1
|
Manandhar M, Lowery MG, Boulware KS, Lin KH, Lu Y, Wood RD. Transcriptional consequences of XPA disruption in human cell lines. DNA Repair (Amst) 2017; 57:76-90. [PMID: 28704716 PMCID: PMC5731452 DOI: 10.1016/j.dnarep.2017.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 11/25/2022]
Abstract
Nucleotide excision repair (NER) in mammalian cells requires the xeroderma pigmentosum group A protein (XPA) as a core factor. Remarkably, XPA and other NER proteins have been detected by chromatin immunoprecipitation at some active promoters, and NER deficiency is reported to influence the activated transcription of selected genes. However, the global influence of XPA on transcription in human cells has not been determined. We analyzed the human transcriptome by RNA sequencing (RNA-Seq). We first confirmed that XPA is confined to the cell nucleus even in the absence of external DNA damage, in contrast to previous reports that XPA is normally resident in the cytoplasm and is imported following DNA damage. We then analyzed four genetically matched human cell line pairs deficient or proficient in XPA. Of the ∼14,000 genes transcribed in each cell line, 325 genes (2%) had a significant XPA-dependent directional change in gene expression that was common to all four pairs (with a false discovery rate of 0.05). These genes were enriched in pathways for the maintenance of mitochondria. Only 27 common genes were different by more than 1.5-fold. The most significant hits were AKR1C1 and AKR1C2, involved in steroid hormone metabolism. AKR1C2 protein was lower in all of the immortalized XPA-deficient cells. Retinoic acid treatment led to modest XPA-dependent activation of some genes with transcription-related functions. We conclude that XPA status does not globally influence human gene transcription. However, XPA significantly influences expression of a small subset of genes important for mitochondrial functions and steroid hormone metabolism. The results may help explain defects in neurological function and sterility in individuals with xeroderma pigmentosum.
Collapse
Affiliation(s)
- Mandira Manandhar
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, P.O. Box 389, Smithville, TX, 78957, USA; MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, TX, USA
| | - Megan G Lowery
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, P.O. Box 389, Smithville, TX, 78957, USA
| | - Karen S Boulware
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, P.O. Box 389, Smithville, TX, 78957, USA
| | - Kevin H Lin
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, P.O. Box 389, Smithville, TX, 78957, USA
| | - Yue Lu
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, P.O. Box 389, Smithville, TX, 78957, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, P.O. Box 389, Smithville, TX, 78957, USA; MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, TX, USA.
| |
Collapse
|
2
|
Transcription coupled nucleotide excision repair in the yeast Saccharomyces cerevisiae: The ambiguous role of Rad26. DNA Repair (Amst) 2015; 36:43-48. [DOI: 10.1016/j.dnarep.2015.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
|
4
|
Sharma AK, Bhattacharya S, Khan SA, Khade B, Gupta S. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells. Mutat Res 2015; 773:83-91. [PMID: 25847424 DOI: 10.1016/j.mrfmmm.2015.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 12/22/2014] [Accepted: 01/28/2015] [Indexed: 12/26/2022]
Abstract
Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair.
Collapse
Affiliation(s)
- Ajit K Sharma
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Saikat Bhattacharya
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Shafqat A Khan
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Bharat Khade
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India.
| |
Collapse
|
5
|
Chaudhari V, Raghavan V, Rao BJ. Preparation of efficient excision repair competent cell-free extracts from C. reinhardtii cells. PLoS One 2014; 9:e109160. [PMID: 25299516 PMCID: PMC4192114 DOI: 10.1371/journal.pone.0109160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022] Open
Abstract
Chlamydomonas reinhardtii is a prospective model system for understanding molecular mechanisms associated with DNA repair in plants and algae. To explore this possibility, we have developed an in vitro repair system from C. reinhardtii cell-free extracts that can efficiently repair UVC damage (Thymine-dimers) in the DNA. We observed that excision repair (ER) synthesis based nucleotide incorporation, specifically in UVC damaged supercoiled (SC) DNA, was followed by ligation of nicks. Photoreactivation efficiently competed out the ER in the presence of light. In addition, repair efficiency in cell-free extracts from ER deficient strains was several fold lower than that of wild-type cell extract. Interestingly, the inhibitor profile of repair DNA polymerase involved in C. reinhardtii in vitro ER system was akin to animal rather than plant DNA polymerase. The methodology to prepare repair competent cell-free extracts described in the current study can aid further molecular characterization of ER pathway in C. reinhardtii.
