1
|
Lacroix E, Audas TE. Keeping up with the condensates: The retention, gain, and loss of nuclear membrane-less organelles. Front Mol Biosci 2022; 9:998363. [PMID: 36203874 PMCID: PMC9530788 DOI: 10.3389/fmolb.2022.998363] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
In recent decades, a growing number of biomolecular condensates have been identified in eukaryotic cells. These structures form through phase separation and have been linked to a diverse array of cellular processes. While a checklist of established membrane-bound organelles is present across the eukaryotic domain, less is known about the conservation of membrane-less subcellular structures. Many of these structures can be seen throughout eukaryotes, while others are only thought to be present in metazoans or a limited subset of species. In particular, the nucleus is a hub of biomolecular condensates. Some of these subnuclear domains have been found in a broad range of organisms, which is a characteristic often attributed to essential functionality. However, this does not always appear to be the case. For example, the nucleolus is critical for ribosomal biogenesis and is present throughout the eukaryotic domain, while the Cajal bodies are believed to be similarly conserved, yet these structures are dispensable for organismal survival. Likewise, depletion of the Drosophila melanogaster omega speckles reduces viability, despite the apparent absence of this domain in higher eukaryotes. By reviewing primary research that has analyzed the presence of specific condensates (nucleoli, Cajal bodies, amyloid bodies, nucleolar aggresomes, nuclear speckles, nuclear paraspeckles, nuclear stress bodies, PML bodies, omega speckles, NUN bodies, mei2 dots) in a cross-section of organisms (e.g., human, mouse, D. melanogaster, Caenorhabditis elegans, yeast), we adopt a human-centric view to explore the emergence, retention, and absence of a subset of nuclear biomolecular condensates. This overview is particularly important as numerous biomolecular condensates have been linked to human disease, and their presence in additional species could unlock new and well characterized model systems for health research.
Collapse
Affiliation(s)
- Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy E. Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Timothy E. Audas,
| |
Collapse
|
2
|
Javaid N, Choi S. CRISPR/Cas System and Factors Affecting Its Precision and Efficiency. Front Cell Dev Biol 2021; 9:761709. [PMID: 34901007 PMCID: PMC8652214 DOI: 10.3389/fcell.2021.761709] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
The diverse applications of genetically modified cells and organisms require more precise and efficient genome-editing tool such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas). The CRISPR/Cas system was originally discovered in bacteria as a part of adaptive-immune system with multiple types. Its engineered versions involve multiple host DNA-repair pathways in order to perform genome editing in host cells. However, it is still challenging to get maximum genome-editing efficiency with fewer or no off-targets. Here, we focused on factors affecting the genome-editing efficiency and precision of CRISPR/Cas system along with its defense-mechanism, orthologues, and applications.
Collapse
Affiliation(s)
- Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University Campus Plaza, Suwon, South Korea
| |
Collapse
|
3
|
Abstract
The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
| | - Marie La Russa
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
- Biomedical Sciences Graduate Program, University of California, San Francisco, California 94158
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305
- Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305
| |
Collapse
|
4
|
Johnson KE, Bottero V, Flaherty S, Dutta S, Singh VV, Chandran B. IFI16 restricts HSV-1 replication by accumulating on the hsv-1 genome, repressing HSV-1 gene expression, and directly or indirectly modulating histone modifications. PLoS Pathog 2014; 10:e1004503. [PMID: 25375629 PMCID: PMC4223080 DOI: 10.1371/journal.ppat.1004503] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/03/2014] [Indexed: 12/21/2022] Open
Abstract
Interferon-γ inducible factor 16 (IFI16) is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β), and activation of the inflammasome response. It interacts with the sugar-phosphate backbone of dsDNA and modulates viral and cellular transcription through largely undetermined mechanisms. IFI16 is a restriction factor for human cytomegalovirus (HCMV) and herpes simplex virus (HSV-1), though the mechanisms of HSV-1 restriction are not yet understood. Here, we show that IFI16 has a profound effect on HSV-1 replication in human foreskin fibroblasts, osteosarcoma cells, and breast epithelial cancer cells. IFI16 knockdown increased HSV-1 yield 6-fold and IFI16 overexpression reduced viral yield by over 5-fold. Importantly, HSV-1 gene expression, including the immediate early proteins, ICP0 and ICP4, the early proteins, ICP8 and TK, and the late proteins gB and Us11, was reduced in the presence of IFI16. Depletion of the inflammasome adaptor protein, ASC, or the IFN-inducing transcription factor, IRF-3, did not affect viral yield. ChIP studies demonstrated the presence of IFI16 bound to HSV-1 promoters in osteosarcoma (U2OS) cells and fibroblasts. Using CRISPR gene editing technology, we generated U2OS cells with permanent deletion of IFI16 protein expression. ChIP analysis of these cells and wild-type (wt) U2OS demonstrated increased association of RNA polymerase II, TATA binding protein (TBP) and Oct1 transcription factors with viral promoters in the absence of IFI16 at different times post infection. Although IFI16 did not alter the total histone occupancy at viral or cellular promoters, its absence promoted markers of active chromatin and decreased those of repressive chromatin with viral and cellular gene promoters. Collectively, these studies for the first time demonstrate that IFI16 prevents association of important transcriptional activators with wt HSV-1 promoters and suggest potential mechanisms of IFI16 restriction of wt HSV-1 replication and a direct or indirect role for IFI16 in histone modification.
