Non-Imprinted Allele-Specific DNA Methylation of a CpG Island in a Goldfish Inter-Strain Hybrid. Int J Mol Sci 2019; 20:ijms20163923. [PMID: 31409051 PMCID: PMC6721770 DOI: 10.3390/ijms20163923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 11/26/2022] Open
Abstract
It is now widely accepted that allele-specific DNA methylation (ASM) commonly occurs at non-imprinted loci. Most of the non-imprinted ASM regions observed both within and outside of the CpG island show a strong correlation with DNA polymorphisms. However, what polymorphic cis-acting elements mediate non-imprinted ASM of the CpG island remains unclear. In this study, we investigated the impact of polymorphic GT microsatellites within the gene promoter on non-imprinted ASM of the local CpG island in goldfish. We generated various goldfish heterozygotes, in which the length of GT microsatellites or some non-repetitive sequences in the promoter of no tail alleles was different. By examining the methylation status of the downstream CpG island in these heterozygotes, we found that polymorphisms of a long GT microsatellite can lead to the ASM of the downstream CpG island during oogenesis and embryogenesis, polymorphisms of short GT microsatellites and non-repetitive sequences in the promoter exhibited no significant effect on the methylation of the CpG island. We also observed that the ASM of the CpG island was associated with allele-specific expression in heterozygous embryos. These results suggest that a long polymorphic GT microsatellite within a gene promoter mediates non-imprinted ASM of the local CpG island in a goldfish inter-strain hybrid.
Collapse
Affiliation(s)
- Jianbo Zheng
- Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Haomang Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huiwen Cao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Proteomic and genomic signatures of repeat instability in cancer and adjacent normal tissues. Proc Natl Acad Sci U S A 2019; 116:16987-16996. [PMID: 31387980 DOI: 10.1073/pnas.1908790116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Repetitive sequences are hotspots of evolution at multiple levels. However, due to difficulties involved in their assembly and analysis, the role of repeats in tumor evolution is poorly understood. We developed a rigorous motif-based methodology to quantify variations in the repeat content, beyond microsatellites, in proteomes and genomes directly from proteomic and genomic raw data. This method was applied to a wide range of tumors and normal tissues. We identify high similarity between repeat instability patterns in tumors and their patient-matched adjacent normal tissues. Nonetheless, tumor-specific signatures both in protein expression and in the genome strongly correlate with cancer progression and robustly predict the tumorigenic state. In a patient, the hierarchy of genomic repeat instability signatures accurately reconstructs tumor evolution, with primary tumors differentiated from metastases. We observe an inverse relationship between repeat instability and point mutation load within and across patients independent of other somatic aberrations. Thus, repeat instability is a distinct, transient, and compensatory adaptive mechanism in tumor evolution and a potential signal for early detection.
Collapse
|
22
|
Chon J, Field MS, Stover PJ. Deoxyuracil in DNA and disease: Genomic signal or managed situation? DNA Repair (Amst) 2019; 77:36-44. [PMID: 30875637 DOI: 10.1016/j.dnarep.2019.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
Abstract
Genomic instability is implicated in the etiology of several deleterious health outcomes including megaloblastic anemia, neural tube defects, and neurodegeneration. Uracil misincorporation and its repair are known to cause genomic instability by inducing DNA strand breaks leading to apoptosis, but there is emerging evidence that uracil incorporation may also result in broader modifications of gene expression, including: changes in transcriptional stalling, strand break-mediated transcriptional upregulation, and direct promoter inhibition. The factors that influence uracil levels in DNA are cytosine deamination, de novo thymidylate (dTMP) biosynthesis, salvage dTMP biosynthesis, dUTPase, and DNA repair. There is evidence that the nuclear localization of the enzymes in these pathways in mammalian cells may modify and/or control the levels of uracil accumulation into nuclear DNA. Uracil sequencing technologies demonstrate that uracil in DNA is not distributed stochastically across the genome, but instead shows patterns of enrichment. Nuclear localization of the enzymes that modify uracil in DNA may serve to change these patterns of enrichment in a tissue-specific manner, and thereby signal the genome in response to metabolic and/or nutritional state of the cell.
Collapse
Affiliation(s)
- James Chon
- Graduate Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, 127 Savage Hall, Ithaca, NY, 14853, USA
| | - Patrick J Stover
- Graduate Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, NY, 14853, USA; Division of Nutritional Sciences, Cornell University, 127 Savage Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
23
|
Zhao X, Su L, Schaack S, Sadd BM, Sun C. Tandem Repeats Contribute to Coding Sequence Variation in Bumblebees (Hymenoptera: Apidae). Genome Biol Evol 2018; 10:3176-3187. [PMID: 30398620 PMCID: PMC6286909 DOI: 10.1093/gbe/evy244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2018] [Indexed: 01/02/2023] Open
Abstract
Tandem repeats (TRs) are highly dynamic regions of the genome. Mutations at these loci represent a significant source of genetic variation and can facilitate rapid adaptation. Bumblebees are important pollinating insects occupying a wide range of habitats. However, to date, molecular mechanisms underlying the potential adaptation of bumblebees to diverse habitats are largely unknown. In the present study, we investigate how TRs contribute to genetic variation in bumblebees, thus potentially facilitating adaptation. We identified 26,595 TRs from the assembled 18 chromosome sequences of the buff-tailed bumblebee (Bombus terrestris), 66.7% of which reside in genic regions. We also compared TRs found in B. terrestris with those present in the assembled genome sequence of a congener, B. impatiens. We found that a total of 1,137 TRs were variable in length between the two sequenced bumblebee species, and further analysis reveals that 101 of them are located within coding regions. These 101 TRs are responsible for coding sequence variation and correspond to protein sequence length variation between the two bumblebee species. The variability of identified TRs in coding regions between bumblebees was confirmed by PCR amplification of a subset of loci. Functional classification of bumblebee genes where coding sequences include variable-length TRs suggests that a majority of genes (87%) that could be assigned to a protein class are related to transcriptional regulation. Our results show that TRs contribute to coding sequence variation in bumblebees, and thus may facilitate the adaptation of bumblebees through diversifying proteins involved in controlling gene expression.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Su
