1
|
Bazin-Gélis M, Eleftheriou E, Zangarelli C, Lelandais G, Sperling L, Arnaiz O, Bétermier M. Inter-generational nuclear crosstalk links the control of gene expression to programmed genome rearrangement during the Paramecium sexual cycle. Nucleic Acids Res 2023; 51:12337-12351. [PMID: 37953377 PMCID: PMC10711438 DOI: 10.1093/nar/gkad1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Multinucleate cells are found in many eukaryotes, but how multiple nuclei coordinate their functions is still poorly understood. In the cytoplasm of the ciliate Paramecium tetraurelia, two micronuclei (MIC) serving sexual reproduction coexist with a somatic macronucleus (MAC) dedicated to gene expression. During sexual processes, the MAC is progressively destroyed while still ensuring transcription, and new MACs develop from copies of the zygotic MIC. Several gene clusters are successively induced and switched off before vegetative growth resumes. Concomitantly, programmed genome rearrangement (PGR) removes transposons and their relics from the new MACs. Development of the new MACs is controlled by the old MAC, since the latter expresses genes involved in PGR, including the PGM gene encoding the essential PiggyMac endonuclease that cleaves the ends of eliminated sequences. Using RNA deep sequencing and transcriptome analysis, we show that impairing PGR upregulates key known PGR genes, together with ∼600 other genes possibly also involved in PGR. Among these genes, 42% are no longer induced when no new MACs are formed, including 180 genes that are co-expressed with PGM under all tested conditions. We propose that bi-directional crosstalk between the two coexisting generations of MACs links gene expression to the progression of MAC development.
Collapse
Affiliation(s)
- Mélanie Bazin-Gélis
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Evangelia Eleftheriou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Institut Pasteur, Université Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Coralie Zangarelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Gaëlle Lelandais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Linda Sperling
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Drews F, Boenigk J, Simon M. Paramecium epigenetics in development and proliferation. J Eukaryot Microbiol 2022; 69:e12914. [PMID: 35363910 DOI: 10.1111/jeu.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The term epigenetics is used for any layer of genetic information aside from the DNA base-sequence information. Mammalian epigenetic research increased our understanding of chromatin dynamics in terms of cytosine methylation and histone modification during differentiation, aging, and disease. Instead, ciliate epigenetics focused more on small RNA-mediated effects. On the one hand, these do concern the transport of RNA from parental to daughter nuclei, representing a regulated transfer of epigenetic information across generations. On the other hand, studies of Paramecium, Tetrahymena, Oxytricha, and Stylonychia revealed an almost unique function of transgenerational RNA. Rather than solely controlling chromatin dynamics, they control sexual progeny's DNA content quantitatively and qualitatively. Thus epigenetics seems to control genetics, at least genetics of the vegetative macronucleus. This combination offers ciliates, in particular, an epigenetically controlled genetic variability. This review summarizes the epigenetic mechanisms that contribute to macronuclear heterogeneity and relates these to nuclear dimorphism. This system's adaptive and evolutionary possibilities raise the critical question of whether such a system is limited to unicellular organisms or binuclear cells. We discuss here the relevance of ciliate genetics and epigenetics to multicellular organisms.
Collapse
Affiliation(s)
- Franziska Drews
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| | | | - Martin Simon
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| |
Collapse
|
3
|
Zangarelli C, Arnaiz O, Bourge M, Gorrichon K, Jaszczyszyn Y, Mathy N, Escoriza L, Bétermier M, Régnier V. Developmental timing of programmed DNA elimination in Paramecium tetraurelia recapitulates germline transposon evolutionary dynamics. Genome Res 2022; 32:2028-2042. [PMID: 36418061 PMCID: PMC9808624 DOI: 10.1101/gr.277027.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
With its nuclear dualism, the ciliate Paramecium constitutes a unique model to study how host genomes cope with transposable elements (TEs). P. tetraurelia harbors two germline micronuclei (MICs) and a polyploid somatic macronucleus (MAC) that develops from one MIC at each sexual cycle. Throughout evolution, the MIC genome has been continuously colonized by TEs and related sequences that are removed from the somatic genome during MAC development. Whereas TE elimination is generally imprecise, excision of approximately 45,000 TE-derived internal eliminated sequences (IESs) is precise, allowing for functional gene assembly. Programmed DNA elimination is concomitant with genome amplification. It is guided by noncoding RNAs and repressive chromatin marks. A subset of IESs is excised independently of this epigenetic control, raising the question of how IESs are targeted for elimination. To gain insight into the determinants of IES excision, we established the developmental timing of DNA elimination genome-wide by combining fluorescence-assisted nuclear sorting with high-throughput sequencing. Essentially all IESs are excised within only one endoreplication round (32C to 64C), whereas TEs are eliminated at a later stage. We show that DNA elimination proceeds independently of replication. We defined four IES classes according to excision timing. The earliest excised IESs tend to be independent of epigenetic factors, display strong sequence signals at their ends, and originate from the most ancient integration events. We conclude that old IESs have been optimized during evolution for early and accurate excision by acquiring stronger sequence determinants and escaping epigenetic control.
Collapse
Affiliation(s)
- Coralie Zangarelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Mickaël Bourge
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Kevin Gorrichon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Nathalie Mathy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Loïc Escoriza
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Vinciane Régnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France;,Université Paris Cité, UFR Sciences du Vivant, 75205 Paris Cedex 13, France
| |
Collapse
|
4
|
Guérineau M, Bessa L, Moriau S, Lescop E, Bontems F, Mathy N, Guittet E, Bischerour J, Bétermier M, Morellet N. The unusual structure of the PiggyMac cysteine-rich domain reveals zinc finger diversity in PiggyBac-related transposases. Mob DNA 2021; 12:12. [PMID: 33926516 PMCID: PMC8086355 DOI: 10.1186/s13100-021-00240-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Transposons are mobile genetic elements that colonize genomes and drive their plasticity in all organisms. DNA transposon-encoded transposases bind to the ends of their cognate transposons and catalyze their movement. In some cases, exaptation of transposon genes has allowed novel cellular functions to emerge. The PiggyMac (Pgm) endonuclease of the ciliate Paramecium tetraurelia is a domesticated transposase from the PiggyBac family. It carries a core catalytic domain typical of PiggyBac-related transposases and a short cysteine-rich domain (CRD), flanked by N- and C-terminal extensions. During sexual processes Pgm catalyzes programmed genome rearrangements (PGR) that eliminate ~ 30% of germline DNA from the somatic genome at each generation. How Pgm recognizes its DNA cleavage sites in chromatin is unclear and the structure-function relationships of its different domains have remained elusive. RESULTS We provide insight into Pgm structure by determining the fold adopted by its CRD, an essential domain required for PGR. Using Nuclear Magnetic Resonance, we show that the Pgm CRD binds two Zn2+ ions and forms an unusual binuclear cross-brace zinc finger, with a circularly permutated treble-clef fold flanked by two flexible arms. The Pgm CRD structure clearly differs from that of several other PiggyBac-related transposases, among which is the well-studied PB transposase from Trichoplusia ni. Instead, the arrangement of cysteines and histidines in the primary sequence of the Pgm CRD resembles that of active transposases from piggyBac-like elements found in other species and of human PiggyBac-derived domesticated transposases. We show that, unlike the PB CRD, the Pgm CRD does not bind DNA. Instead, it interacts weakly with the N-terminus of histone H3, whatever its lysine methylation state. CONCLUSIONS The present study points to the structural diversity of the CRD among transposases from the PiggyBac family and their domesticated derivatives, and highlights the diverse interactions this domain may establish with chromatin, from sequence-specific DNA binding to contacts with histone tails. Our data suggest that the Pgm CRD fold, whose unusual arrangement of cysteines and histidines is found in all PiggyBac-related domesticated transposases from Paramecium and Tetrahymena, was already present in the ancestral active transposase that gave rise to ciliate domesticated proteins.