Collapse
Affiliation(s)
- Karen E. Johnson
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Virginie Bottero
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Stephanie Flaherty
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Sujoy Dutta
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Vivek Vikram Singh
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Bala Chandran
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
5
|
Valin A, Gill G. Enforcing the pause: transcription factor Sp3 limits productive elongation by RNA polymerase II. Cell Cycle 2013; 12:1828-34. [PMID: 23676218 DOI: 10.4161/cc.24992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transition of paused RNA polymerase II into productive elongation is a highly dynamic process that serves to fine-tune gene expression in response to changing cellular environments. We have recently reported that the transcription factor Sp3 inhibits the transition of paused RNA Pol II to productive elongation at the promoter of the cyclin-dependent kinase inhibitor p21(CIP1) and other Sp3-repressed genes. Our studies support the view that Sp3 has three modes of action: activation, SUMO-Sp3-mediated heterochromatin silencing and SUMO-independent inhibition of elongation. At the p21(CIP1) promoter, binding of the positive elongation factor P-TEFb kinase was not affected by Sp3. In contrast, Sp3 promoted binding of the protein phosphatase PP1 to the p21(CIP1) promoter, suggesting that Sp3-dependent regulation of the local balance between kinase and phosphatase activities may contribute to gene expression. Our findings show that the transition of paused RNA Pol II to productive elongation is an important step regulated by both promoter-specific activators and repressors to finely modulate mRNA expression levels.
Collapse
Affiliation(s)
- Alvaro Valin
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
6
|
Loewenstein PM, Wu SY, Chiang CM, Green M. The adenovirus E1A N-terminal repression domain represses transcription from a chromatin template in vitro. Virology 2012; 428:70-5. [PMID: 22521914 DOI: 10.1016/j.virol.2012.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/03/2012] [Accepted: 03/30/2012] [Indexed: 11/17/2022]
Abstract
The adenovirus repression domain of E1A 243R at the E1A N-terminus (E1A 1-80) transcriptionally represses genes involved in differentiation and cell cycle progression. E1A 1-80 represses transcription in vitro from naked DNA templates through its interaction with p300 and TFIID. E1A 1-80 can also interact with several chromatin remodeling factors and associates with chromatin in vivo. We show here that E1A 243R and E1A 1-80 can repress transcription from a reconstituted chromatin template in vitro. Temporal analysis reveals strong repression by E1A 1-80 when added at pre-activation, activation and early transcription stages. Interestingly, E1A 1-80 can greatly enhance transcription from chromatin templates, but not from naked DNA, when added at pre-initiation complex (PIC) formation and transcription-initiation stages. These data reveal a new dimension for E1A 1-80's interface with chromatin and may reflect its interaction with key players in PIC formation, p300 and TFIID, and/or possibly a role in chromatin remodeling.