Collapse
Affiliation(s)
- Vishalsingh Chaudhari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Vandana Raghavan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Basuthkar J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
- * E-mail:
| |
Collapse
|
6
|
Ding B, Ruggiero C, Chen X, Li S. Tfb5 is partially dispensable for Rad26 mediated transcription coupled nucleotide excision repair in yeast. DNA Repair (Amst) 2007; 6:1661-9. [PMID: 17644494 PMCID: PMC2096704 DOI: 10.1016/j.dnarep.2007.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 06/08/2007] [Indexed: 11/18/2022]
Abstract
Nucleotide excision repair (NER) is a conserved DNA repair mechanism capable of removing a variety of helix-distorting DNA lesions. A specialized NER pathway, called transcription coupled NER (TC-NER), refers to preferential repair in the transcribed strand of an actively transcribed gene. To be distinguished from TCR-NER, the genome-wide NER process is termed as global genomic NER (GG-NER). In Saccharomyces cerevisiae, GG-NER is dependent on Rad7, whereas TC-NER is mediated by Rad26, the homolog of the human Cockayne syndrome group B protein, and by Rpb9, a non-essential subunit of RNA polymerase II. Tfb5, the tenth subunit of the transcription/repair factor TFIIH, is implicated in one group of the human syndrome trichothiodystrophy. Here, we show that Tfb5 plays different roles in different NER pathways in yeast. No repair takes place in the non-transcribed strand of a gene in tfb5 cells, or in both strands of a gene in rad26 rpb9 tfb5 cells, indicating that Tfb5 is essential for GG-NER. However, residual repair occurs in the transcribed strand of a gene in tfb5 cells, suggesting that Tfb5 is important, but not absolutely required for TC-NER. Interestingly, substantial repair occurs in the transcribed strand of a gene in rad7 tfb5 and rad7 rpb9 tfb5 cells, indicating that, in the absence of GG-NER, Tfb5 is largely dispensable for Rad26 mediated TC-NER. Furthermore, we show that no repair takes place in the transcribed strand of a gene in rad7 rad26 tfb5 cells, suggesting that Tfb5 is required for Rpb9 mediated TC-NER. Taken together, our results indicate that Tfb5 is partially dispensable for Rad26 mediated TC-NER, especially in GG-NER deficient cells. However, this TFIIH subunit is required for other NER pathways.
Collapse
Affiliation(s)
| | | | | | - Shisheng Li
- *Corresponding Author [225-578-9102(Phone)/225-578-9895(FAX)/ ]
| |
Collapse
|
7
|
Dip R, Camenisch U, Naegeli H. Mechanisms of DNA damage recognition and strand discrimination in human nucleotide excision repair. DNA Repair (Amst) 2005; 3:1409-23. [PMID: 15380097 DOI: 10.1016/j.dnarep.2004.05.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Indexed: 11/20/2022]
Abstract
Using only a limited repertoire of recognition subunits, the nucleotide excision repair (NER) system is able to detect a nearly infinite variety of bulky DNA lesions. This extraordinary substrate versatility has generally been ascribed to an indirect readout mechanism, whereby particular distortions of the double helix, induced by a damaged nucleotide, provide the molecular determinants not only for lesion recognition but also for subsequent verification or demarcation processes. Here, we discuss the evidence in support of a bipartite mechanism of substrate discrimination that is initiated by the detection of thermodynamically unstable base pairs followed by direct localization of the lesion through an enzymatic proofreading activity. This bipartite discrimination mechanism is part of a dynamic reaction cycle that confers high levels of selectivity to avoid futile repair events on undamaged DNA and also protect the intact complementary strand from inappropriate cleavage.
Collapse
Affiliation(s)
- Ramiro Dip
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
8
|
Riedl T, Hanaoka F, Egly JM. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J 2003; 22:5293-303. [PMID: 14517266 PMCID: PMC204472 DOI: 10.1093/emboj/cdg489] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To understand the mechanism of nucleotide excision repair (NER), one of the major human DNA repair pathways, we have set up a DNA repair system in which a linear damaged DNA substrate is immobilized by its terminus. By isolating functionally active intermediate complexes, our data dissect the ordered arrival and displacement of NER factors in the progress of the dual incision step. We describe (i) the role of ATP in remodelling the NER-initiating complex of XPC/TFIIH/damaged DNA as a prerequisite for the recruitment of the next NER factors; (ii) the coordination between damage removal and DNA resynthesis and the release of XPC-HR23B, TFIIH and XPA upon arrival of XPG and XPF-ERCC1, respectively; (iii) how RPA remains associated with the excised DNA initiating the assembly of resynthesis factors such as PCNA; (iv) the recycling of XPC-HR23B, TFIIH and XPA in the NER; and the shuttling of TFIIH between NER and transcription. Thus, our findings define multiple functions of NER factors to explain the molecular basis of human NER disorders.