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, Oregon, USA
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Cheng Sun
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Homologous recombination occurs frequently at innate GT microsatellites in normal somatic and germ cells in vivo. BMC Genomics 2018; 19:359. [PMID: 29751739 PMCID: PMC5948810 DOI: 10.1186/s12864-018-4758-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background In somatic cells, homologous recombination (HR) is a rare event caused by eventual DNA double-strand breaks (DSBs). In contrast, germ cells show high frequency of HR caused by programmed DSBs. Microsatellites are prone to DSBs during genome replication and, thereby, capable of promoting HR. It remains unclear whether HR occurs frequently at microsatellites both in normal somatic cells and germ cells in a similar manner. Results By examining the linkage pattern of multiple paternal and maternal markers flanking innate GT microsatellites, we measured HR at the GT microsatellites in various somatic cells and germ cells in a goldfish intraspecific heterozygote. During embryogenesis, the HR products accumulate gradually with the increase of the number of cell divisions. The frequency of HR at the GT microsatellites in advanced embryos, adult tissues and germ cells is surprisingly high. The type of exchanges between the homologous chromosomes is similar in normal advanced embryos and germ cells. Furthermore, a long GT microsatellite is more active than a short one in promoting HR in both somatic and germ cells. Conclusions HR occurs frequently at innate GT microsatellites in normal somatic cells and germ cells in a similar manner. Electronic supplementary material The online version of this article (10.1186/s12864-018-4758-y) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Guo X, Hum YF, Lehner K, Jinks-Robertson S. Regulation of hetDNA Length during Mitotic Double-Strand Break Repair in Yeast. Mol Cell 2017; 67:539-549.e4. [PMID: 28781235 DOI: 10.1016/j.molcel.2017.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/05/2017] [Accepted: 07/07/2017] [Indexed: 12/24/2022]
Abstract
Heteroduplex DNA (hetDNA) is a key molecular intermediate during the repair of mitotic double-strand breaks by homologous recombination, but its relationship to 5' end resection and/or 3' end extension is poorly understood. In the current study, we examined how perturbations in these processes affect the hetDNA profile associated with repair of a defined double-strand break (DSB) by the synthesis-dependent strand-annealing (SDSA) pathway. Loss of either the Exo1 or Sgs1 long-range resection pathway significantly shortened hetDNA, suggesting that these pathways normally collaborate during DSB repair. In addition, altering the processivity or proofreading activity of DNA polymerase δ shortened hetDNA length or reduced break-adjacent mismatch removal, respectively, demonstrating that this is the primary polymerase that extends both 3' ends. Data are most consistent with the extent of DNA synthesis from the invading end being the primary determinant of hetDNA length during SDSA.
Collapse
Affiliation(s)
- Xiaoge Guo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yee Fang Hum
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Lehner
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
26
|
Annealing of Complementary DNA Sequences During Double-Strand Break Repair in Drosophila Is Mediated by the Ortholog of SMARCAL1. Genetics 2017; 206:467-480. [PMID: 28258182 DOI: 10.1534/genetics.117.200238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/22/2017] [Indexed: 12/18/2022] Open
Abstract
DNA double-strand breaks (DSBs) pose a serious threat to genomic integrity. If unrepaired, they can lead to chromosome fragmentation and cell death. If repaired incorrectly, they can cause mutations and chromosome rearrangements. DSBs are repaired using end-joining or homology-directed repair strategies, with the predominant form of homology-directed repair being synthesis-dependent strand annealing (SDSA). SDSA is the first defense against genomic rearrangements and information loss during DSB repair, making it a vital component of cell health and an attractive target for chemotherapeutic development. SDSA has also been proposed to be the primary mechanism for integration of large insertions during genome editing with CRISPR/Cas9. Despite the central role for SDSA in genome stability, little is known about the defining step: annealing. We hypothesized that annealing during SDSA is performed by the annealing helicase SMARCAL1, which can anneal RPA-coated single DNA strands during replication-associated DNA damage repair. We used unique genetic tools in Drosophila melanogaster to test whether the fly ortholog of SMARCAL1, Marcal1, mediates annealing during SDSA. Repair that requires annealing is significantly reduced in Marcal1 null mutants in both synthesis-dependent and synthesis-independent (single-strand annealing) assays. Elimination of the ATP-binding activity of Marcal1 also reduced annealing-dependent repair, suggesting that the annealing activity requires translocation along DNA. Unlike the null mutant, however, the ATP-binding defect mutant showed reduced end joining, shedding light on the interaction between SDSA and end-joining pathways.
Collapse
|
27
|
Abstract
DNA repair is essential to maintain genomic integrity and initiate genetic diversity. While gene conversion and classical nonhomologous end-joining are the most physiologically predominant forms of DNA repair mechanisms, emerging lines of evidence suggest the usage of several noncanonical homology-directed repair (HDR) pathways in both prokaryotes and eukaryotes in different contexts. Here we review how these alternative HDR pathways are executed, specifically focusing on the determinants that dictate competition between them and their relevance to cancers that display complex genomic rearrangements or maintain their telomeres by homology-directed DNA synthesis.