Collapse
Affiliation(s)
- Marc Guérineau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 1 Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
| | - Luiza Bessa
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1 Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
- Present addresses: Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Séverine Moriau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1 Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
| | - Ewen Lescop
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1 Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
| | - François Bontems
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1 Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
| | - Nathalie Mathy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 1 Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
- Reproduction et Développement des Plantes UMR 5667, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon Cedex 07, France
| | - Eric Guittet
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1 Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
| | - Julien Bischerour
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 1 Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 1 Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France.
| | - Nelly Morellet
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1 Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France.
| |
Collapse
|
5
|
The Paramecium histone chaperone Spt16-1 is required for Pgm endonuclease function in programmed genome rearrangements. PLoS Genet 2020; 16:e1008949. [PMID: 32702045 PMCID: PMC7402521 DOI: 10.1371/journal.pgen.1008949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/04/2020] [Accepted: 06/24/2020] [Indexed: 12/31/2022] Open
Abstract
In Paramecium tetraurelia, a large proportion of the germline genome is reproducibly removed from the somatic genome after sexual events via a process involving small (s)RNA-directed heterochromatin formation and DNA excision and repair. How germline limited DNA sequences are specifically recognized in the context of chromatin remains elusive. Here, we use a reverse genetics approach to identify factors involved in programmed genome rearrangements. We have identified a P. tetraurelia homolog of the highly conserved histone chaperone Spt16 subunit of the FACT complex, Spt16-1, and show its expression is developmentally regulated. A functional GFP-Spt16-1 fusion protein localized exclusively in the nuclei where genome rearrangements take place. Gene silencing of Spt16-1 showed it is required for the elimination of all germline-limited sequences, for the survival of sexual progeny, and for the accumulation of internal eliminated sequence (ies)RNAs, an sRNA population produced when elimination occurs. Normal accumulation of 25 nt scanRNAs and deposition of silent histone marks H3K9me3 and H3K27me3 indicated that Spt16-1 does not regulate the scanRNA-directed heterochromatin pathway involved in the early steps of DNA elimination. We further show that Spt16-1 is required for the correct nuclear localization of the PiggyMac (Pgm) endonuclease, which generates the DNA double-strand breaks required for DNA elimination. Thus, Spt16-1 is essential for Pgm function during programmed genome rearrangements. We propose a model in which Spt16-1 mediates interactions between the excision machinery and chromatin, facilitating endonuclease access to DNA cleavage sites during genome rearrangements. The genome is generally similar in all the cells of an organism. However, in the ciliate Paramecium tetraurelia, massive and reproducible programmed DNA elimination leads to a highly streamlined somatic genome. In eukaryotes, DNA is packaged into nucleosomes, which ensure genome integrity but act as a barrier to enzymes acting on DNA. How the endonuclease PiggyMac gains access to the genome to initiate DNA elimination remains elusive. Here, we identified four P. tetraurelia genes encoding homologs of the conserved histone chaperone Spt16, which can modulate access to DNA by promoting nucleosome assembly and disassembly. We demonstrated that the most divergent gene, SPT16-1, has a highly specialized expression pattern, similar to that of PiggyMac, and a specific role in programmed DNA elimination. We show that the Spt16-1 protein, like PiggyMac, is exclusively localized in the differentiating somatic nucleus, and is also required for the dramatic elimination of germline-limited sequences. We further show that Spt16-1 directs the correct nuclear localization of the PiggyMac endonuclease. Thus, Spt16-1 is essential for PiggyMac function during programmed DNA elimination. We propose that Spt16-1 mediates the interaction between PiggyMac and chromatin or DNA, facilitating endonuclease access to DNA cleavage sites.
Collapse
|
6
|
Functional diversification of Paramecium Ku80 paralogs safeguards genome integrity during precise programmed DNA elimination. PLoS Genet 2020; 16:e1008723. [PMID: 32298257 PMCID: PMC7161955 DOI: 10.1371/journal.pgen.1008723] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 11/19/2022] Open
Abstract
Gene duplication and diversification drive the emergence of novel functions during evolution. Because of whole genome duplications, ciliates from the Paramecium aurelia group constitute a remarkable system to study the evolutionary fate of duplicated genes. Paramecium species harbor two types of nuclei: a germline micronucleus (MIC) and a somatic macronucleus (MAC) that forms from the MIC at each sexual cycle. During MAC development, ~45,000 germline Internal Eliminated Sequences (IES) are excised precisely from the genome through a 'cut-and-close' mechanism. Here, we have studied the P. tetraurelia paralogs of KU80, which encode a key DNA double-strand break repair factor involved in non-homologous end joining. The three KU80 genes have different transcription patterns, KU80a and KU80b being constitutively expressed, while KU80c is specifically induced during MAC development. Immunofluorescence microscopy and high-throughput DNA sequencing revealed that Ku80c stably anchors the PiggyMac (Pgm) endonuclease in the developing MAC and is essential for IES excision genome-wide, providing a molecular explanation for the previously reported Ku-dependent licensing of DNA cleavage at IES ends. Expressing Ku80a under KU80c transcription signals failed to complement a depletion of endogenous Ku80c, indicating that the two paralogous proteins have distinct properties. Domain-swap experiments identified the α/β domain of Ku80c as the major determinant for its specialized function, while its C-terminal part is required for excision of only a small subset of IESs located in IES-dense regions. We conclude that Ku80c has acquired the ability to license Pgm-dependent DNA cleavage, securing precise DNA elimination during programmed rearrangements. The present study thus provides novel evidence for functional diversification of genes issued from a whole-genome duplication.
Collapse
|
7
|
Yerlici VT, Lu MW, Hoge CR, Miller RV, Neme R, Khurana JS, Bracht JR, Landweber LF. Programmed genome rearrangements in Oxytricha produce transcriptionally active extrachromosomal circular DNA. Nucleic Acids Res 2019; 47:9741-9760. [PMID: 31504770 PMCID: PMC6765146 DOI: 10.1093/nar/gkz725] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/02/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is both a driver of eukaryotic genome instability and a product of programmed genome rearrangements, but its extent had not been surveyed in Oxytricha, a ciliate with elaborate DNA elimination and translocation during development. Here, we captured rearrangement-specific circular DNA molecules across the genome to gain insight into its processes of programmed genome rearrangement. We recovered thousands of circularly excised Tc1/mariner-type transposable elements and high confidence non-repetitive germline-limited loci. We verified their bona fide circular topology using circular DNA deep-sequencing, 2D gel electrophoresis and inverse polymerase chain reaction. In contrast to the precise circular excision of transposable elements, we report widespread heterogeneity in the circular excision of non-repetitive germline-limited loci. We also demonstrate that circular DNAs are transcribed in Oxytricha, producing rearrangement-specific long non-coding RNAs. The programmed formation of thousands of eccDNA molecules makes Oxytricha a model system for studying nucleic acid topology. It also suggests involvement of eccDNA in programmed genome rearrangement.
Collapse
Affiliation(s)
- V Talya Yerlici
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael W Lu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Carla R Hoge
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Richard V Miller
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rafik Neme
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jaspreet S Khurana
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - John R Bracht
- Department of Biology, American University, Washington, DC 20016, USA
| | - Laura F Landweber
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
8
|
Godau J, Ferretti LP, Trenner A, Dubois E, von Aesch C, Marmignon A, Simon L, Kapusta A, Guérois R, Bétermier M, Sartori AA. Identification of a miniature Sae2/Ctp1/CtIP ortholog from Paramecium tetraurelia required for sexual reproduction and DNA double-strand break repair. DNA Repair (Amst) 2019; 77:96-108. [DOI: 10.1016/j.dnarep.2019.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/28/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
|
9
|
Michelini F, Jalihal AP, Francia S, Meers C, Neeb ZT, Rossiello F, Gioia U, Aguado J, Jones-Weinert C, Luke B, Biamonti G, Nowacki M, Storici F, Carninci P, Walter NG, d'Adda di Fagagna F. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chem Rev 2018; 118:4365-4403. [PMID: 29600857 DOI: 10.1021/acs.chemrev.7b00487] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Collapse
Affiliation(s)
- Flavia Michelini
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Ameya P Jalihal
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Sofia Francia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Chance Meers
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary T Neeb
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | | | - Ubaldo Gioia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Julio Aguado
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | | | - Brian Luke
- Institute of Developmental Biology and Neurobiology , Johannes Gutenberg University , 55099 Mainz , Germany.,Institute of Molecular Biology (IMB) , 55128 Mainz , Germany
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Mariusz Nowacki
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | - Francesca Storici
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Piero Carninci
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama City , Kanagawa 230-0045 , Japan
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| |
Collapse
|
10
|
Neeb ZT, Nowacki M. RNA-mediated transgenerational inheritance in ciliates and plants. Chromosoma 2018; 127:19-27. [PMID: 29230532 PMCID: PMC5818585 DOI: 10.1007/s00412-017-0655-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022]
Abstract
In the age of next-generation sequencing (NGS) and with the availability of whole sequenced genomes and epigenomes, some attention has shifted from purely sequence-based studies to those of heritable epigenetic modifications. Transgenerational inheritance can be defined as heritable changes to the state of DNA that may be passed on to subsequent generations without alterations to the underlying DNA sequence. Although this phenomenon has been extensively studied in many systems, studies of transgenerational inheritance in mammals and other higher-level eukaryotes may be complicated by the fact that many epigenetic marks are reprogrammed during sexual reproduction. This, by definition, may obscure our interpretation of what is in fact truly transgenerational. Therefore, in this mini review, we discuss what is currently known in the field about transgenerational epigenetic inheritance in ciliates and plants, with a particular emphasis on RNA-mediated processes and changes in chromatin states.