Collapse
Affiliation(s)
- Thilo Riedl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, B.P. 10142, 67404 Illkirch, C.U. de Strasbourg, France
| | | | | |
Collapse
|
9
|
Keogh MC, Cho EJ, Podolny V, Buratowski S. Kin28 is found within TFIIH and a Kin28-Ccl1-Tfb3 trimer complex with differential sensitivities to T-loop phosphorylation. Mol Cell Biol 2002; 22:1288-97. [PMID: 11839796 PMCID: PMC134711 DOI: 10.1128/mcb.22.5.1288-1297.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Revised: 11/14/2001] [Accepted: 11/30/2001] [Indexed: 11/20/2022] Open
Abstract
Basal transcription factor TFIIH phosphorylates the RNA polymerase II (RNApII) carboxy-terminal domain (CTD) within the transcription initiation complex. The catalytic kinase subunit of TFIIH is a member of the cyclin-dependent kinase (Cdk) family, designated Kin28 in Saccharomyces cerevisiae and Cdk7 in higher eukaryotes. Together with TFIIH subunits cyclin H and Mat1, Cdk7 kinase is also found in a trimer complex known as Cdk activating kinase (CAK). A yeast trimer complex has not previously been identified, although a Kin28-Ccl1 dimer called TFIIK has been isolated as a breakdown product of TFIIH. Here we show that a trimeric complex of Kin28-Ccl1-Tfb3 exists in yeast extracts. Several Kin28 point mutants that are defective in CTD phosphorylation were created. Consistent with earlier studies, these mutants have no transcriptional defect in vitro. Like other Cdks, Kin28 is activated by phosphorylation on T162 of the T loop. Kin28 T162 mutants have no growth defects alone but do demonstrate synthetic phenotypes when combined with mutant versions of the cyclin partner, Ccl1. Surprisingly, these phosphorylation site mutants appear to destabilize the association of the cyclin subunit within the context of TFIIH but not within the trimer complex.
Collapse
Affiliation(s)
- Michael-Christopher Keogh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
10
|
Muftuoglu M, Selzer R, Tuo J, Brosh RM, Bohr VA. Phenotypic consequences of mutations in the conserved motifs of the putative helicase domain of the human Cockayne syndrome group B gene. Gene 2002; 283:27-40. [PMID: 11867210 DOI: 10.1016/s0378-1119(01)00870-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cockayne syndrome (CS) is a human genetic disorder characterized by several neurological and developmental abnormalities. Two genetic complementation groups, CS-A and CS-B, have been identified. The CSB protein belongs to helicase superfamily 2, and to the SWI/SNF family of proteins. The CSB protein is implicated in transcription-coupled repair (TCR), basal transcription and chromatin remodeling. In addition, CS cells undergo UV-induced apoptosis at much lower doses than normal cells. However, the molecular function of the CSB protein in these biological pathways has remained unclear. Evidence indicates that the integrity of the Walker A and B boxes (motifs I and II) are important for CSB function, but the functional significance of the helicase motifs Ia, III--IV has not been previously examined. In this study, single amino acid changes in highly conserved residues of helicase motifs Ia, III, V, VI and a second putative nucleotide-binding motif (NTB) of the CSB protein were generated by site-directed mutagenesis to analyze the genetic function of the CSB protein in survival, RNA synthesis recovery and apoptosis after UV treatment. The survival analysis of these CS-B mutant cell lines was also performed after treatment with the chemical carcinogen, 4-nitroquinoline-1-oxide (4-NQO). The lesions induced by UV light, cyclobutane pyrimidine dimers, are known to be repaired by TCR whereas the lesions induced by 4-NQO are repaired by global genome repair. The results of this study demonstrate that the point mutations in highly conserved residues of helicase motifs Ia, III, V and VI abolished the genetic function of the CSB protein in survival, RNA synthesis recovery and apoptosis after UV treatment. Similarly, the same mutants failed to complement the sensitivity toward 4-NQO. Thus, the integrity of these helicase motifs is important for the biological function of the CSB protein. On the contrary, a point mutation in a C-terminal, second, NTB motif of the CSB protein showed full complementation in the ability to repair damage induced by UV light or 4-NQO, suggesting that this motif is not important for the CSB repair function.