Collapse
|
28
|
Bloom K, Costanzo V. Centromere Structure and Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:515-539. [PMID: 28840251 DOI: 10.1007/978-3-319-58592-5_21] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The centromere is the genetic locus that specifies the site of kinetochore assembly, where the chromosome will attach to the kinetochore microtubule. The pericentromere is the physical region responsible for the geometry of bi-oriented sister kinetochores in metaphase. In budding yeast the 125 bp point centromere is sufficient to specify kinetochore assembly. The flanking region is enriched (3X) in cohesin and condensin relative to the remaining chromosome arms. The enrichment spans about 30-50 kb around each centromere. We refer to the flanking chromatin as the pericentromere in yeast. In mammals, a 5-10 Mb region dictates where the kinetochore is built. The kinetochore interacts with a very small fraction of DNA on the surface of the centromeric region. The remainder of the centromere lies between the sister kinetochores. This is typically called centromere chromatin. The chromatin sites that directly interface to microtubules cannot be identified due to the repeated sequence within the mammalian centromere. However in both yeast and mammals, the total amount of DNA between the sites of microtubule attachment in metaphase is highly conserved. In yeast the 16 chromosomes are clustered into a 250 nm diameter region, and 800 kb (16 × 50 kb) or ~1 Mb of DNA lies between sister kinetochores. In mammals, 5-10 Mb lies between sister kinetochores. In both organisms the sister kinetochores are separated by about 1 μm. Thus, centromeres of different organisms differ in how they specify kinetochore assembly, but there may be important centromere chromatin functions that are conserved throughout phylogeny. Recently, centromeric chromatin has been reconstituted in vitro using alpha satellite DNA revealing unexpected features of centromeric DNA organization, replication, and response to stress. We will focus on the conserved features of centromere in this review.
Collapse
Affiliation(s)
- Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, 623 Fordham Hall CB#3280, Chapel Hill, NC, 27599-3280, USA.
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, IFOM, The FIRC Institute of Molecular Oncology, Vai Adamello 16, 21139, Milan, Italy
| |
Collapse
|
29
|
Trujillo JT, Beilstein MA, Mosher RA. The Argonaute-binding platform of NRPE1 evolves through modulation of intrinsically disordered repeats. THE NEW PHYTOLOGIST 2016; 212:1094-1105. [PMID: 27431917 PMCID: PMC5125548 DOI: 10.1111/nph.14089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/04/2016] [Indexed: 05/26/2023]
Abstract
Argonaute (Ago) proteins are important effectors in RNA silencing pathways, but they must interact with other machinery to trigger silencing. Ago hooks have emerged as a conserved motif responsible for interaction with Ago proteins, but little is known about the sequence surrounding Ago hooks that must restrict or enable interaction with specific Argonautes. Here we investigated the evolutionary dynamics of an Ago-binding platform in NRPE1, the largest subunit of RNA polymerase V. We compared NRPE1 sequences from > 50 species, including dense sampling of two plant lineages. This study demonstrates that the Ago-binding platform of NRPE1 retains Ago hooks, intrinsic disorder, and repetitive character while being highly labile at the sequence level. We reveal that loss of sequence conservation is the result of relaxed selection and frequent expansions and contractions of tandem repeat arrays. These factors allow a complete restructuring of the Ago-binding platform over 50-60 million yr. This evolutionary pattern is also detected in a second Ago-binding platform, suggesting it is a general mechanism. The presence of labile repeat arrays in all analyzed NRPE1 Ago-binding platforms indicates that selection maintains repetitive character, potentially to retain the ability to rapidly restructure the Ago-binding platform.
Collapse
Affiliation(s)
- Joshua T Trujillo
- The School of Plant Sciences, The University of Arizona, Tucson, AZ, 85721-0036, USA
| | - Mark A Beilstein
- The School of Plant Sciences, The University of Arizona, Tucson, AZ, 85721-0036, USA
| | - Rebecca A Mosher
- The School of Plant Sciences, The University of Arizona, Tucson, AZ, 85721-0036, USA
| |
Collapse
|
30
|
Romeo F, Falbo L, Costanzo V. Replication, checkpoint suppression and structure of centromeric DNA. Nucleus 2016; 7:540-546. [PMID: 27893298 DOI: 10.1080/19491034.2016.1255836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Human centromeres contain large amounts of repetitive DNA sequences known as α satellite DNA, which can be difficult to replicate and whose functional role is unclear. Recently, we have characterized protein composition, structural organization and checkpoint response to stalled replication forks of centromeric chromatin reconstituted in Xenopus laevis egg extract. We showed that centromeric DNA has high affinity for SMC2-4 subunits of condensins and for CENP-A, it is enriched for DNA repair factors and suppresses the ATR checkpoint to ensure its efficient replication. We also showed that centromeric chromatin forms condensins enriched and topologically constrained DNA loops, which likely contribute to the overall structure of the centromere. These findings have important implications on how chromosomes are organized and genome stability is maintained in mammalian cells.
Collapse
Affiliation(s)
- Francesco Romeo
- a DNA metabolism laboratory, IFOM, The FIRC institute for Molecular Oncology , Milan , Italy
| | - Lucia Falbo
- a DNA metabolism laboratory, IFOM, The FIRC institute for Molecular Oncology , Milan , Italy
| | - Vincenzo Costanzo
- a DNA metabolism laboratory, IFOM, The FIRC institute for Molecular Oncology , Milan , Italy
| |
Collapse
|
31
|
Medhi D, Goldman AS, Lichten M. Local chromosome context is a major determinant of crossover pathway biochemistry during budding yeast meiosis. eLife 2016; 5. [PMID: 27855779 PMCID: PMC5222560 DOI: 10.7554/elife.19669] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
Abstract
The budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined. Using the sequence-specific VMA1-derived endonuclease (VDE) to initiate recombination in meiosis, we show that chromosome structure influences the choice of proteins that resolve recombination intermediates to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers, like most Spo11-initiated crossovers, required the meiosis-specific MutLγ resolvase. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLγ-independent. In pch2 mutants, the two loci displayed similar Hop1 occupancy levels, and VDE-induced crossovers were similarly MutLγ-dependent. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, and that features of meiotic chromosome structure determine whether one or the other predominates in different regions. DOI:http://dx.doi.org/10.7554/eLife.19669.001 Inside the cells of many species, double-stranded DNA is packaged together with specialized proteins to form structures called chromosomes. Breaks that span across both strands of the DNA can cause cell death because if the break is incorrectly repaired, a segment of the DNA may be lost. Cells use a process known as homologous recombination to repair such breaks correctly. This uses an undamaged DNA molecule as a template that can be copied to replace missing segments of the DNA sequence. During the repair of double-strand breaks, connections called crossovers may form. This results in the damaged and undamaged DNA molecules swapping a portion of their sequences. In meiosis, a type of cell division that produces sperm and eggs, cells deliberately break their chromosomes and then repair them using homologous recombination. The crossovers that form during this process are important for sharing chromosomes between the newly forming cells. It is crucial that the crossovers form at the right time and place along the chromosomes. Chromosomes have different structures depending on whether a cell is undergoing meiosis or normal (mitotic) cell division. This structure may influence how and where crossovers form. Enzymes called resolvases catalyze the reactions that occur during the last step in homologous recombination to generate crossovers. One particular resolvase acts only during meiosis, whereas others are active in both mitotic and meiotic cells. However, it is not known whether local features of the chromosome structure – such as the proteins packaged in the chromosome alongside the DNA – influence when and where meiotic crossover occurs. Medhi et al. have now studied how recombination occurs along different regions of the chromosomes in budding yeast cells, which undergo meiosis in a similar way to human cells. The results of the experiments reveal that the mechanism by which crossovers form depends on proteins called axis proteins, one type of which is specifically found in meiotic chromosomes. In regions that had high levels of meiotic axis proteins, crossovers mainly formed using the meiosis-specific resolvase enzyme. In regions that had low levels of meiotic axis proteins, crossovers formed using resolvases that are active in mitotic cells. Further experiments demonstrated that altering the levels of one of the meiotic axis proteins changed which resolvase was used. Overall, the results presented by Medhi et al. show that differences in chromosome structure, in particular the relative concentration of meiotic axis proteins, influence how crossovers form in yeast. Future studies will investigate whether this is observed in other organisms such as humans, and whether local chromosome structure influences other steps of homologous recombination in meiosis. DOI:http://dx.doi.org/10.7554/eLife.19669.002
Collapse
Affiliation(s)
- Darpan Medhi
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States.,Sheffield Institute for Nucleic Acids, The University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Alastair Sh Goldman
- Sheffield Institute for Nucleic Acids, The University of Sheffield, Sheffield, United Kingdom.,Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| |
Collapse
|
32
|
Persi E, Wolf YI, Koonin EV. Positive and strongly relaxed purifying selection drive the evolution of repeats in proteins. Nat Commun 2016; 7:13570. [PMID: 27857066 PMCID: PMC5120217 DOI: 10.1038/ncomms13570] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/17/2016] [Indexed: 01/21/2023] Open
Abstract
Protein repeats are considered hotspots of protein evolution, associated with acquisition of new functions and novel phenotypic traits, including disease. Paradoxically, however, repeats are often strongly conserved through long spans of evolution. To resolve this conundrum, it is necessary to directly compare paralogous (horizontal) evolution of repeats within proteins with their orthologous (vertical) evolution through speciation. Here we develop a rigorous methodology to identify highly periodic repeats with significant sequence similarity, for which evolutionary rates and selection (dN/dS) can be estimated, and systematically characterize their evolution. We show that horizontal evolution of repeats is markedly accelerated compared with their divergence from orthologues in closely related species. This observation is universal across the diversity of life forms and implies a biphasic evolutionary regime whereby new copies experience rapid functional divergence under combined effects of strongly relaxed purifying selection and positive selection, followed by fixation and conservation of each individual repeat.
Collapse
Affiliation(s)
- Erez Persi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
33
|
Gobbini E, Cassani C, Villa M, Bonetti D, Longhese MP. Functions and regulation of the MRX complex at DNA double-strand breaks. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:329-337. [PMID: 28357369 PMCID: PMC5349012 DOI: 10.15698/mic2016.08.517] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
Abstract
DNA double-strand breaks (DSBs) pose a serious threat to genome stability and cell survival. Cells possess mechanisms that recognize DSBs and promote their repair through either homologous recombination (HR) or non-homologous end joining (NHEJ). The evolutionarily conserved Mre11-Rad50-Xrs2 (MRX) complex plays a central role in the cellular response to DSBs, as it is implicated in controlling end resection and in maintaining the DSB ends tethered to each other. Furthermore, it is responsible for DSB signaling by activating the checkpoint kinase Tel1 that, in turn, supports MRX function in a positive feedback loop. The present review focuses mainly on recent works in the budding yeast Saccharomyces cerevisiae to highlight structure and regulation of MRX as well as its interplays with Tel1.
Collapse
Affiliation(s)
- Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università di
Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di
Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Matteo Villa
- Dipartimento di Biotecnologie e Bioscienze, Università di
Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Diego Bonetti
- Institute of Molecular Biology gGmbH (IMB), 55128 Mainz, Germany
| | - Maria P. Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di
Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
34
|
Park CY, Sung JJ, Kim DW. Genome Editing of Structural Variations: Modeling and Gene Correction. Trends Biotechnol 2016; 34:548-561. [PMID: 27016031 DOI: 10.1016/j.tibtech.2016.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 12/26/2022]
Abstract
The analysis of chromosomal structural variations (SVs), such as inversions and translocations, was made possible by the completion of the human genome project and the development of genome-wide sequencing technologies. SVs contribute to genetic diversity and evolution, although some SVs can cause diseases such as hemophilia A in humans. Genome engineering technology using programmable nucleases (e.g., ZFNs, TALENs, and CRISPR/Cas9) has been rapidly developed, enabling precise and efficient genome editing for SV research. Here, we review advances in modeling and gene correction of SVs, focusing on inversion, translocation, and nucleotide repeat expansion.