Collapse
Affiliation(s)
- Zachary T Neeb
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland.
| |
Collapse
|
11
|
Dubois E, Mathy N, Régnier V, Bischerour J, Baudry C, Trouslard R, Bétermier M. Multimerization properties of PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements. Nucleic Acids Res 2017; 45:3204-3216. [PMID: 28104713 PMCID: PMC5389696 DOI: 10.1093/nar/gkw1359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/28/2016] [Indexed: 02/05/2023] Open
Abstract
During sexual processes, the ciliate Paramecium eliminates 25–30% of germline DNA from its somatic genome. DNA elimination includes excision of ∼45 000 short, single-copy internal eliminated sequences (IESs) and depends upon PiggyMac (Pgm), a domesticated piggyBac transposase that is essential for DNA cleavage at IES ends. Pgm carries a core transposase region with a putative catalytic domain containing three conserved aspartic acids, and a downstream cysteine-rich (CR) domain. A C-terminal extension of unknown function is predicted to adopt a coiled-coil (CC) structure. To address the role of the three domains, we designed an in vivo complementation assay by expressing wild-type or mutant Pgm-GFP fusions in cells depleted for their endogenous Pgm. The DDD triad and the CR domain are essential for Pgm activity and mutations in either domain have a dominant-negative effect in wild-type cells. A mutant lacking the CC domain is partially active in the presence of limiting Pgm amounts, but inactive when Pgm is completely absent, suggesting that presence of the mutant protein increases the overall number of active complexes. We conclude that IES excision involves multiple Pgm subunits, of which at least a fraction must contain the CC domain.
Collapse
Affiliation(s)
- Emeline Dubois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Nathalie Mathy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Vinciane Régnier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Bischerour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Céline Baudry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Raphaëlle Trouslard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Mireille Bétermier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
12
|
Orias E, Singh DP, Meyer E. Genetics and Epigenetics of Mating Type Determination in Paramecium and Tetrahymena. Annu Rev Microbiol 2017; 71:133-156. [PMID: 28715961 DOI: 10.1146/annurev-micro-090816-093342] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While sex is an ancient and highly conserved eukaryotic invention, self-incompatibility systems such as mating types or sexes appear to be derived limitations that show considerable evolutionary plasticity. Within a single class of ciliates, Paramecium and Tetrahymena species have long been known to present a wide variety of mating type numbers and modes of inheritance, but only recently have the genes involved been identified. Although similar transmembrane proteins mediate self/nonself recognition in both ciliates, the mechanisms of mating type determination differ widely, ranging from Mendelian systems to developmental nuclear differentiation, either stochastic or maternally inherited. The non-Mendelian systems rely on programmed editing of the germline genome that occurs during differentiation of the somatic nucleus, and they have co-opted different DNA recombination mechanisms-some previously unknown. Here we review the recent molecular advances and some remaining unsolved questions and discuss the possible implications of these diverse mechanisms for inbreeding/outbreeding balance regulation.
Collapse
Affiliation(s)
- Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93105;
| | - Deepankar Pratap Singh
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, Inserm, PSL Research University, F-75005 Paris, France; .,Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland;
| | - Eric Meyer
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, Inserm, PSL Research University, F-75005 Paris, France;
| |
Collapse
|
13
|
Abstract
Programmed genome rearrangements in the ciliate Paramecium provide a nice illustration of the impact of transposons on genome evolution and plasticity. During the sexual cycle, development of the somatic macronucleus involves elimination of ∼30% of the germline genome, including repeated DNA (e.g., transposons) and ∼45,000 single-copy internal eliminated sequences (IES). IES excision is a precise cut-and-close process, in which double-stranded DNA cleavage at IES ends depends on PiggyMac, a domesticated piggyBac transposase. Genome-wide analysis has revealed that at least a fraction of IESs originate from Tc/mariner transposons unrelated to piggyBac. Moreover, genomic sequences with no transposon origin, such as gene promoters, can be excised reproducibly as IESs, indicating that genome rearrangements contribute to the control of gene expression. How the system has evolved to allow elimination of DNA sequences with no recognizable conserved motif has been the subject of extensive research during the past two decades. Increasing evidence has accumulated for the participation of noncoding RNAs in epigenetic control of elimination for a subset of IESs, and in trans-generational inheritance of alternative rearrangement patterns. This chapter summarizes our current knowledge of the structure of the germline and somatic genomes for the model species Paramecium tetraurelia, and describes the DNA cleavage and repair factors that constitute the IES excision machinery. We present an overview of the role of specialized RNA interference machineries and their associated noncoding RNAs in the control of DNA elimination. Finally, we discuss how RNA-dependent modification and/or remodeling of chromatin may guide PiggyMac to its cognate cleavage sites.
Collapse
|
14
|
Abstract
The ciliate Oxytricha is a microbial eukaryote with two genomes, one of which experiences extensive genome remodeling during development. Each round of conjugation initiates a cascade of events that construct a transcriptionally active somatic genome from a scrambled germline genome, with considerable help from both long and small noncoding RNAs. This process of genome remodeling entails massive DNA deletion and reshuffling of remaining DNA segments to form functional genes from their interrupted and scrambled germline precursors. The use of Oxytricha as a model system provides an opportunity to study an exaggerated form of programmed genome rearrangement. Furthermore, studying the mechanisms that maintain nuclear dimorphism and mediate genome rearrangement has demonstrated a surprising plasticity and diversity of noncoding RNA pathways, with new roles that go beyond conventional gene silencing. Another aspect of ciliate genetics is their unorthodox patterns of RNA-mediated, epigenetic inheritance that rival Mendelian inheritance. This review takes the reader through the key experiments in a model eukaryote that led to fundamental discoveries in RNA biology and pushes the biological limits of DNA processing.
Collapse
|
15
|
Lhuillier-Akakpo M, Guérin F, Frapporti A, Duharcourt S. DNA deletion as a mechanism for developmentally programmed centromere loss. Nucleic Acids Res 2015; 44:1553-65. [PMID: 26503246 PMCID: PMC4770206 DOI: 10.1093/nar/gkv1110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
A hallmark of active centromeres is the presence of the histone H3 variant CenH3 in the centromeric chromatin, which ensures faithful genome distribution at each cell division. A functional centromere can be inactivated, but the molecular mechanisms underlying the process of centromere inactivation remain largely unknown. Here, we describe the loss of CenH3 protein as part of a developmental program leading to the formation of the somatic nucleus in the eukaryote Paramecium. We identify two proteins whose depletion prevents developmental loss of CenH3: the domesticated transposase Pgm involved in the formation of DNA double strand cleavages and the Polycomb-like lysine methyltransferase Ezl1 necessary for trimethylation of histone H3 on lysine 9 and lysine 27. Taken together, our data support a model in which developmentally programmed centromere loss is caused by the elimination of DNA sequences associated with CenH3.
Collapse
Affiliation(s)
- Maoussi Lhuillier-Akakpo
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75205 France
| | - Frédéric Guérin
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75205 France
| | - Andrea Frapporti
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75205 France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75205 France
| |
Collapse
|
16
|
Ferro D, Lepennetier G, Catania F. Cis-acting signals modulate the efficiency of programmed DNA elimination in Paramecium tetraurelia. Nucleic Acids Res 2015; 43:8157-68. [PMID: 26304543 PMCID: PMC4787833 DOI: 10.1093/nar/gkv843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/01/2015] [Indexed: 12/12/2022] Open
Abstract
In Paramecium, the regeneration of a functional somatic genome at each sexual event relies on the elimination of thousands of germline DNA sequences, known as Internal Eliminated Sequences (IESs), from the zygotic nuclear DNA. Here, we provide evidence that IESs’ length and sub-terminal bases jointly modulate IES excision by affecting DNA conformation in P. tetraurelia. Our study reveals an excess of complementary base pairing between IESs’ sub-terminal and contiguous sites, suggesting that IESs may form DNA loops prior to cleavage. The degree of complementary base pairing between IESs’ sub-terminal sites (termed Cin-score) is positively associated with IES length and is shaped by natural selection. Moreover, it escalates abruptly when IES length exceeds 45 nucleotides (nt), indicating that only sufficiently large IESs may form loops. Finally, we find that IESs smaller than 46 nt are favored targets of the cellular surveillance systems, presumably because of their relatively inefficient excision. Our findings extend the repertoire of cis-acting determinants for IES recognition/excision and provide unprecedented insights into the distinct selective pressures that operate on IESs and somatic DNA regions. This information potentially moves current models of IES evolution and of mechanisms of IES recognition/excision forward.
Collapse
Affiliation(s)
- Diana Ferro
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Gildas Lepennetier
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| |
Collapse
|
17
|
Catania F, Schmitz J. On the path to genetic novelties: insights from programmed DNA elimination and RNA splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:547-61. [PMID: 26140477 DOI: 10.1002/wrna.1293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/29/2015] [Accepted: 06/06/2015] [Indexed: 12/17/2022]
Abstract
Understanding how genetic novelties arise is a central goal of evolutionary biology. To this end, programmed DNA elimination and RNA splicing deserve special consideration. While programmed DNA elimination reshapes genomes by eliminating chromatin during organismal development, RNA splicing rearranges genetic messages by removing intronic regions during transcription. Small RNAs help to mediate this class of sequence reorganization, which is not error-free. It is this imperfection that makes programmed DNA elimination and RNA splicing excellent candidates for generating evolutionary novelties. Leveraging a number of these two processes' mechanistic and evolutionary properties, which have been uncovered over the past years, we present recently proposed models and empirical evidence for how splicing can shape the structure of protein-coding genes in eukaryotes. We also chronicle a number of intriguing similarities between the processes of programmed DNA elimination and RNA splicing, and highlight the role that the variation in the population-genetic environment may play in shaping their target sequences.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| |
Collapse
|
18
|
Ignarski M, Singh A, Swart EC, Arambasic M, Sandoval PY, Nowacki M. Paramecium tetraurelia chromatin assembly factor-1-like protein PtCAF-1 is involved in RNA-mediated control of DNA elimination. Nucleic Acids Res 2014; 42:11952-64. [PMID: 25270876 PMCID: PMC4231744 DOI: 10.1093/nar/gku874] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism.