Collapse
Affiliation(s)
- Meltem Muftuoglu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
11
|
Li A, Schuermann D, Gallego F, Kovalchuk I, Tinland B. Repair of damaged DNA by Arabidopsis cell extract. THE PLANT CELL 2002; 14:263-73. [PMID: 11826311 PMCID: PMC150563 DOI: 10.1105/tpc.010258] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2001] [Accepted: 10/08/2001] [Indexed: 05/18/2023]
Abstract
All living organisms have to protect the integrity of their genomes from a wide range of genotoxic stresses to which they are inevitably exposed. However, understanding of DNA repair in plants lags far behind such knowledge in bacteria, yeast, and mammals, partially as a result of the absence of efficient in vitro systems. Here, we report the experimental setup for an Arabidopsis in vitro repair synthesis assay. The repair of plasmid DNA treated with three different DNA-damaging agents, UV light, cisplatin, and methylene blue, after incubation with whole-cell extract was monitored. To validate the reliability of our assay, we analyzed the repair proficiency of plants depleted in AtRAD1 activity. The reduced repair of UV light- and cisplatin-damaged DNA confirmed the deficiency of these plants in nucleotide excision repair. Decreased repair of methylene blue-induced oxidative lesions, which are believed to be processed by the base excision repair machinery in mammalian cells, may indicate a possible involvement of AtRAD1 in the repair of oxidative damage. Differences in sensitivity to DNA polymerase inhibitors (aphidicolin and dideoxy TTP) between plant and human cell extracts were observed with this assay.
Collapse
Affiliation(s)
- Anatoliy Li
- Institute of Plant Sciences, Eidgenössische Technishe Hochschule, Universitätsstr 2, CH-8092 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Abstract
Several types of helix-distorting DNA lesions block the passage of elongating RNA polymerase II. Surprisingly, such transcription-blocking lesions are usually repaired considerably faster than non-obstructive lesions in the non-transcribed strand or in the genome overall. In this review, our knowledge of eukaryotic transcription-coupled repair (TCR) will be considered from the point of view of transcription, and current models for the mechanism of TCR will be discussed.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Imperial Cancer Research Fund, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
13
|
Moné MJ, Volker M, Nikaido O, Mullenders LH, van Zeeland AA, Verschure PJ, Manders EM, van Driel R. Local UV-induced DNA damage in cell nuclei results in local transcription inhibition. EMBO Rep 2001; 2:1013-7. [PMID: 11713193 PMCID: PMC1084123 DOI: 10.1093/embo-reports/kve224] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UV-induced DNA damage causes cells to repress RNA synthesis and to initiate nucleotide excision repair (NER). NER and transcription are intimately linked processes. Evidence has been presented that, in addition to damaged genes, undamaged loci are transcriptionally inhibited. We investigated whether RNA synthesis from undamaged genes is affected by the presence of UV damage elsewhere in the same nucleus, using a novel technique to UV irradiate only part of a nucleus. We show that the basal transcription/repair factor TFIIH is recruited to the damaged nuclear area, partially depleting the undamaged nuclear area. Remarkably, this sequestration has no effect on RNA synthesis. This result was obtained for cells that are able to carry out NER and for cells deficient in NER. We conclude that cross talk between NER and transcription occurs only over short distances in nuclei of living cells.
Collapse
Affiliation(s)
- M J Moné
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
DNA damage and its processing with aging: Human premature aging syndromes as model systems. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1566-3124(01)04033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Rockx DA, Mason R, van Hoffen A, Barton MC, Citterio E, Bregman DB, van Zeeland AA, Vrieling H, Mullenders LH. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proc Natl Acad Sci U S A 2000; 97:10503-8. [PMID: 10973477 PMCID: PMC27054 DOI: 10.1073/pnas.180169797] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells from patients with Cockayne syndrome (CS) are hypersensitive to DNA-damaging agents and are unable to restore damage-inhibited RNA synthesis. On the basis of repair kinetics of different types of lesions in transcriptionally active genes, we hypothesized previously that impaired transcription in CS cells is a consequence of defective transcription initiation after DNA damage induction. Here, we investigated the effect of UV irradiation on transcription by using an in vitro transcription system that allowed uncoupling of initiation from elongation events. Nuclear extracts prepared from UV-irradiated or mock-treated normal human and CS cells were assayed for transcription activity on an undamaged beta-globin template. Transcription activity in nuclear extracts closely mimicked kinetics of transcription in intact cells: extracts from normal cells prepared 1 h after UV exposure showed a strongly reduced activity, whereas transcription activity was fully restored in extracts prepared 6 h after treatment. Extracts from CS cells exhibited reduced transcription activity at any time after UV exposure. Reduced transcription activity in extracts coincided with a strong reduction of RNA polymerase II (RNAPII) containing hypophosphorylated C-terminal domain, the form of RNAPII known to be recruited to the initiation complex. These results suggest that inhibition of transcription after UV irradiation is at least partially caused by repression of transcription initiation and not solely by blocked elongation at sites of lesions. Generation of hypophosphorylated RNAPII after DNA damage appears to play a crucial role in restoration of transcription. CS proteins may be required for this process in a yet unknown way.