Collapse
Affiliation(s)
- Chul-Yong Park
- Department of Physiology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jin Jea Sung
- Department of Physiology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Dong-Wook Kim
- Department of Physiology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
35
|
Wang X, Liu N, Zhang H, Yang XJ, Huang Y, Lei F. Extreme variation in patterns of tandem repeats in mitochondrial control region of yellow-browed tits (Sylviparus modestus, Paridae). Sci Rep 2015; 5:13227. [PMID: 26288099 PMCID: PMC4541255 DOI: 10.1038/srep13227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/21/2015] [Indexed: 11/09/2022] Open
Abstract
To investigate the evolutionary pattern and origins of tandem repeats in the mitochondrial control region of the yellow-browed tit (Sylviparus modestus), the control region and another four mitochondrial loci from fifteen individuals were analyzed. A 117-bp tandem repeat unit that repeated once, twice or three times in different individuals was found, and a rarely reported arrangement for this tandem repeats region that a 5' imperfect copy at its downstream and a 3' imperfect copy at its upstream was observed. The haplotype network, phylogenetic trees, and ancestral state reconstruction of the combined dataset of five loci suggested multiple origins of the same repeat number. The turnover model via slipped-strand mispairing was introduced to interpret the results, because mispairing occurred so frequently that multiple origins of certain repeat number were observed. Insertion via recombination should be a better explanation for the origin of this tandem repeat unit, considering characteristics of the combined sequence of the 3' and 5' imperfect copy, including identification of its homolog in other passerines and its predicted secondary structure.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Co-Innovation Center for Qinba regions' sustainable development, College of Life Sciences, Shaanxi Normal University, No. 199, South Chang'an Road, Xi'an 710062, China
| | - Nian Liu
- Co-Innovation Center for Qinba regions' sustainable development, College of Life Sciences, Shaanxi Normal University, No. 199, South Chang'an Road, Xi'an 710062, China
| | - Hongli Zhang
- College of Life Science, Datong University, Xingyun Street, Datong 037009, China
| | - Xiao-Jun Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32, Jiaochang East Road, Kunming 650223, China
| | - Yuan Huang
- Co-Innovation Center for Qinba regions' sustainable development, College of Life Sciences, Shaanxi Normal University, No. 199, South Chang'an Road, Xi'an 710062, China
| | - Fumin Lei
- 1] Co-Innovation Center for Qinba regions' sustainable development, College of Life Sciences, Shaanxi Normal University, No. 199, South Chang'an Road, Xi'an 710062, China [2] Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
36
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
37
|
Barghini E, Natali L, Cossu RM, Giordani T, Pindo M, Cattonaro F, Scalabrin S, Velasco R, Morgante M, Cavallini A. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol Evol 2015; 6:776-91. [PMID: 24671744 PMCID: PMC4007544 DOI: 10.1093/gbe/evu058] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome.
Collapse
Affiliation(s)
- Elena Barghini
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 2014; 6:a016428. [PMID: 25104768 PMCID: PMC4142968 DOI: 10.1101/cshperspect.a016428] [Citation(s) in RCA: 491] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA is subject to many endogenous and exogenous insults that impair DNA replication and proper chromosome segregation. DNA double-strand breaks (DSBs) are one of the most toxic of these lesions and must be repaired to preserve chromosomal integrity. Eukaryotes are equipped with several different, but related, repair mechanisms involving homologous recombination, including single-strand annealing, gene conversion, and break-induced replication. In this review, we highlight the chief sources of DSBs and crucial requirements for each of these repair processes, as well as the methods to identify and study intermediate steps in DSB repair by homologous recombination.
Collapse
Affiliation(s)
- Anuja Mehta
- Rosenstiel Basic Medical Sciences Research Center, MS029 Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02454-9110
| | - James E Haber
- Rosenstiel Basic Medical Sciences Research Center, MS029 Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
39
|
Štafa A, Miklenić M, Zunar B, Lisnić B, Symington LS, Svetec IK. Sgs1 and Exo1 suppress targeted chromosome duplication during ends-in and ends-out gene targeting. DNA Repair (Amst) 2014; 22:12-23. [PMID: 25089886 DOI: 10.1016/j.dnarep.2014.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/05/2014] [Accepted: 07/09/2014] [Indexed: 10/24/2022]
Abstract
Gene targeting is extremely efficient in the yeast Saccharomyces cerevisiae. It is performed by transformation with a linear, non-replicative DNA fragment carrying a selectable marker and containing ends homologous to the particular locus in a genome. However, even in S. cerevisiae, transformation can result in unwanted (aberrant) integration events, the frequency and spectra of which are quite different for ends-out and ends-in transformation assays. It has been observed that gene replacement (ends-out gene targeting) can result in illegitimate integration, integration of the transforming DNA fragment next to the target sequence and duplication of a targeted chromosome. By contrast, plasmid integration (ends-in gene targeting) is often associated with multiple targeted integration events but illegitimate integration is extremely rare and a targeted chromosome duplication has not been reported. Here we systematically investigated the influence of design of the ends-out assay on the success of targeted genetic modification. We have determined transformation efficiency, fidelity of gene targeting and spectra of all aberrant events in several ends-out gene targeting assays designed to insert, delete or replace a particular sequence in the targeted region of the yeast genome. Furthermore, we have demonstrated for the first time that targeted chromosome duplications occur even during ends-in gene targeting. Most importantly, the whole chromosome duplication is POL32 dependent pointing to break-induced replication (BIR) as the underlying mechanism. Moreover, the occurrence of duplication of the targeted chromosome was strikingly increased in the exo1Δ sgs1Δ double mutant but not in the respective single mutants demonstrating that the Exo1 and Sgs1 proteins independently suppress whole chromosome duplication during gene targeting.
Collapse
Affiliation(s)
- Anamarija Štafa
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Marina Miklenić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia
| | - Bojan Zunar
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia
| | - Berislav Lisnić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ivan-Krešimir Svetec
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia.
| |
Collapse
|
40
|
Vassileva I, Yanakieva I, Peycheva M, Gospodinov A, Anachkova B. The mammalian INO80 chromatin remodeling complex is required for replication stress recovery. Nucleic Acids Res 2014; 42:9074-86. [PMID: 25016522 PMCID: PMC4132725 DOI: 10.1093/nar/gku605] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A number of studies have implicated the yeast INO80 chromatin remodeling complex in DNA replication, but the function of the human INO80 complex during S phase remains poorly understood. Here, we have systematically investigated the involvement of the catalytic subunit of the human INO80 complex during unchallenged replication and under replication stress by following the effects of its depletion on cell survival, S-phase checkpoint activation, the fate of individual replication forks, and the consequences of fork collapse. We report that INO80 was specifically needed for efficient replication elongation, while it was not required for initiation of replication. In the absence of the Ino80 protein, cells became hypersensitive to hydroxyurea and displayed hyperactive ATR-Chk1 signaling. Using bulk and fiber labeling of DNA, we found that cells deficient for Ino80 and Arp8 had impaired replication restart after treatment with replication inhibitors and accumulated double-strand breaks as evidenced by the formation of γ-H2AX and Rad51 foci. These data indicate that under conditions of replication stress mammalian INO80 protects stalled forks from collapsing and allows their subsequent restart.