Collapse
Affiliation(s)
- Michael Ignarski
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Aditi Singh
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Estienne C Swart
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Miroslav Arambasic
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Pamela Y Sandoval
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| |
Collapse
|
19
|
Lhuillier-Akakpo M, Frapporti A, Denby Wilkes C, Matelot M, Vervoort M, Sperling L, Duharcourt S. Local effect of enhancer of zeste-like reveals cooperation of epigenetic and cis-acting determinants for zygotic genome rearrangements. PLoS Genet 2014; 10:e1004665. [PMID: 25254958 PMCID: PMC4177680 DOI: 10.1371/journal.pgen.1004665] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/12/2014] [Indexed: 11/22/2022] Open
Abstract
In the ciliate Paramecium tetraurelia, differentiation of the somatic nucleus from the zygotic nucleus is characterized by massive and reproducible deletion of transposable elements and of 45,000 short, dispersed, single-copy sequences. A specific class of small RNAs produced by the germline during meiosis, the scnRNAs, are involved in the epigenetic regulation of DNA deletion but the underlying mechanisms are poorly understood. Here, we show that trimethylation of histone H3 (H3K27me3 and H3K9me3) displays a dynamic nuclear localization that is altered when the endonuclease required for DNA elimination is depleted. We identified the putative histone methyltransferase Ezl1 necessary for H3K27me3 and H3K9me3 establishment and show that it is required for correct genome rearrangements. Genome-wide analyses show that scnRNA-mediated H3 trimethylation is necessary for the elimination of long, repeated germline DNA, while single copy sequences display differential sensitivity to depletion of proteins involved in the scnRNA pathway, Ezl1- a putative histone methyltransferase and Dcl5- a protein required for iesRNA biogenesis. Our study reveals cis-acting determinants, such as DNA length, also contribute to the definition of germline sequences to delete. We further show that precise excision of single copy DNA elements, as short as 26 bp, requires Ezl1, suggesting that development specific H3K27me3 and H3K9me3 ensure specific demarcation of very short germline sequences from the adjacent somatic sequences. The unicellular eukaryote Paramecium tetraurelia provides an extraordinary model for studying the mechanisms involved in zygotic genome rearrangements. At each sexual cycle, differentiation of the somatic nucleus from the zygotic nucleus is characterized by extensive remodeling of the entire somatic genome, which includes the precise excision of 45,000 short noncoding germline DNA segments to reconstitute functional open reading frames. Exploiting the unique properties of the Paramecium genome, we show that the enhancer of zeste like protein Ezl1 is necessary for histone H3 trimethylation on lysines 27 and 9 and is required for the precise excision of 31,000 of these single copy, dispersed germline DNA segments that can be as short as 26 bp in length. This implies that histone marks usually associated with heterochromatin may contribute to the precise demarcation of segments that are even shorter than the length of DNA wrapped around a single nucleosome. A quantitative analysis of high throughput sequencing datasets further shows that the underlying genetic properties of the germline DNA segments might act in concert with epigenetic signals to define germline specific sequences.
Collapse
Affiliation(s)
- Maoussi Lhuillier-Akakpo
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Sorbonne Universités, UPMC Univ., IFD, Paris, France
| | - Andrea Frapporti
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Denby Wilkes
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Département de Biologie, Université Paris-Sud, Orsay, France
| | - Mélody Matelot
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Institut Universitaire de France, Paris, France
| | - Linda Sperling
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Département de Biologie, Université Paris-Sud, Orsay, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Marmignon A, Bischerour J, Silve A, Fojcik C, Dubois E, Arnaiz O, Kapusta A, Malinsky S, Bétermier M. Ku-mediated coupling of DNA cleavage and repair during programmed genome rearrangements in the ciliate Paramecium tetraurelia. PLoS Genet 2014; 10:e1004552. [PMID: 25166013 PMCID: PMC4148214 DOI: 10.1371/journal.pgen.1004552] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022] Open
Abstract
During somatic differentiation, physiological DNA double-strand breaks (DSB) can drive programmed genome rearrangements (PGR), during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitted to the progeny, but the somatic nucleus, essential for gene expression, is destroyed and a new somatic nucleus differentiates from a copy of the germline nucleus. In Paramecium tetraurelia, the development of the somatic nucleus involves massive PGR, including the precise elimination of at least 45,000 germline sequences (Internal Eliminated Sequences, IES). IES excision proceeds through a cut-and-close mechanism: a domesticated transposase, PiggyMac, is essential for DNA cleavage, and DSB repair at excision sites involves the Ligase IV, a specific component of the non-homologous end-joining (NHEJ) pathway. At the genome-wide level, a huge number of programmed DSBs must be repaired during this process to allow the assembly of functional somatic chromosomes. To understand how DNA cleavage and DSB repair are coordinated during PGR, we have focused on Ku, the earliest actor of NHEJ-mediated repair. Two Ku70 and three Ku80 paralogs are encoded in the genome of P. tetraurelia: Ku70a and Ku80c are produced during sexual processes and localize specifically in the developing new somatic nucleus. Using RNA interference, we show that the development-specific Ku70/Ku80c heterodimer is essential for the recovery of a functional somatic nucleus. Strikingly, at the molecular level, PiggyMac-dependent DNA cleavage is abolished at IES boundaries in cells depleted for Ku80c, resulting in IES retention in the somatic genome. PiggyMac and Ku70a/Ku80c co-purify as a complex when overproduced in a heterologous system. We conclude that Ku has been integrated in the Paramecium DNA cleavage factory, enabling tight coupling between DSB introduction and repair during PGR. DNA double-strand breaks (DSBs) are potential threats for chromosome stability, but they are usually repaired by two major pathways, homologous recombination or non-homologous end joining (NHEJ). DSBs can also be essential during physiological processes, such as the programmed removal of germline sequences that takes place in various eukaryotes, including ciliates, during somatic differentiation. We use the ciliate Paramecium tetraurelia as a unicellular model to study how DNA breakage and DSB repair are coordinated during programmed genome rearrangements. In this organism, assembly of the somatic genome involves the elimination of ∼25% of germline DNA, including the precise excision of thousands of short Internal Eliminated Sequences (IES) scattered along germline chromosomes. A domesticated piggyBac transposase, PiggyMac, is required for double-strand DNA cleavage at IES ends and IES excision sites are very precisely repaired by the NHEJ pathway. Here, we report that a specialized Ku heterodimer, specifically expressed during programmed genome rearrangements, is an essential partner of PiggyMac and activates DNA cleavage. We propose that incorporation of DSB repair proteins in a pre-cleavage complex constitutes a safe and efficient way for Paramecium to direct thousands of programmed DSBs to the NHEJ pathway and make sure that somatic chromosomes are assembled correctly.
Collapse
Affiliation(s)
- Antoine Marmignon
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Julien Bischerour
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Aude Silve
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Clémentine Fojcik
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Emeline Dubois
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Olivier Arnaiz
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Aurélie Kapusta
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Sophie Malinsky
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France; INSERM, U1024, Paris, France; CNRS, UMR 8197, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UFR Sciences du Vivant, Paris, France
| | - Mireille Bétermier
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
- * E-mail:
| |
Collapse
|
21
|
Sandoval PY, Swart EC, Arambasic M, Nowacki M. Functional diversification of Dicer-like proteins and small RNAs required for genome sculpting. Dev Cell 2014; 28:174-88. [PMID: 24439910 DOI: 10.1016/j.devcel.2013.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/04/2013] [Accepted: 12/17/2013] [Indexed: 12/15/2022]
Abstract
In eukaryotes, small RNAs (sRNAs) have key roles in development, gene expression regulation, and genome integrity maintenance. In ciliates, such as Paramecium, sRNAs form the heart of an epigenetic system that has evolved from core eukaryotic gene silencing components to selectively target DNA for deletion. In Paramecium, somatic genome development from the germline genome accurately eliminates the bulk of typically gene-interrupting, noncoding DNA. We have discovered an sRNA class (internal eliminated sequence [IES] sRNAs [iesRNAs]), arising later during Paramecium development, which originates from and precisely delineates germline DNA (IESs) and complements the initial sRNAs ("scan" RNAs [scnRNAs]) in targeting DNA for elimination. We show that whole-genome duplications have facilitated successive differentiations of Paramecium Dicer-like proteins, leading to cooperation between Dcl2 and Dcl3 to produce scnRNAs and to the production of iesRNAs by Dcl5. These innovations highlight the ability of sRNA systems to acquire capabilities, including those in genome development and integrity.