Collapse
Affiliation(s)
- D A Rockx
- MGC-Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Friedberg EC. Rous-Whipple Award Lecture. Nucleotide excision repair and cancer predisposition: A journey from man to yeast to mice. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:693-701. [PMID: 10980107 PMCID: PMC1885695 DOI: 10.1016/s0002-9440(10)64581-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2000] [Indexed: 01/21/2023]
Affiliation(s)
- E C Friedberg
- Laboratory of Molecular Pathology, Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9072, USA.
| |
Collapse
|
17
|
Teng Y, Waters R. Excision repair at the level of the nucleotide in the upstream control region, the coding sequence and in the region where transcription terminates of the Saccharomyces cerevisiae MFA2 gene and the role of RAD26. Nucleic Acids Res 2000; 28:1114-9. [PMID: 10666451 PMCID: PMC102608 DOI: 10.1093/nar/28.5.1114] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RAD26, the yeast homologue of human CSB, has an essential role in transcription-coupled repair (TCR). We have mapped the requisite of Rad26 for nucleotide excision repair (NER) within the different regions of the yeast Saccharomyces cerevisiae MFA2 gene at nucleotide resolution. Our results show that Rad26 is dispensable for enhanced NER in both the MFA2 upstream promoter, except in the TATA box region, and for enhanced NER in both strands of the active gene at a site close to the transcription termination region. As expected, it is not needed for repair of regions downstream of where transcription terminates. However, it is required for TCR in the transcription initiation and elongation regions. Our data support the hypothesis that Rad26 is required for the interchange between holo-TFIIH and a putative repairosome containing core TFIIH and other NER proteins. Close to the end of transcription, hotspots for the repair of CPDs in both the transcribed strand and the non-transcribed strand occur. This enhanced repair is independent of Rad26. Hence, TFIIH may take a form favourable for forming a repairosome without Rad26 assistance; here the organisation of the DNA during the termination of transcription may facilitate access of a repair complex to enable enhanced repair of both strands.
Collapse
Affiliation(s)
- Y Teng
- School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK
| | | |
Collapse
|
18
|
Brosh RM, Balajee AS, Selzer RR, Sunesen M, Proietti De Santis L, Bohr VA. The ATPase domain but not the acidic region of Cockayne syndrome group B gene product is essential for DNA repair. Mol Biol Cell 1999; 10:3583-94. [PMID: 10564257 PMCID: PMC25641 DOI: 10.1091/mbc.10.11.3583] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cockayne syndrome (CS) is a human genetic disorder characterized by UV sensitivity, developmental abnormalities, and premature aging. Two of the genes involved, CSA and CSB, are required for transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes certain lesions rapidly and efficiently from the transcribed strand of active genes. CS proteins have also been implicated in the recovery of transcription after certain types of DNA damage such as those lesions induced by UV light. In this study, site-directed mutations have been introduced to the human CSB gene to investigate the functional significance of the conserved ATPase domain and of a highly acidic region of the protein. The CSB mutant alleles were tested for genetic complementation of UV-sensitive phenotypes in the human CS-B homologue of hamster UV61. In addition, the CSB mutant alleles were tested for their ability to complement the sensitivity of UV61 cells to the carcinogen 4-nitroquinoline-1-oxide (4-NQO), which introduces bulky DNA adducts repaired by global genome repair. Point mutation of a highly conserved glutamic acid residue in ATPase motif II abolished the ability of CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery, and gene-specific repair. These data indicate that the integrity of the ATPase domain is critical for CSB function in vivo. Likewise, the CSB ATPase point mutant failed to confer cellular resistance to 4-NQO, suggesting that ATP hydrolysis is required for CSB function in a TCR-independent pathway. On the contrary, a large deletion of the acidic region of CSB protein did not impair the genetic function in the processing of either UV- or 4-NQO-induced DNA damage. Thus the acidic region of CSB is likely to be dispensable for DNA repair, whereas the ATPase domain is essential for CSB function in both TCR-dependent and -independent pathways.