Collapse
Affiliation(s)
- Ivelina Vassileva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Academy G. Bonchev St. 21, 1113 Sofia, Bulgaria
| | - Iskra Yanakieva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Academy G. Bonchev St. 21, 1113 Sofia, Bulgaria
| | - Michaela Peycheva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Academy G. Bonchev St. 21, 1113 Sofia, Bulgaria
| | - Anastas Gospodinov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Academy G. Bonchev St. 21, 1113 Sofia, Bulgaria
| | - Boyka Anachkova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Academy G. Bonchev St. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
41
|
Abstract
Genetic instabilities, including mutations and chromosomal rearrangements, lead to cancer and other diseases in humans and play an important role in evolution. A frequent cause of genetic instabilities is double-strand DNA breaks (DSBs), which may arise from a wide range of exogeneous and endogeneous cellular factors. Although the repair of DSBs is required, some repair pathways are dangerous because they may destabilize the genome. One such pathway, break-induced replication (BIR), is the mechanism for repairing DSBs that possesses only one repairable end. This situation commonly arises as a result of eroded telomeres or collapsed replication forks. Although BIR plays a positive role in repairing DSBs, it can alternatively be a dangerous source of several types of genetic instabilities, including loss of heterozygosity, telomere maintenance in the absence of telomerase, and non-reciprocal translocations. Also, mutation rates in BIR are about 1000 times higher as compared to normal DNA replication. In addition, micro-homology-mediated BIR (MMBIR), which is a mechanism related to BIR, can generate copy-number variations (CNVs) as well as various complex chromosomal rearrangements. Overall, activation of BIR may contribute to genomic destabilization resulting in substantial biological consequences including those affecting human health.
Collapse
Affiliation(s)
| | | | - Anna Malkova
- Author to whom correspondence should be addressed; ; Tel.: +1-317-278-5717; Fax: +1-317-274-2946
| |
Collapse
|
42
|
Hollender D, Conde SB, Salustio E, Samartino LE. [Detection of a clonal complex with Brucella abortus biovar 2 genotype as founder in B. abortus isolates from Argentina]. Rev Argent Microbiol 2014; 45:229-39. [PMID: 24401776 DOI: 10.1016/s0325-7541(13)70029-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 11/30/2022] Open
Abstract
Brucella abortus is the causative agent of bovine brucellosis, a worldwide zoonosis. Up to date, eight biovars of B. abortus have been described. In Argentina, biovar 1 is the most frequently isolated. However, biovar 2, which is more pathogenic than biovar 1, is also found. Molecular methods for subtyping isolates are necessary for allowing epidemiological surveillance and control of eradication programs. Due to the genetic homogeneity of the genus Brucella, the development of molecular typing tools has been difficult. The publication of microorganism genomes facilitates the design of this approach. The aim of this work was to employ a Multiple Locus VNTR Analysis (MLVA) scheme for strains from Argentina isolated in our laboratory. From the 56 isolates analyzed, 47 different genotypic profiles were obtained. All the strains typed as biovar 2 showed the same profile. This scheme allowed assigning each isolate to the biovar it belongs to. All the genotypes were related using the goeBURST analysis and biovar 2 was proposed as founder.
Collapse
Affiliation(s)
- Daiana Hollender
- Laboratorio de Brucella, Instituto de Biotecnología, CICVyA, INTA Castelar, Las Cabañas y Nicolás Repetto, Hurlingham (1686), Buenos Aires, Argentina.
| | - Sandra B Conde
- AER Lobos - INTA, EEA Pergamino, Centro Regional Buenos Aires Norte, Pergamino, Provincia de Buenos Aires, Argentina
| | | | - Luis E Samartino
- Laboratorio de Brucelosis, Instituto de Patobiología, CICVyA, INTA Castelar, Las Cabañas y Nicolás Repetto, Hurlingham (1686), Buenos Aires, Argentina(1)
| |
Collapse
|
43
|
Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. Appl Environ Microbiol 2014; 80:4547-58. [PMID: 24837372 DOI: 10.1128/aem.00300-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.
Collapse
|
44
|
Mazón G, Symington LS. Mph1 and Mus81-Mms4 prevent aberrant processing of mitotic recombination intermediates. Mol Cell 2013; 52:63-74. [PMID: 24119400 DOI: 10.1016/j.molcel.2013.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/13/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Homology-dependent repair of double-strand breaks (DSBs) from nonsister templates has the potential to generate loss of heterozygosity or genome rearrangements. Here we show that the Saccharomyces cerevisiae Mph1 helicase prevents crossovers between ectopic sequences by removing substrates for Mus81-Mms4 or Rad1-Rad10 cleavage. A role for Yen1 is only apparent in the absence of Mus81. Cells lacking Mph1 and the three nucleases are highly defective in the repair of a single DSB, suggesting that the recombination intermediates that accumulate cannot be processed by the Sgs1-Top3-Rmi1 complex (STR). Consistent with this hypothesis, ectopic joint molecules (JMs) accumulate transiently in the mph1Δ mutant and persistently when Mus81 is eliminated. Furthermore, the ectopic JMs formed in the mus81Δ mutant contain a single Holliday junction (HJ) explaining why STR is unable to process them. We suggest that Mph1 and Mus81-Mms4 recognize an early strand exchange intermediate and direct repair to noncrossover or crossover outcomes, respectively.