Collapse
Affiliation(s)
- Pamela Y Sandoval
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Estienne C Swart
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Miroslav Arambasic
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland.
| |
Collapse
|
22
|
Bétermier M, Bertrand P, Lopez BS. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 2014; 10:e1004086. [PMID: 24453986 PMCID: PMC3894167 DOI: 10.1371/journal.pgen.1004086] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA double-strand breaks (DSBs) are harmful lesions leading to genomic instability or diversity. Non-homologous end-joining (NHEJ) is a prominent DSB repair pathway, which has long been considered to be error-prone. However, recent data have pointed to the intrinsic precision of NHEJ. Three reasons can account for the apparent fallibility of NHEJ: 1) the existence of a highly error-prone alternative end-joining process; 2) the adaptability of canonical C-NHEJ (Ku- and Xrcc4/ligase IV-dependent) to imperfect complementary ends; and 3) the requirement to first process chemically incompatible DNA ends that cannot be ligated directly. Thus, C-NHEJ is conservative but adaptable, and the accuracy of the repair is dictated by the structure of the DNA ends rather than by the C-NHEJ machinery. We present data from different organisms that describe the conservative/versatile properties of C-NHEJ. The advantages of the adaptability/versatility of C-NHEJ are discussed for the development of the immune repertoire and the resistance to ionizing radiation, especially at low doses, and for targeted genome manipulation.
Collapse
Affiliation(s)
- Mireille Bétermier
- CNRS, Centre de Génétique Moléculaire, UPR3404, Gif-sur-Yvette, France
- CNRS, Centre de Recherches de Gif-sur-Yvette, FRC3115, Gif-sur-Yvette, France
- Université Paris-Sud, Département de Biologie, Orsay, France
| | - Pascale Bertrand
- CEA, DSV, Institut de Radiobiologie Moléculaire et Cellulaire, Laboratoire Réparation et Vieillissement, Fontenay-aux-Roses, France
- UMR 8200 CNRS, Villejuif, France
| | - Bernard S. Lopez
- Université Paris-Sud, Département de Biologie, Orsay, France
- UMR 8200 CNRS, Villejuif, France
- Institut de Cancérologie, Gustave Roussy, Villejuif, France
- * E-mail:
| |
Collapse
|
23
|
Catania F, McGrath CL, Doak TG, Lynch M. Spliced DNA sequences in the Paramecium germline: their properties and evolutionary potential. Genome Biol Evol 2013; 5:1200-11. [PMID: 23737328 PMCID: PMC3698930 DOI: 10.1093/gbe/evt087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite playing a crucial role in germline-soma differentiation, the evolutionary significance of developmentally regulated genome rearrangements (DRGRs) has received scant attention. An example of DRGR is DNA splicing, a process that removes segments of DNA interrupting genic and/or intergenic sequences. Perhaps, best known for shaping immune-system genes in vertebrates, DNA splicing plays a central role in the life of ciliated protozoa, where thousands of germline DNA segments are eliminated after sexual reproduction to regenerate a functional somatic genome. Here, we identify and chronicle the properties of 5,286 sequences that putatively undergo DNA splicing (i.e., internal eliminated sequences [IESs]) across the genomes of three closely related species of the ciliate Paramecium (P. tetraurelia, P. biaurelia, and P. sexaurelia). The study reveals that these putative IESs share several physical characteristics. Although our results are consistent with excision events being largely conserved between species, episodes of differential IES retention/excision occur, may have a recent origin, and frequently involve coding regions. Our findings indicate interconversion between somatic--often coding--DNA sequences and noncoding IESs, and provide insights into the role of DNA splicing in creating potentially functional genetic innovation.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | | | | | | |
Collapse
|
24
|
The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences. PLoS Genet 2012; 8:e1002984. [PMID: 23071448 PMCID: PMC3464196 DOI: 10.1371/journal.pgen.1002984] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/09/2012] [Indexed: 12/30/2022] Open
Abstract
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated. Ciliates are unicellular eukaryotes that rearrange their genomes at every sexual generation when a new somatic macronucleus, responsible for gene expression, develops from a copy of the germline micronucleus. In Paramecium, assembly of a functional somatic genome requires precise excision of interstitial DNA segments, the Internal Eliminated Sequences (IES), involving a domesticated piggyBac transposase, PiggyMac. To study IES origin and evolution, we sequenced germline DNA and identified 45,000 IESs. We found that at least some of these unique-copy elements are decayed Tc1/mariner transposons and that IES insertion is likely an ongoing process. After insertion, elements decay rapidly by accumulation of deletions and substitutions. The 93% of IESs shorter than 150 bp display a remarkable size distribution with a periodicity of 10 bp, the helical repeat of double-stranded DNA, consistent with the idea that evolution has only retained IESs that can form a double-stranded DNA loop during assembly of an excision complex. We propose that the ancient domestication of a piggyBac transposase, which provided a precise excision mechanism, enabled transposons to subsequently invade Paramecium coding sequences, a fraction of the genome that does not usually tolerate parasitic DNA.
Collapse
|
25
|
Transposon Invasion of the Paramecium Germline Genome Countered by a Domesticated PiggyBac Transposase and the NHEJ Pathway. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:436196. [PMID: 22888464 PMCID: PMC3408717 DOI: 10.1155/2012/436196] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/07/2012] [Indexed: 12/15/2022]
Abstract
Sequences related to transposons constitute a large fraction of extant genomes, but insertions within coding sequences have generally not been tolerated during evolution. Thanks to their unique nuclear dimorphism and to their original mechanism of programmed DNA elimination from their somatic nucleus (macronucleus), ciliates are emerging model organisms for the study of the impact of transposable elements on genomes. The germline genome of the ciliate Paramecium, located in its micronucleus, contains thousands of short intervening sequences, the IESs, which interrupt 47% of genes. Recent data provided support to the hypothesis that an evolutionary link exists between Paramecium IESs and Tc1/mariner transposons. During development of the macronucleus, IESs are excised precisely thanks to the coordinated action of PiggyMac, a domesticated piggyBac transposase, and of the NHEJ double-strand break repair pathway. A PiggyMac homolog is also required for developmentally programmed DNA elimination in another ciliate, Tetrahymena. Here, we present an overview of the life cycle of these unicellular eukaryotes and of the developmentally programmed genome rearrangements that take place at each sexual cycle. We discuss how ancient domestication of a piggyBac transposase might have allowed Tc1/mariner elements to spread throughout the germline genome of Paramecium, without strong counterselection against insertion within genes.
Collapse
|
26
|
Chalker DL, Yao MC. DNA elimination in ciliates: transposon domestication and genome surveillance. Annu Rev Genet 2011; 45:227-46. [PMID: 21910632 DOI: 10.1146/annurev-genet-110410-132432] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ciliated protozoa extensively remodel their somatic genomes during nuclear development, fragmenting their chromosomes and removing large numbers of internal eliminated sequences (IESs). The sequences eliminated are unique and repetitive DNAs, including transposons. Recent studies have identified transposase proteins that appear to have been domesticated and are used by these cells to eliminate DNA not wanted in the somatic macronucleus. This DNA elimination process is guided by meiotically produced small RNAs, generated in the germline nucleus, that recognize homologous sequences leading to their removal. These scan RNAs are found in complexes with PIWI proteins. Before they search the developing genome for IESs to eliminate, they scan the parental somatic nucleus and are removed from the pool if they match homologous sequences in that previously reorganized genome. In Tetrahymena, the scan RNAs target heterochromatin modifications to mark IESs for elimination. This DNA elimination pathway in ciliates shares extensive similarity with piRNA-mediated silencing of metazoans and highlights the remarkable ability of homologous RNAs to shape developing genomes.
Collapse
Affiliation(s)
- Douglas L Chalker
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | | |
Collapse
|
27
|
Sperling L. Remembrance of things past retrieved from the Paramecium genome. Res Microbiol 2011; 162:587-97. [DOI: 10.1016/j.resmic.2011.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 02/17/2011] [Indexed: 11/30/2022]
|
28
|
Kapusta A, Matsuda A, Marmignon A, Ku M, Silve A, Meyer E, Forney JD, Malinsky S, Bétermier M. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining. PLoS Genet 2011; 7:e1002049. [PMID: 21533177 PMCID: PMC3077386 DOI: 10.1371/journal.pgen.1002049] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/25/2011] [Indexed: 01/09/2023] Open
Abstract
During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5′ overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi–mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5′-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3′ ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a “cut-and-close” mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms involved in genome dynamics. Double-strand breaks (DSBs) are among the most deleterious lesions that may occur on DNA. Some physiological processes, however, involve the introduction of DSBs and their subsequent repair. In the ciliate Paramecium, programmed DSBs initiate the extensive genome rearrangements that take place at each sexual cycle, during the development of the somatic nucleus. In particular, short intervening germline sequences (one every 1–2 kb along the genome) are spliced out from coding and non-coding regions. In this study, we present evidence that this process is a two-step mechanism and involves DNA cleavage at both ends of each excised sequence, followed by DSB repair. We demonstrate that cellular end-joining proteins, Ligase IV and its partner, Xrcc4p, are essential for the closure of broken excision sites, which has to be precise at the nucleotide level to allow the assembly of functional genes. This precision stands in sharp contrast to the notion that end joining is an error-prone DSB repair pathway. Therefore, Paramecium provides an excellent model for analysis of an intrinsically precise end joining pathway that has been recruited for genome-wide DSB repair.