Collapse
Affiliation(s)
- R M Brosh
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ye N, Bianchi MS, Bianchi NO, Holmquist GP. Adaptive enhancement and kinetics of nucleotide excision repair in humans. Mutat Res 1999; 435:43-61. [PMID: 10526216 DOI: 10.1016/s0921-8777(99)00022-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An adaptive response, low doses of a mutagen rendering cells more able to subsequently cope with higher doses of that or a related challenging mutagen, enhances nucleotide excision repair in human fibroblasts. After fibroblasts were flashed with 20 J/m2 of UVC, the cyclopyrimidine dimer frequency at any single dinucleotide position remained unchanged for several hours before abruptly displaying first order kinetics of repair. These kinetics were determined by ligation-mediated PCR along exon 9 of the human p53 gene. When a chronic dose of quinacrine mustard (QM) preceded the UVC challenge, the duration of the cyclobutane pyrimidine dimer (CPD) repair lags were reduced by a factor of three and the kinetic half-lives for CPD repair were reduced by a factor of three. The observed repair kinetics are consistent with the following model. The UVC dose required (K(m)) to generate a substrate concentration which half-saturates the cell's repair capacity is 3 J/m2 for the high affinity (6-4) photoproducts and greater than 100 J/m2 for the low affinity cyclobutane dimers. After 20 J/m2 of UVC, the repair enzyme is saturated with (6-4) photoproducts; these competitively inhibit CPD repair by binding all available repair enzyme. After the (6-4)s are repaired, the CPD concentration is less than K(m)(CPD) and so CPD repair kinetics initiate with first order kinetics. QM-induced enhancement, by increasing the concentration, Vmax, of repair enzyme, shortens the duration of (6-4) saturation and increases the rate constant for cyclobutane dimer repair. The data exactly fit the expectations from Michaelis kinetics. Transcription coupled repair is less amenable to Michaelis interpretations and enhanced global repair was almost as rapid as the slightly enhanced transcription coupled repair. We infer that repair enhancement is unable to proportionally increase the number of matrix attachment sites necessary for transcription coupled repair. Understanding competitive inhibition between adduct classes and adaptive enhancement of Vmax is important to understanding the effects of high doses of mutagen mixtures.
Collapse
Affiliation(s)
- N Ye
- Beckman Research Institute, Department of Biology, City of Hope Medical Center, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Recently, there has been a convergence of fields studying the processing of DNA, such as transcription, replication, and repair. This convergence has been centered around the packaging of DNA in chromatin. Chromatin structure affects all aspects of DNA processing because it modulates access of proteins to DNA. Therefore, a central theme has become the mechanism(s) for accessing DNA in chromatin. It seems likely that mechanisms involved in one of these processes may also be used in others. For example, the discovery of transcriptional coactivators with histone acetyltransferase activity and chromatin remodeling complexes has provided possible mechanisms required for efficient repair of DNA in chromatin.
Collapse
Affiliation(s)
- M Meijer
- Department of Biochemistry and biophysics, Washington State University, Pullman, USA
| | | |
Collapse
|
21
|
Mitsui A, Sharp PA. Ubiquitination of RNA polymerase II large subunit signaled by phosphorylation of carboxyl-terminal domain. Proc Natl Acad Sci U S A 1999; 96:6054-9. [PMID: 10339540 PMCID: PMC26834 DOI: 10.1073/pnas.96.11.6054] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A sensitive assay using biotinylated ubiquitin revealed extensive ubiquitination of the large subunit of RNA polymerase II during incubations of transcription reactions in vitro. Phosphorylation of the repetitive carboxyl-terminal domain of the large subunit was a signal for ubiquitination. Specific inhibitors of cyclin-dependent kinase (cdk)-type kinases suppress the ubiquitination reaction. These kinases are components of transcription factors and have been shown to phosphorylate the carboxyl-terminal domain. In both regulation of transcription and DNA repair, phosphorylation of the repetitive carboxyl-terminal domain by kinases might signal degradation of the polymerase.
Collapse
Affiliation(s)
- A Mitsui
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
| | | |
Collapse
|
22
|
Chakalova L, Russev G. Transcriptionally active and inactive mouse beta-globin gene loci are repaired at similar rates after ultraviolet irradiation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:667-73. [PMID: 10215882 DOI: 10.1046/j.1432-1327.1999.00332.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been demonstrated, by Northern blot and in situ hybridization, that the mouse erythroleukaemia cell line F4N-Sofia constitutively expresses the beta-globin genes. The recently developed quantitative assay for DNA repair has been used to study the overall repair rate in the beta-globin gene domain in this cell line after ultraviolet irradiation and to compare it with the repair rate of the same chromatin domain in mouse Ehrlich ascites tumour cells which do not express the beta-globin genes. The results showed that in both cases the 5'-end of the domain was repaired preferentially and that the repair rates in the two cell lines were very similar despite the different transcription state of the genes.