Collapse
Affiliation(s)
- Paul M Loewenstein
- St. Louis University School of Medicine, Institute for Molecular Virology, 1100 S. Grand Ave., Saint Louis, MO 63104, USA
| | | | | | | |
Collapse
|
7
|
Wierstra I. Sp1: emerging roles--beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 2008; 372:1-13. [PMID: 18364237 DOI: 10.1016/j.bbrc.2008.03.074] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 01/21/2023]
|
8
|
Felinski EA, Quinn PG. The coactivator dTAF(II)110/hTAF(II)135 is sufficient to recruit a polymerase complex and activate basal transcription mediated by CREB. Proc Natl Acad Sci U S A 2001; 98:13078-83. [PMID: 11687654 PMCID: PMC60827 DOI: 10.1073/pnas.241337698] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A specific TATA binding protein-associated factor (TAF), dTAF(II)110/hTAF(II)135, interacts with cAMP response element binding protein (CREB) through its constitutive activation domain (CAD), which recruits a polymerase complex and activates transcription. The simplest explanation is that the TAF is a coactivator, but several studies have questioned this role of TAFs. Using a reverse two-hybrid analysis in yeast, we previously mapped the interaction between dTAF(II)110 (amino acid 1-308) and CREB to conserved hydrophobic amino acid residues in the CAD. That mapping was possible only because CREB fails to activate transcription in yeast, where all TAFs are conserved, except for the TAF recognizing CREB. To test whether CREB fails to activate transcription in yeast because it lacks a coactivator, we fused dTAF(II)110 (amino acid 1-308) to the TATA binding protein domain of the yeast scaffolding TAF, yTAF(II)130. Transformation of yeast with this hybrid TAF conferred activation by the CAD, indicating that interaction with yTFIID is sufficient to recruit a polymerase complex and activate transcription. The hybrid TAF did not mediate activation by VP16 or vitamin D receptor, each of which interacts with TFIIB, but not with dTAF(II)110 (amino acid 1-308). Enhancement of transcription activation by dTAF(II)110 in mammalian cells required interaction with both the CAD and TFIID and was inhibited by mutation of core hydrophobic residues in the CAD. These data demonstrate that dTAF(II)110/hTAF(II)135 acts as a coactivator to recruit TFIID and polymerase and that this mechanism of activation is conserved in eukaryotes.
Collapse
Affiliation(s)
- E A Felinski
- Department of Cellular and Molecular Physiology and Program in Cellular and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
9
|
Licciardo P, Ruggiero L, Lania L, Majello B. Transcription activation by targeted recruitment of the RNA polymerase II CTD phosphatase FCP1. Nucleic Acids Res 2001; 29:3539-45. [PMID: 11522823 PMCID: PMC55871 DOI: 10.1093/nar/29.17.3539] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human FCP1 in association with RNAP II reconstitutes a highly specific CTD phosphatase activity and is required for recycling RNA polymerase II (RNAP II) in vitro. Here we demonstrate that targeted recruitment of FCP1 to promoter templates, through fusion to a DNA-binding domain, stimulates transcription. We demonstrate that a short region at the C-terminus of the FCP1 protein is required and sufficient for activation, indicating that neither the N-terminal phosphatase domain nor the BRCT domains are required for transcription activity of DNA-bound FCP1. In addition, we demonstrate that the C-terminus region of FCP1 suffices for efficient binding in vivo to the RAP74 subunit of TFIIF and is also required for the exclusive nuclear localization of the protein. These findings suggest a role for FCP1 as a positive regulator of RNAP II transcription.
Collapse
Affiliation(s)
- P Licciardo
- Department of Genetics, General and Molecular Biology, University of Naples 'Federico II' and IIGB, CNR, Naples, Italy
| | | | | | | |
Collapse
|
10
|
Stockinger EJ, Mao Y, Regier MK, Triezenberg SJ, Thomashow MF. Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res 2001; 29:1524-33. [PMID: 11266554 PMCID: PMC31267 DOI: 10.1093/nar/29.7.1524] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ARABIDOPSIS CBF transcriptional activators bind to the CRT/DRE regulatory element present in the promoters of many cold-regulated genes and stimulate their transcription. Expression of the CBF1 proteins in yeast activates reporter genes carrying a minimal promoter with the CRT/DRE as an upstream regulatory element. Here we report that this ability of CBF1 is dependent upon the activities of three key components of the yeast Ada and SAGA complexes, namely the histone acetyltransferase (HAT) Gcn5 and the transcriptional adaptor proteins Ada2 and Ada3. This result suggested that CBF1 might function through the action of similar complexes in ARABIDOPSIS In support of this hypothesis we found that ARABIDOPSIS has a homolog of the GCN5 gene and two homologs of ADA2, the first report of multiple ADA2 genes in an organism. The ARABIDOPSIS GCN5 protein has intrinsic HAT activity and can physically interact in vitro with both the ARABIDOPSIS ADA2a and ADA2b proteins. In addition, the CBF1 transcriptional activator can interact with the ARABIDOPSIS GCN5 and ADA2 proteins. We conclude that ARABIDOPSIS encodes HAT-containing adaptor complexes that are related to the Ada and SAGA complexes of yeast and propose that the CBF1 transcriptional activator functions through the action of one or more of these complexes.