Collapse
Affiliation(s)
- Gerard Mazón
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
45
|
Zhou K, Aertsen A, Michiels CW. The role of variable DNA tandem repeats in bacterial adaptation. FEMS Microbiol Rev 2013; 38:119-41. [PMID: 23927439 DOI: 10.1111/1574-6976.12036] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/13/2013] [Accepted: 07/26/2013] [Indexed: 01/05/2023] Open
Abstract
DNA tandem repeats (TRs), also designated as satellite DNA, are inter- or intragenic nucleotide sequences that are repeated two or more times in a head-to-tail manner. Because TR tracts are prone to strand-slippage replication and recombination events that cause the TR copy number to increase or decrease, loci containing TRs are hypermutable. An increasing number of examples illustrate that bacteria can exploit this instability of TRs to reversibly shut down or modulate the function of specific genes, allowing them to adapt to changing environments on short evolutionary time scales without an increased overall mutation rate. In this review, we discuss the prevalence and distribution of inter- and intragenic TRs in bacteria and the mechanisms of their instability. In addition, we review evidence demonstrating a role of TR variations in bacterial adaptation strategies, ranging from immune evasion and tissue tropism to the modulation of environmental stress tolerance. Nevertheless, while bioinformatic analysis reveals that most bacterial genomes contain a few up to several dozens of intra- and intergenic TRs, only a small fraction of these have been functionally studied to date.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
46
|
Abstract
Mutations stimulate evolutionary change and lead to birth defects and cancer in humans as well as to antibiotic resistance in bacteria. According to the classic view, most mutations arise in dividing cells and result from uncorrected errors of S-phase DNA replication, which is highly accurate because of the involvement of selective DNA polymerases and efficient error-correcting mechanisms. In contrast, studies in bacteria and yeast reveal that DNA synthesis associated with repair of double-strand chromosomal breaks (DSBs) by homologous recombination is highly inaccurate, thus making DSBs and their repair an important source of mutations. Different error-prone mechanisms appear to operate in different repair scenarios. In the filling in of single-stranded DNA regions, error-prone translesion DNA polymerases appear to produce most errors. In contrast, in gene conversion gap repair and in break-induced replication, errors are independent of translesion polymerases, and many mutations have the signatures of template switching during DNA repair synthesis. DNA repair also appears to create complex copy-number variants. Overall, homologous recombination, which is traditionally considered a safe pathway of DSB repair, is an important source of mutagenesis that may contribute to human disease and evolution.
Collapse
Affiliation(s)
- Anna Malkova
- Department of Biology, School of Science, IUPUI, Indianapolis, Indiana 46202-5132, USA.
| | | |
Collapse
|
47
|
Heteroduplex DNA position defines the roles of the Sgs1, Srs2, and Mph1 helicases in promoting distinct recombination outcomes. PLoS Genet 2013; 9:e1003340. [PMID: 23516370 PMCID: PMC3597516 DOI: 10.1371/journal.pgen.1003340] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 01/09/2013] [Indexed: 11/19/2022] Open
Abstract
The contributions of the Sgs1, Mph1, and Srs2 DNA helicases during mitotic double-strand break (DSB) repair in yeast were investigated using a gap-repair assay. A diverged chromosomal substrate was used as a repair template for the gapped plasmid, allowing mismatch-containing heteroduplex DNA (hDNA) formed during recombination to be monitored. Overall DSB repair efficiencies and the proportions of crossovers (COs) versus noncrossovers (NCOs) were determined in wild-type and helicase-defective strains, allowing the efficiency of CO and NCO production in each background to be calculated. In addition, the products of individual NCO events were sequenced to determine the location of hDNA. Because hDNA position is expected to differ depending on whether a NCO is produced by synthesis-dependent-strand-annealing (SDSA) or through a Holliday junction (HJ)-containing intermediate, its position allows the underlying molecular mechanism to be inferred. Results demonstrate that each helicase reduces the proportion of CO recombinants, but that each does so in a fundamentally different way. Mph1 does not affect the overall efficiency of gap repair, and its loss alters the CO-NCO by promoting SDSA at the expense of HJ-containing intermediates. By contrast, Sgs1 and Srs2 are each required for efficient gap repair, strongly promoting NCO formation and having little effect on CO efficiency. hDNA analyses suggest that all three helicases promote SDSA, and that Sgs1 and Srs2 additionally dismantle HJ-containing intermediates. The hDNA data are consistent with the proposed role of Sgs1 in the dissolution of double HJs, and we propose that Srs2 dismantles nicked HJs.
Collapse
|
48
|
A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan. PLoS Genet 2013; 9:e1003329. [PMID: 23505383 PMCID: PMC3591295 DOI: 10.1371/journal.pgen.1003329] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/04/2013] [Indexed: 01/30/2023] Open
Abstract
Aging and longevity are complex traits influenced by genetic and environmental factors. To identify quantitative trait loci (QTLs) that control replicative lifespan, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard and a laboratory strain. The predominant QTL mapped to the rDNA, with the vineyard rDNA conferring a lifespan increase of 41%. The lifespan extension was independent of Sir2 and Fob1, but depended on a polymorphism in the rDNA origin of replication from the vineyard strain that reduced origin activation relative to the laboratory origin. Strains carrying vineyard rDNA origins have increased capacity for replication initiation at weak plasmid and genomic origins, suggesting that inability to complete genome replication presents a major impediment to replicative lifespan. Calorie restriction, a conserved mediator of lifespan extension that is also independent of Sir2 and Fob1, reduces rDNA origin firing in both laboratory and vineyard rDNA. Our results are consistent with the possibility that calorie restriction, similarly to the vineyard rDNA polymorphism, modulates replicative lifespan through control of rDNA origin activation, which in turn affects genome replication dynamics. Although many aging regulators have been discovered, we are still uncovering how each contributes to the basic biology underlying cell lifespan and how certain longevity-promoting regimens, such as calorie restriction, manipulate the aging process across species. Since many cellular aging processes between human cells and budding yeast are related, we examined a collection of genetically diverse yeast and discovered that a genetic variant in vineyard yeast confers a 41% lifespan increase. The responsible sequence in the vineyard yeast reduces the amount of DNA replication that initiates at the ribosomal DNA (rDNA) locus, a chromosome-sized region of the genome that is dedicated to the production of ribosomal RNA required for protein synthesis and growth. Strikingly, we find that calorie restriction conditions also reduce rDNA replication, potentially promoting longevity by the same mechanism. While the rDNA has been previously linked to lifespan control, how this single locus affects global cell function has remained elusive. We find that a weakly replicating rDNA promotes DNA replication across the rest of the cell's genome, perhaps through the re-allocation of replication resources from decreased rDNA demand. Our findings suggest that the cell's inability to complete genome replication is one of the major impediments to yeast longevity.