Collapse
Affiliation(s)
- Aurélie Kapusta
- CNRS UPR3404, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris 11, Département de Biologie, Orsay, France
- CNRS FRC3115, Centre de Recherches de Gif–sur-Yvette, Gif-sur-Yvette, France
| | - Atsushi Matsuda
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Antoine Marmignon
- CNRS UPR3404, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris 11, Département de Biologie, Orsay, France
- CNRS FRC3115, Centre de Recherches de Gif–sur-Yvette, Gif-sur-Yvette, France
| | - Michael Ku
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Aude Silve
- CNRS UPR3404, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
| | - Eric Meyer
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Paris, France
| | - James D. Forney
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Sophie Malinsky
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Paris, France
- Université Paris Diderot – Paris 7, UFR des Sciences du Vivant, Paris, France
| | - Mireille Bétermier
- CNRS UPR3404, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris 11, Département de Biologie, Orsay, France
- CNRS FRC3115, Centre de Recherches de Gif–sur-Yvette, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
29
|
Bouhouche K, Gout JF, Kapusta A, Bétermier M, Meyer E. Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling. Nucleic Acids Res 2011; 39:4249-64. [PMID: 21216825 PMCID: PMC3105430 DOI: 10.1093/nar/gkq1283] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proteins of the Argonaute family are small RNA carriers that guide regulatory complexes to their targets. The family comprises two major subclades. Members of the Ago subclade, which are present in most eukaryotic phyla, bind different classes of small RNAs and regulate gene expression at both transcriptional and post-transcriptional levels. Piwi subclade members appear to have been lost in plants and fungi and were mostly studied in metazoa, where they bind piRNAs and have essential roles in sexual reproduction. Their presence in ciliates, unicellular organisms harbouring both germline micronuclei and somatic macronuclei, offers an interesting perspective on the evolution of their functions. Here, we report phylogenetic and functional analyses of the 15 Piwi genes from Paramecium tetraurelia. We show that four constitutively expressed proteins are involved in siRNA pathways that mediate gene silencing throughout the life cycle. Two other proteins, specifically expressed during meiosis, are required for accumulation of scnRNAs during sexual reproduction and for programmed genome rearrangements during development of the somatic macronucleus. Our results indicate that Paramecium Piwi proteins have evolved to perform both vegetative and sexual functions through mechanisms ranging from post-transcriptional mRNA cleavage to epigenetic regulation of genome rearrangements.
Collapse
Affiliation(s)
- Khaled Bouhouche
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | |
Collapse
|
30
|
Arnaiz O, Goût JF, Bétermier M, Bouhouche K, Cohen J, Duret L, Kapusta A, Meyer E, Sperling L. Gene expression in a paleopolyploid: a transcriptome resource for the ciliate Paramecium tetraurelia. BMC Genomics 2010; 11:547. [PMID: 20932287 PMCID: PMC3091696 DOI: 10.1186/1471-2164-11-547] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/08/2010] [Indexed: 11/30/2022] Open
Abstract
Background The genome of Paramecium tetraurelia, a unicellular model that belongs to the ciliate phylum, has been shaped by at least 3 successive whole genome duplications (WGD). These dramatic events, which have also been documented in plants, animals and fungi, are resolved over evolutionary time by the loss of one duplicate for the majority of genes. Thanks to a low rate of large scale genome rearrangement in Paramecium, an unprecedented large number of gene duplicates of different ages have been identified, making this organism an outstanding model to investigate the evolutionary consequences of polyploidization. The most recent WGD, with 51% of pre-duplication genes still in 2 copies, provides a snapshot of a phase of rapid gene loss that is not accessible in more ancient polyploids such as yeast. Results We designed a custom oligonucleotide microarray platform for P. tetraurelia genome-wide expression profiling and used the platform to measure gene expression during 1) the sexual cycle of autogamy, 2) growth of new cilia in response to deciliation and 3) biogenesis of secretory granules after massive exocytosis. Genes that are differentially expressed during these time course experiments have expression patterns consistent with a very low rate of subfunctionalization (partition of ancestral functions between duplicated genes) in particular since the most recent polyploidization event. Conclusions A public transcriptome resource is now available for Paramecium tetraurelia. The resource has been integrated into the ParameciumDB model organism database, providing searchable access to the data. The microarray platform, freely available through NimbleGen Systems, provides a robust, cost-effective approach for genome-wide expression profiling in P. tetraurelia. The expression data support previous studies showing that at short evolutionary times after a whole genome duplication, gene dosage balance constraints and not functional change are the major determinants of gene retention.
Collapse
Affiliation(s)
- Olivier Arnaiz
- Centre de Génétique Moléculaire, Université Paris-Sud, CNRS FRE3144, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Matsuda A, Shieh AWY, Chalker DL, Forney JD. The conjugation-specific Die5 protein is required for development of the somatic nucleus in both Paramecium and Tetrahymena. EUKARYOTIC CELL 2010; 9:1087-99. [PMID: 20495055 PMCID: PMC2901671 DOI: 10.1128/ec.00379-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 05/14/2010] [Indexed: 02/02/2023]
Abstract
Development in ciliated protozoa involves extensive genome reorganization within differentiating macronuclei, which shapes the somatic genome of the next vegetative generation. Major events of macronuclear differentiation include excision of internal eliminated sequences (IESs), chromosome fragmentation, and genome amplification. Proteins required for these events include those with homology throughout eukaryotes as well as proteins apparently unique to ciliates. In this study, we identified the ciliate-specific Defective in IES Excision 5 (DIE5) genes of Paramecium tetraurelia (PtDIE5) and Tetrahymena thermophila (TtDIE5) as orthologs that encode nuclear proteins expressed exclusively during development. Abrogation of PtDie5 protein (PtDie5p) function by RNA interference (RNAi)-mediated silencing or TtDie5p by gene disruption resulted in the failure of developing macronuclei to differentiate into new somatic nuclei. Tetrahymena DeltaDIE5 cells arrested late in development and failed to complete genome amplification, whereas RNAi-treated Paramecium cells highly amplified new macronuclear DNA before the failure in differentiation, findings that highlight clear differences in the biology of these distantly related species. Nevertheless, IES excision and chromosome fragmentation failed to occur in either ciliate, which strongly supports that Die5p is a critical player in these processes. In Tetrahymena, loss of zygotic expression during development was sufficient to block nuclear differentiation. This observation, together with the finding that knockdown of Die5p in Paramecium still allows genome amplification, indicates that this protein acts late in macronuclear development. Even though DNA rearrangements in these two ciliates look to be quite distinct, analysis of DIE5 establishes the action of a conserved mechanism within the genome reorganization pathway.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana 47907-2063
| | - Annie Wan-Yi Shieh
- Biology Department, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, Missouri 63130
| | - Douglas L. Chalker
- Biology Department, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, Missouri 63130
| | - James D. Forney
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana 47907-2063
| |
Collapse
|
32
|
Baudry C, Malinsky S, Restituito M, Kapusta A, Rosa S, Meyer E, Bétermier M. PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes Dev 2009; 23:2478-83. [PMID: 19884254 DOI: 10.1101/gad.547309] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Programmed genome rearrangements drive functional gene assembly in ciliates during the development of the somatic macronucleus. The elimination of germline sequences is directed by noncoding RNAs and is initiated by DNA double-strand breaks, but the enzymes responsible for DNA cleavage have not been identified. We show here that PiggyMac (Pgm), a domesticated piggyBac transposase, is required for these rearrangements in Paramecium tetraurelia. A GFP-Pgm fusion localizes in developing macronuclei, where rearrangements take place, and RNAi-mediated silencing of PGM abolishes DNA cleavage. This is the first in vivo evidence suggesting an essential endonucleolytic function of a domesticated piggyBac transposase.
Collapse
Affiliation(s)
- Céline Baudry
- CNRS FRE 3144, Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198 Cedex, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Lepère G, Bétermier M, Meyer E, Duharcourt S. Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia. Genes Dev 2008; 22:1501-12. [PMID: 18519642 PMCID: PMC2418586 DOI: 10.1101/gad.473008] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/28/2008] [Indexed: 12/22/2022]
Abstract
The germline genome of ciliates is extensively rearranged during the development of a new somatic macronucleus from the germline micronucleus, after sexual events. In Paramecium tetraurelia, single-copy internal eliminated sequences (IESs) are precisely excised from coding sequences and intergenic regions. For a subset of IESs, introduction of the IES sequence into the maternal macronucleus specifically inhibits excision of the homologous IES in the developing zygotic macronucleus, suggesting that epigenetic regulation of excision involves a global comparison of germline and somatic genomes. ScanRNAs (scnRNAs) produced during micronuclear meiosis by a developmentally regulated RNAi pathway have been proposed to mediate this transnuclear cross-talk. In this study, microinjection experiments provide direct evidence that 25-nucleotide (nt) scnRNAs promote IES excision. We further show that noncoding RNAs are produced from the somatic maternal genome, both during vegetative growth and during sexual events. Maternal inhibition of IES excision is abolished when maternal somatic transcripts containing an IES are targeted for degradation by a distinct RNAi pathway involving 23-nt siRNAs. The results strongly support a scnRNA/macronuclear RNA scanning model in which a natural genomic subtraction, occurring during meiosis between deletion-inducing scnRNAs and antagonistic transcripts from the maternal macronucleus, regulates rearrangements of the zygotic genome.