Collapse
Affiliation(s)
- L Chakalova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | |
Collapse
|
23
|
Reynaud E, Lomelí H, Vázquez M, Zurita M. The Drosophila melanogaster homologue of the Xeroderma pigmentosum D gene product is located in euchromatic regions and has a dynamic response to UV light-induced lesions in polytene chromosomes. Mol Biol Cell 1999; 10:1191-203. [PMID: 10198066 PMCID: PMC25250 DOI: 10.1091/mbc.10.4.1191] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The XPD/ERCC2/Rad3 gene is required for excision repair of UV-damaged DNA and is an important component of nucleotide excision repair. Mutations in the XPD gene generate the cancer-prone syndrome, xeroderma pigmentosum, Cockayne's syndrome, and trichothiodystrophy. XPD has a 5'- to 3'-helicase activity and is a component of the TFIIH transcription factor, which is essential for RNA polymerase II elongation. We present here the characterization of the Drosophila melanogaster XPD gene (DmXPD). DmXPD encodes a product that is highly related to its human homologue. The DmXPD protein is ubiquitous during development. In embryos at the syncytial blastoderm stage, DmXPD is cytoplasmic. At the onset of transcription in somatic cells and during gastrulation in germ cells, DmXPD moves to the nuclei. Distribution analysis in polytene chromosomes shows that DmXPD is highly concentrated in the interbands, especially in the highly transcribed regions known as puffs. UV-light irradiation of third-instar larvae induces an increase in the signal intensity and in the number of sites where the DmXPD protein is located in polytene chromosomes, indicating that the DmXPD protein is recruited intensively in the chromosomes as a response to DNA damage. This is the first time that the response to DNA damage by UV-light irradiation can be visualized directly on the chromosomes using one of the TFIIH components.
Collapse
Affiliation(s)
- E Reynaud
- Department of Genetics and Molecular Physiology, Institute of Biotechnology, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62250 México
| | | | | | | |
Collapse
|
24
|
Chen XM, Gray PJ, Cullinane C, Phillips DR. Differential sensitivity of transcription factors to mustard-damaged DNA. Chem Biol Interact 1999; 118:51-67. [PMID: 10227578 DOI: 10.1016/s0009-2797(98)00117-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrogen mustard (bis(2-chloroethyl) methylamine, HN2) inhibited the binding of upstream factors Sp1 and AP2 to their consensus sequences. At concentrations where 50% of the consensus sequence DNA contained at least one lesion, HN2 inhibited formation of the Sp1 complex by 37% (40 microM HN2) and the AP2 complex by 40% (50 microM HN2). The binding of the TATA binding protein (TBP) to the TATA element was also inhibited by HN2, whereas sulphur mustard and the monofunctional sulphur mustard 2-chloroethyl ethyl sulphide (CEES) resulted in a disproportional extent of inhibition with respect to the level of alkylation. The level of alkylation of the TBP oligonucleotide varied significantly at 100 microM drug, with 80, 42 and 15% of HN2, sulphur mustard and CEES, respectively. However, this level of alkylation inhibited formation of the TBP-DNA complex by 70, 70 and 45%, respectively. This differential sensitivity of transcription factors to mustard-induced DNA damage therefore appears to reside dominantly in the stereochemical differences between the specific mustard lesions.
Collapse
Affiliation(s)
- X M Chen
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| | | | | | | |
Collapse
|
25
|
Frit P, Bergmann E, Egly JM. Transcription factor IIH: a key player in the cellular response to DNA damage. Biochimie 1999; 81:27-38. [PMID: 10214907 DOI: 10.1016/s0300-9084(99)80035-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
TFIIH (transcription factor IIH) is a multiprotein complex consisting of nine subunits initially characterized as a basal transcription factor required for initiation of protein-coding RNA synthesis. TFIIH was the first transcription factor shown to harbor several enzymatic activities, likely indicative of functional complexity. This intricacy was further emphasized with the cloning of the genes encoding the different subunits which disclosed direct connections between transcription, DNA repair and cell cycle regulation. In this review, we emphasize those functions of TFIIH involved in DNA repair, as well as their relationship to TFIIH's roles in transcription, cell cycle control and apoptosis. These connections may prove to be essential for the cellular response to DNA damage.