Collapse
MESH Headings
- Acetyltransferases/genetics
- Acetyltransferases/metabolism
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis Proteins
- Cold Temperature
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Histone Acetyltransferases
- Histones/metabolism
- Molecular Sequence Data
- Protein Binding
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- E J Stockinger
- Department of Crop and Soil Sciences and Department of Biochemistry, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
11
|
Dorris DR, Struhl K. Artificial recruitment of TFIID, but not RNA polymerase II holoenzyme, activates transcription in mammalian cells. Mol Cell Biol 2000; 20:4350-8. [PMID: 10825198 PMCID: PMC85802 DOI: 10.1128/mcb.20.12.4350-4358.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In yeast cells, transcriptional activation occurs when the RNA polymerase II (Pol II) machinery is artificially recruited to a promoter by fusing individual components of this machinery to a DNA-binding domain. Here, we show that artificial recruitment of components of the TFIID complex can activate transcription in mammalian cells. Surprisingly, artificial recruitment of TATA-binding protein (TBP) activates transiently transfected and chromosomally integrated promoters with equal efficiency, whereas artificial recruitment of TBP-associated factors activates only chromosomal reporters. In contrast, artificial recruitment of various components of the mammalian Pol II holoenzyme does not confer transcriptional activation, nor does it result in synergistic activation in combination with natural activation domains. In the one case examined in more detail, the Srb7 fusion failed to activate despite being associated with the Pol II holoenzyme and being directly recruited to the promoter. Interestingly, some acidic activation domains are less effective when the promoter is chromosomally integrated rather than transiently transfected, whereas the Sp1 glutamine-rich activation domain is more effective on integrated reporters. Thus, yeast and mammalian cells differ with respect to transcriptional activation by artificial recruitment of the Pol II holoenzyme.
Collapse
Affiliation(s)
- D R Dorris
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
12
|
Bhavsar PK, Dellow KA, Yacoub MH, Brand NJ, Barton PJ. Identification of cis-acting DNA elements required for expression of the human cardiac troponin I gene promoter. J Mol Cell Cardiol 2000; 32:95-108. [PMID: 10652194 DOI: 10.1006/jmcc.1999.1058] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human cardiac troponin I (TnIc) gene exhibits both cardiac-specific and developmentally regulated expression. The structure and expression of this gene as well as the identification of putative regulatory elements have been described previously. This study shows that a minimal promoter containing 98 bp of sequence is sufficient to drive transcription in neonatal rat cardiac myocytes. This region contains several putative cis -regulatory elements including an Initiator element surrounding the start site of transcription, an A/T-rich (TATA/MEF-2) element, two GATA elements and a cytosine-rich region containing overlapping CACC box and Sp1 elements. Using electrophoretic mobility shift assays (EMSAs) this study demonstrates the binding of MEF-2, Oct-1, and recombinant TBP to the A/T-rich element and of GATA-4 to both GATA elements. The CACC/Sp element binds the zinc finger transcription factors Sp1 and Sp3 in addition to an unidentified complex present in neonatal rat cardiac myocytes. Mutation of each of these sites has a deleterious effect on promoter activity as assayed by transient transfection into cardiac myocytes. The data suggest that transcriptional activity of the human TnIc gene can be driven by a compact promoter region and that within this region GATA, MEF-2 Sp1 and CACC box-binding factors are required for optimal activity. Furthermore, a comparison with data obtained for identical elements in the promoters of rodent TnIc genes identifies differences between species which may be of consequence for species-specific promoter function.