Collapse
Affiliation(s)
- Gersende Lepère
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| | - Mireille Bétermier
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| | - Eric Meyer
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| | - Sandra Duharcourt
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, Centre 75005 Paris, France
- Centre National de la Recherche Scientifique, UMR 8541, 75005 Paris, France
| |
Collapse
|
34
|
Gratias A, Lepère G, Garnier O, Rosa S, Duharcourt S, Malinsky S, Meyer E, Bétermier M. Developmentally programmed DNA splicing in Paramecium reveals short-distance crosstalk between DNA cleavage sites. Nucleic Acids Res 2008; 36:3244-51. [PMID: 18420657 PMCID: PMC2425466 DOI: 10.1093/nar/gkn154] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Somatic genome assembly in the ciliate Paramecium involves the precise excision of thousands of short internal eliminated sequences (IESs) that are scattered throughout the germline genome and often interrupt open reading frames. Excision is initiated by double-strand breaks centered on the TA dinucleotides that are conserved at each IES boundary, but the factors that drive cleavage site recognition remain unknown. A degenerate consensus was identified previously at IES ends and genetic analyses confirmed the participation of their nucleotide sequence in efficient excision. Even for wild-type IESs, however, variant excision patterns (excised or nonexcised) may be inherited maternally through sexual events, in a homology-dependent manner. We show here that this maternal epigenetic control interferes with the targeting of DNA breaks at IES ends. Furthermore, we demonstrate that a mutation in the TA at one end of an IES impairs DNA cleavage not only at the mutant end but also at the wild-type end. We conclude that crosstalk between both ends takes place prior to their cleavage and propose that the ability of an IES to adopt an excision-prone conformation depends on the combination of its nucleotide sequence and of additional determinants.
Collapse
Affiliation(s)
- Ariane Gratias
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Duret L, Cohen J, Jubin C, Dessen P, Goût JF, Mousset S, Aury JM, Jaillon O, Noël B, Arnaiz O, Bétermier M, Wincker P, Meyer E, Sperling L. Analysis of sequence variability in the macronuclear DNA of Paramecium tetraurelia: a somatic view of the germline. Genome Res 2008; 18:585-96. [PMID: 18256234 DOI: 10.1101/gr.074534.107] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ciliates are the only unicellular eukaryotes known to separate germinal and somatic functions. Diploid but silent micronuclei transmit the genetic information to the next sexual generation. Polyploid macronuclei express the genetic information from a streamlined version of the genome but are replaced at each sexual generation. The macronuclear genome of Paramecium tetraurelia was recently sequenced by a shotgun approach, providing access to the gene repertoire. The 72-Mb assembly represents a consensus sequence for the somatic DNA, which is produced after sexual events by reproducible rearrangements of the zygotic genome involving elimination of repeated sequences, precise excision of unique-copy internal eliminated sequences (IES), and amplification of the cellular genes to high copy number. We report use of the shotgun sequencing data (>10(6) reads representing 13 x coverage of a completely homozygous clone) to evaluate variability in the somatic DNA produced by these developmental genome rearrangements. Although DNA amplification appears uniform, both of the DNA elimination processes produce sequence heterogeneity. The variability that arises from IES excision allowed identification of hundreds of putative new IESs, compared to 42 that were previously known, and revealed cases of erroneous excision of segments of coding sequences. We demonstrate that IESs in coding regions are under selective pressure to introduce premature termination of translation in case of excision failure.
Collapse
Affiliation(s)
- Laurent Duret
- Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne F-69622, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Juranek SA, Lipps HJ. New Insights into the Macronuclear Development in Ciliates. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:219-51. [PMID: 17631190 DOI: 10.1016/s0074-7696(07)62005-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During macronuclear differentiation in ciliated protozoa, most amazing "DNA gymnastics" takes place, which includes DNA excision, DNA elimination, DNA reorganization, and DNA-specific amplification. Although the morphological events occurring during macronuclear development are well described, a detailed knowledge of the molecular mechanisms and the regulation of this differentiation process is still missing. However, recently several models have been proposed for the molecular regulation of macronuclear differentiation, but these models have yet to be verified experimentally. The scope of this review is to summarize recent discoveries in different ciliate species and to compare and discuss the different models proposed. Results obtained in these studies are not only relevant for our understanding of nuclear differentiation in ciliates, but also for cellular differentiation in eukaryotic organisms in general as well as for other disciplines such as bioinformatics and computational biology.
Collapse
Affiliation(s)
- Stefan A Juranek
- Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
37
|
Matsuda A, Forney JD. The SUMO pathway is developmentally regulated and required for programmed DNA elimination in Paramecium tetraurelia. EUKARYOTIC CELL 2006; 5:806-15. [PMID: 16682458 PMCID: PMC1459683 DOI: 10.1128/ec.5.5.806-815.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Extensive genome-wide remodeling occurs during the formation of the somatic macronuclei from the germ line micronuclei in ciliated protozoa. This process is limited to sexual reproduction and includes DNA amplification, chromosome fragmentation, and the elimination of internal segments of DNA. Our efforts to define the pathways regulating these events revealed a gene encoding a homologue of ubiquitin activating enzyme 2 (UBA2) that is upregulated at the onset of macronuclear development in Paramecium tetraurelia. Uba2 enzymes are known to activate the protein called small ubiquitin-related modifier (SUMO) that is covalently attached to target proteins. Consistent with this relationship, Northern analysis showed increased abundance of SUMO transcripts during sexual reproduction in Paramecium. RNA interference (RNAi) against UBA2 or SUMO during vegetative growth had little effect on cell survival or fission rates. In contrast, RNAi of mating cells resulted in failure to form a functional macronucleus. Despite normal amplification of the genome, excision of internal eliminated sequences was completely blocked. Additional experiments showed that the homologous UBA2 and SUMO genes in Tetrahymena thermophila are also upregulated during conjugation. These results provide evidence for the developmental regulation of the SUMO pathway in ciliates and suggest a key role for the pathway in controlling genome remodeling.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907-2063, USA
| | | |
Collapse
|
38
|
Nowacki M, Zagorski-Ostoja W, Meyer E. Nowa1p and Nowa2p: novel putative RNA binding proteins involved in trans-nuclear crosstalk in Paramecium tetraurelia. Curr Biol 2006; 15:1616-28. [PMID: 16169483 DOI: 10.1016/j.cub.2005.07.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/03/2005] [Accepted: 07/14/2005] [Indexed: 11/28/2022]
Abstract
BACKGROUND The germline genome of ciliates is extensively rearranged during development of a new somatic macronucleus from the germline micronucleus, a process that follows sexual events. In Paramecium tetraurelia, single-copy internal eliminated sequences (IESs) and multicopy transposons are eliminated, whereas cellular genes are amplified to approximately 800 n. For a subset of IESs, introduction of the IES sequence into the maternal (prezygotic) macronucleus specifically inhibits excision of the homologous IES in the developing zygotic macronucleus. This and other homology-dependent maternal effects have suggested that rearrangement patterns are epigenetically determined by an RNA-mediated, trans-nuclear comparison, involving the RNA interference pathway, of germline and somatic genomes. RESULTS We report the identification of novel developmentally regulated RNA binding proteins, Nowa1p and Nowa2p, which are required for the survival of sexual progeny. Green fluorescent protein (GFP) fusions show that Nowa1p accumulates into the maternal macronucleus shortly before meiosis of germline micronuclei and is later transported to developing macronuclei. Nowa1p/2p depletion impairs the elimination of transposons and of those IESs that are controlled by maternal effects, confirming the existence of distinct IES classes. CONCLUSIONS The results indicate that Nowa proteins are essential components of the trans-nuclear-crosstalk mechanism that is responsible for epigenetic programming of genome rearrangements. We discuss implications for the current models of genome scanning in ciliates, a process related to the formation of heterochromatin by RNA interference in other eukaryotes.