Collapse
|
49
|
Gemayel R, Cho J, Boeynaems S, Verstrepen KJ. Beyond junk-variable tandem repeats as facilitators of rapid evolution of regulatory and coding sequences. Genes (Basel) 2012; 3:461-80. [PMID: 24704980 PMCID: PMC3899988 DOI: 10.3390/genes3030461] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/19/2012] [Accepted: 07/21/2012] [Indexed: 01/19/2023] Open
Abstract
Copy Number Variations (CNVs) and Single Nucleotide Polymorphisms (SNPs) have been the major focus of most large-scale comparative genomics studies to date. Here, we discuss a third, largely ignored, type of genetic variation, namely changes in tandem repeat number. Historically, tandem repeats have been designated as non functional “junk” DNA, mostly as a result of their highly unstable nature. With the exception of tandem repeats involved in human neurodegenerative diseases, repeat variation was often believed to be neutral with no phenotypic consequences. Recent studies, however, have shown that as many as 10% to 20% of coding and regulatory sequences in eukaryotes contain an unstable repeat tract. Contrary to initial suggestions, tandem repeat variation can have useful phenotypic consequences. Examples include rapid variation in microbial cell surface, tuning of internal molecular clocks in flies and the dynamic morphological plasticity in mammals. As such, tandem repeats can be useful functional elements that facilitate evolvability and rapid adaptation.
Collapse
Affiliation(s)
- Rita Gemayel
- Laboratory for Systems Biology, VIB, Gaston Geenslaan 1, B-3001 Heverlee, Belgium.
| | - Janice Cho
- Laboratory for Systems Biology, VIB, Gaston Geenslaan 1, B-3001 Heverlee, Belgium.
| | - Steven Boeynaems
- Laboratory for Systems Biology, VIB, Gaston Geenslaan 1, B-3001 Heverlee, Belgium.
| | - Kevin J Verstrepen
- Laboratory for Systems Biology, VIB, Gaston Geenslaan 1, B-3001 Heverlee, Belgium.
| |
Collapse
|
50
|
Li J, Coïc E, Lee K, Lee CS, Kim JA, Wu Q, Haber JE. Regulation of budding yeast mating-type switching donor preference by the FHA domain of Fkh1. PLoS Genet 2012; 8:e1002630. [PMID: 22496671 PMCID: PMC3320585 DOI: 10.1371/journal.pgen.1002630] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/17/2012] [Indexed: 01/12/2023] Open
Abstract
During Saccharomyces cerevisiae mating-type switching, an HO endonuclease-induced double-strand break (DSB) at MAT is repaired by recombining with one of two donors, HMLα or HMRa, located at opposite ends of chromosome III. MATa cells preferentially recombine with HMLα; this decision depends on the Recombination Enhancer (RE), located about 17 kb to the right of HML. In MATα cells, HML is rarely used and RE is bound by the MATα2-Mcm1 corepressor, which prevents the binding of other proteins to RE. In contrast, in MATa cells, RE is bound by multiple copies of Fkh1 and a single copy of Swi4/Swi6. We report here that, when RE is replaced with four LexA operators in MATa cells, 95% of cells use HMR for repair, but expression of a LexA-Fkh1 fusion protein strongly increases HML usage. A LexA-Fkh1 truncation, containing only Fkh1's phosphothreonine-binding FHA domain, restores HML usage to 90%. A LexA-FHA-R80A mutant lacking phosphothreonine binding fails to increase HML usage. The LexA-FHA fusion protein associates with chromatin in a 10-kb interval surrounding the HO cleavage site at MAT, but only after DSB induction. This association occurs even in a donorless strain lacking HML. We propose that the FHA domain of Fkh1 regulates donor preference by physically interacting with phosphorylated threonine residues created on proteins bound near the DSB, thus positioning HML close to the DSB at MAT. Donor preference is independent of Mec1/ATR and Tel1/ATM checkpoint protein kinases but partially depends on casein kinase II. RE stimulates the strand invasion step of interchromosomal recombination even for non-MAT sequences. We also find that when RE binds to the region near the DSB at MATa then Mec1 and Tel1 checkpoint kinases are not only able to phosphorylate histone H2A (γ-H2AX) around the DSB but can also promote γ-H2AX spreading around the RE region. Mating-type gene switching occurs by a DSB–initiated gene conversion event using one of two donors, HML or HMR. MATa cells preferentially recombine with HML whereas MATα cells choose HMR. Donor preference is governed by the Recombination Enhancer (RE), located about 17 kb from HML. RE is repressed in MATα cells, whereas in MATa RE binds several copies of the Fkh1 protein. We replaced RE with four LexA operators and showed that the expression of LexA-Fkh1 fusion protein enhances HML usage. Donor preference depends on the phosphothreonine-binding FHA domain of Fkh1. LexA-FHAFkh1 physically associates with chromatin in the region surrounding the DSB at MAT. We propose that RE regulates donor preference by the binding of FHAFkh1 domains to phosphorylated sites around the DSB at MAT, thus bringing HML much closer than HMR. FHAFkh1 action partially depends on casein kinase II but not on the DNA damage checkpoint kinases Mec1 and Tel1. We also find that, when RE binds to the MAT region, phosphorylation of histone H2A (γ-H2AX) by Mec1/Tel1 not only surrounds the DSB but also spreads around RE. This is the first demonstration that γ-H2AX can spread to contiguous, but undamaged, chromatin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - James E. Haber
- Department of Biology and Rosenstiel Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|