Collapse
Affiliation(s)
- P K Bhavsar
- National Heart and Lung Institute, Imperial College School of Medicine, Dovehouse Street, London, SW3 6LY, UK
| | | | | | | | | |
Collapse
|
13
|
Bertolotti A, Bell B, Tora L. The N-terminal domain of human TAFII68 displays transactivation and oncogenic properties. Oncogene 1999; 18:8000-10. [PMID: 10637511 DOI: 10.1038/sj.onc.1203207] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Ewing tumor, the (11;22) chromosomal translocation produces a chimeric molecule composed of the amino-terminal domain of EWS fused to the carboxyl-terminal DNA-binding domain of FLI-1. Previously, we have identified a novel protein TAFII68, which is highly similar to EWS and another closely related protein TLS (also called FUS). We demonstrate that the N-terminus of TAFII68 efficiently stimulates transcription when fused to two different DNA binding domains and that overexpression of TAFII68-FLI-1 chimeras in NIH3T3 cells leads to oncogenic transformation. We have also investigated the molecular mechanisms which could account for the transcriptional activation and the oncogenic transformation potential of the N-termini of TAFII68 and EWS. Thus, we have tested whether the artificial recruitment of components of the preinitiation complex (PIC) or a histone acetyltransferase (HAT) could bypass the requirement for the activation domains of either EWS or TAFII68. Recruitment of individual components of the transcription machinery or the GCN5 HAT is not sufficient to promote activation from FLI-1 responsive genes either in transfection experiments or in oncogenic transformation assays. These results suggest that the TAFII68 or EWS activation domains enhance a step after PIC formation in the transcriptional activation process.
Collapse
Affiliation(s)
- A Bertolotti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163 - 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | |
Collapse
|
14
|
Majello B, Napolitano G, Giordano A, Lania L. Transcriptional regulation by targeted recruitment of cyclin-dependent CDK9 kinase in vivo. Oncogene 1999; 18:4598-605. [PMID: 10467404 DOI: 10.1038/sj.onc.1202822] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The CDK9 kinase in association with Cyclin T is a component of the transcription positive-acting complex pTEFb which facilitates the transition from abortive to productive transcription elongation by phosphorylating the carboxyl-terminal domain of RNA polymerase II. The Cyclin T1/CDK9 complex is implicated in Tat transactivation, and it has been suggested that Tat functions by recruiting this complex to RNAPII through cooperative binding to RNA. Here, we demonstrate that targeted recruitment of Cyclin T1/CDK9 kinase complex to specific promoters, through fusion to a DNA-binding domain of either Cyclin T1 or CDK9 kinase, stimulates transcription in vivo. Transcriptional enhancement was dependent on active CDK9, as a catalytically inactive form had no transcriptional effect. We determined that, unlike conventional activators, DNA-bound CDK9 does not activate enhancerless TATA-promoters unless TBP is overexpressed, suggesting that CDK9 acts in vivo at a step subsequent to TFIID recruitment DNA-bound. Finally, we determined that CDK9-mediated transcriptional activation is mediated by preferentially stimulating productive transcription elongation.
Collapse
Affiliation(s)
- B Majello
- Department of Genetics, Molecular and General Biology, University of Naples 'Federico II' and International Institute of Genetics and Biophysics, CNR, Naples, Italy
| | | | | | | |
Collapse
|
15
|
Nevado J, Gaudreau L, Adam M, Ptashne M. Transcriptional activation by artificial recruitment in mammalian cells. Proc Natl Acad Sci U S A 1999; 96:2674-7. [PMID: 10077569 PMCID: PMC15827 DOI: 10.1073/pnas.96.6.2674] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We show that the typical "nonclassical" activator, which comprises a fusion protein bearing a component of the transcriptional machinery fused to a DNA-binding domain, activates transcription in mammalian cells only weakly when tested with an array of promoters. However, as found in analogous "artificial recruitment" experiments performed in yeast, these activators work synergistically with "classical" activators. The effect of the classical activator in such experiments requires that it be tethered to DNA, a requirement that cannot be overcome by expression of that classical activator at high levels. The effect of the one nonclassical activator that does elicit significant levels of transcription when working alone (i.e., that bearing TATA box-binding protein) is strongly influenced by promoter architecture. The results, consistent with those of analogous experiments in yeast [see the accompanying paper: Gaudreau, L., Keaveney, M., Nevado, J., Zaman, Z., Bryant, G. O., Struhl, K. & Ptashne, M. (1999) Proc. Natl. Acad. Sci. USA 96, 2668-2673], suggest that classical activators, presumably by virtue of their abilities to interact with multiple targets, have a functional flexibility that nonclassical activators lack.
Collapse
Affiliation(s)
- J Nevado
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|