Collapse
Affiliation(s)
- P Frit
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université Louis-Pasteur, Strasbourg, Illkirch, France
| | | | | |
Collapse
|
26
|
Rodriguez K, Talamantez J, Huang W, Reed SH, Wang Z, Chen L, Feaver WJ, Friedberg EC, Tomkinson AE. Affinity purification and partial characterization of a yeast multiprotein complex for nucleotide excision repair using histidine-tagged Rad14 protein. J Biol Chem 1998; 273:34180-9. [PMID: 9852079 DOI: 10.1074/jbc.273.51.34180] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleotide excision repair (NER) pathway of eukaryotes involves approximately 30 polypeptides. Reconstitution of this pathway with purified components is consistent with the sequential assembly of NER proteins at the DNA lesion. However, recent studies have suggested that NER proteins may be pre-assembled in a high molecular weight complex in the absence of DNA damage. To examine this model further, we have constructed a histidine-tagged version of the yeast DNA damage recognition protein Rad14. Affinity purification of this protein from yeast nuclear extracts resulted in the co-purification of Rad1, Rad7, Rad10, Rad16, Rad23, RPA, RPB1, and TFIIH proteins, whereas none of these proteins bound to the affinity resin in the absence of recombinant Rad14. Furthermore, many of the co-purifying proteins were present in approximately equimolar amounts. Co-elution of these proteins was also observed when the nuclear extract was fractionated by gel filtration, indicating that the NER proteins were associated in a complex with a molecular mass of >1000 kDa prior to affinity chromatography. The affinity purified NER complex catalyzed the incision of UV-irradiated DNA in an ATP-dependent reaction. We conclude that active high molecular weight complexes of NER proteins exist in undamaged yeast cells.
Collapse
Affiliation(s)
- K Rodriguez
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center, San Antonio, Texas 78245, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- L H Mullenders
- Department of Radiation Genetics and Chemical Mutagenesis-MGC, Leiden University Medical Center, Netherlands.
| |
Collapse
|
28
|
Reed SH, You Z, Friedberg EC. The yeast RAD7 and RAD16 genes are required for postincision events during nucleotide excision repair. In vitro and in vivo studies with rad7 and rad16 mutants and purification of a Rad7/Rad16-containing protein complex. J Biol Chem 1998; 273:29481-8. [PMID: 9792654 DOI: 10.1074/jbc.273.45.29481] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, nucleotide excision repair (NER) is a complex reaction requiring multiple proteins. In the yeast Saccharomyces cerevisiae, two of these proteins, Rad7 and Rad16, are specifically involved in the removal of lesions from transcriptionally silent regions of the genome in vivo. Extracts prepared from rad7 or rad16 mutant cells are deficient, but not totally defective, in both oligonucleotide excision and repair synthesis of damaged plasmid DNA. We show that these extracts are, however, fully proficient in the incision step of the NER reaction in vitro. Furthermore, using a cdc9 mutant to trap incision intermediates, we demonstrate that rad7 and rad16 mutants are proficient in NER-dependent DNA incision in vivo. A purified protein complex containing both Rad7 and Rad16 proteins complements the oligonucleotide excision and repair synthesis defects in rad7 and rad16 mutant extracts. We conclude that the products of the RAD7 and RAD16 genes are involved in a postincision event(s) during NER in yeast.
Collapse
Affiliation(s)
- S H Reed
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9072, USA
| | | | | |
Collapse
|
29
|
Tantin D. RNA polymerase II elongation complexes containing the Cockayne syndrome group B protein interact with a molecular complex containing the transcription factor IIH components xeroderma pigmentosum B and p62. J Biol Chem 1998; 273:27794-9. [PMID: 9774388 DOI: 10.1074/jbc.273.43.27794] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor IIH (TFIIH) is involved both in transcription initiation by RNA polymerase II and in nucleotide excision-repair. Nucleotide excision-repair occurs at higher rates in transcriptionally active regions of the genome. Genetic studies indicate that this transcription-coupled repair is dependent on the Cockayne syndrome group A and B proteins, as well as TFIIH subunits. Previous work indicated that Cockayne syndrome group B interacts with RNA polymerase II molecules engaged in ternary complexes containing DNA and RNA. Evidence presented here indicates that this complex can interact with a factor containing the TFIIH core subunits p62 and xeroderma pigmentosum subunit B/excision repair cross-complementing 3. The targeting of TFIIH or a TFIIH-like repair factor to transcriptionally active DNA indicates a potential mechanism for transcription-coupled repair in human cells.
Collapse
Affiliation(s)
- D Tantin
- UCLA Molecular Biology Institute, Los Angeles, California 90095-1570, USA.
| |
Collapse
|