Collapse
Affiliation(s)
- Mariusz Nowacki
- Laboratoire de Génétique Moléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8541, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | |
Collapse
|
39
|
Yao MC, Chao JL. RNA-guided DNA deletion in Tetrahymena: an RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 2006; 39:537-59. [PMID: 16285871 DOI: 10.1146/annurev.genet.39.073003.095906] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ciliated protozoan are unicellular eukaryotes. Most species in this diverse group display nuclear dualism, a special feature that supports both somatic and germline nuclei in the same cell. Probably due to this unique life style, they exhibit unusual nuclear characteristics that have intrigued researchers for decades. Among them are large-scale DNA rearrangements, which restructure the somatic genome to become drastically different from its germline origin. They resemble the classical phenomenon of chromatin diminution in some nematodes discovered more than a century ago. The mechanisms of such rearrangements, their biological roles, and their evolutionary origins have been difficult to understand. Recent studies have revealed a clear link to RNA interference, and begin to shed light on these issues. Using the simple ciliate Tetrahymena as a model, this chapter summarizes the physical characterization of these processes, describes recent findings that connect them to RNA interference, and discusses the details of their mechanisms, potential roles in genome defense, and possible occurrences in other organisms.
Collapse
Affiliation(s)
- Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China.
| | | |
Collapse
|
40
|
Bétermier M. Large-scale genome remodelling by the developmentally programmed elimination of germ line sequences in the ciliate Paramecium. Res Microbiol 2004; 155:399-408. [PMID: 15207872 DOI: 10.1016/j.resmic.2004.01.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 01/20/2004] [Indexed: 12/12/2022]
Abstract
In Paramecium, during the development of the somatic macronucleus, precise excision of thousands of single-copy non-coding sequences is initiated by specific DNA double-strand breaks, while imprecise elimination of germ-line-limited repeated sequences leads to internal deletions or chromosome fragmentation. Recent data point to a role of non-coding RNAs in the epigenetic programming of these rearrangements.
Collapse
Affiliation(s)
- Mireille Bétermier
- CNRS UMR 8541, Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
41
|
Gratias A, Bétermier M. Processing of double-strand breaks is involved in the precise excision of paramecium internal eliminated sequences. Mol Cell Biol 2003; 23:7152-62. [PMID: 14517286 PMCID: PMC230320 DOI: 10.1128/mcb.23.20.7152-7162.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In ciliates, the development of the somatic macronucleus involves the programmed excision of thousands of internal eliminated sequences (IES) scattered throughout the germ line genome. Previous work with Tetrahymena thermophila has suggested that excision is initiated by a staggered double-strand break (DSB) at one IES end. Nucleophilic attack of the other end by the 3'OH group carried by the firstly broken chromosome end leads to macronuclear junction closure. In this study, we mapped the 3'OH and 5'PO(4) groups that are developmentally released at Paramecium IES boundaries, which are marked by two conserved TA dinucleotides, one of which remains in the macronuclear genome after excision. We show that initiating DSBs at both ends generate 4-base 5' overhangs centered on the TA. Based on the observed processing of the 5'-terminal residue of each overhang, we present a new model for the precise closure of macronuclear chromosomes in Paramecium tetraurelia, different from that previously proposed for tetrahymena. In our model, macronucleus-destined broken ends are aligned through the partial pairing of their 5'-nTAn-3' extensions and joined after trimming of the 5' flaps.
Collapse
Affiliation(s)
- Ariane Gratias
- Laboratoire de Génétique Moléculaire, CNRS UMR 8541, Ecole Normale Supérieure, 75005 Paris, France
| | | |
Collapse
|
42
|
Abstract
The germline genomes of ciliated protozoa are dynamic structures, undergoing massive DNA rearrangement during the formation of a functional macronucleus. Macronuclear development involves chromosome fragmentation coupled with de novo telomere synthesis, numerous DNA splicing events that remove internal segments of DNA, and, in some ciliates, the reordering of scrambled gene segments. Despite the fact that all ciliates share similar forms of DNA rearrangement, there appears to be great diversity in both the nature of the rearranged DNA and the molecular mechanisms involved. Epigenetic effects on rearrangement have also been observed, and recent work suggests that chromatin differentiation plays a role in specifying DNA segments either for rearrangement or for elimination.
Collapse
Affiliation(s)
- Carolyn L Jahn
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
43
|
Sperling L, Dessen P, Zagulski M, Pearlman RE, Migdalski A, Gromadka R, Froissard M, Keller AM, Cohen J. Random sequencing of Paramecium somatic DNA. EUKARYOTIC CELL 2002; 1:341-52. [PMID: 12455983 PMCID: PMC118014 DOI: 10.1128/ec.1.3.341-352.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Accepted: 02/15/2002] [Indexed: 11/20/2022]
Abstract
We report a random survey of 1 to 2% of the somatic genome of the free-living ciliate Paramecium tetraurelia by single-run sequencing of the ends of plasmid inserts. As in all ciliates, the germ line genome of Paramecium (100 to 200 Mb) is reproducibly rearranged at each sexual cycle to produce a somatic genome of expressed or potentially expressed genes, stripped of repeated sequences, transposons, and AT-rich unique sequence elements limited to the germ line. We found the somatic genome to be compact (>68% coding, estimated from the sequence of several complete library inserts) and to feature uniformly small introns (18 to 35 nucleotides). This facilitated gene discovery: 722 open reading frames (ORFs) were identified by similarity with known proteins, and 119 novel ORFs were tentatively identified by internal comparison of the data set. We determined the phylogenetic position of Paramecium with respect to eukaryotes whose genomes have been sequenced by the distance matrix neighbor-joining method by using random combined protein data from the project. The unrooted tree obtained is very robust and in excellent agreement with accepted topology, providing strong support for the quality and consistency of the data set. Our study demonstrates that a random survey of the somatic genome of Paramecium is a good strategy for gene discovery in this organism.
Collapse
Affiliation(s)
- Linda Sperling
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Programmed excision of internal eliminated sequences (IESs) occurs at thousands of sites in ciliate genomes. How this is controlled is largely unknown. Here, we report the characterization of the non-efficiently excised 156psiG-11 IES from Paramecium primaurelia strain 156 and that of the efficiently excised 168psiG-11 IES, an allelic variant from strain 168. Then, we report a genetic and molecular analysis of IES excision efficiency in F(1) progeny derived from interstrain crosses and in F(2) homozygous progeny derived from F(1) autogamy. IES 168psiG-11 excision efficiency was approximately 100% in all cases. IES 156psiG-11 excision efficiency was 19 +/- 13% in F(1) progeny and 0.6 +/- 1.1% in F(2) progeny. No trans-excision event between IESs 156psiG-11 and 168psiG-11 was detected within the F(1) progeny. These data demonstrate that the excision efficiency of this IES is variable and controlled by a cis-acting element. This should encompass positions 8 and/or 9 of the right IES end, which display allele differences. Finally, the 30-fold stimulation of IES 156psiG-11 excision efficiency within F(1) progeny relative to F(2) progeny demonstrates that Paramecium IES excision efficiency is sensitive either to a conjugation-specific trans-acting factor provided by the zygotic genome, or to homologous chromosome cross-talk.
Collapse
Affiliation(s)
- K Dubrana
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 Rue d'Ulm, 75230 Paris Cedex 05, France
| | | |
Collapse
|
45
|
Gratias A, Bétermier M. Developmentally programmed excision of internal DNA sequences in Paramecium aurelia. Biochimie 2001; 83:1009-22. [PMID: 11879729 DOI: 10.1016/s0300-9084(01)01349-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of a new somatic nucleus (macronucleus) during sexual reproduction of the ciliate Paramecium aurelia involves reproducible chromosomal rearrangements that affect the entire germline genome. Macronuclear development can be induced experimentally, which makes P. aurelia an attractive model for the study of the mechanism and the regulation of DNA rearrangements. Two major types of rearrangements have been identified: the fragmentation of the germline chromosomes, followed by the formation of the new macronuclear chromosome ends in association with imprecise DNA elimination, and the precise excision of internal eliminated sequences (IESs). All IESs identified so far are short, A/T rich and non-coding elements. They are flanked by a direct repeat of a 5'-TA-3' dinucleotide, a single copy of which remains at the macronuclear junction after excision. The number of these single-copy sequences has been estimated to be around 60,000 per haploid genome. This review focuses on the current knowledge about the genetic and epigenetic determinants of IES elimination in P. aurelia, the analysis of excision products, and the tightly regulated timing of excision throughout macronuclear development. Several models for the molecular mechanism of IES excision will be discussed in relation to those proposed for DNA elimination in other ciliates.
Collapse
Affiliation(s)
- A Gratias
- Laboratoire de Génétique Moléculaire, CNRS UMR 8541, Ecole Normale Supérieure, 46, rue d'Ulm, 75005 Paris, France.
| | | |
Collapse
|
46
|
Ling KY, Haynes WJ, Oesterle L, Kung C, Preston RR, Saimi Y. K(+)-channel transgenes reduce K(+) currents in Paramecium, probably by a post-translational mechanism. Genetics 2001; 159:987-95. [PMID: 11729147 PMCID: PMC1461881 DOI: 10.1093/genetics/159.3.987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PAK11 is 1 of more than 15 members in a gene family that encodes K(+)-channel pore-forming subunits in Paramecium tetraurelia. Microinjection of PAK11 DNA into macronuclei of wild-type cells results in clonal transformants that exhibit hyperexcitable swimming behaviors reminiscent of certain loss-of-K(+)-current mutants. PAK2, a distant homolog of PAK11, does not have the same effect. But PAK1, a close homolog of PAK11, induces the same hyperexcitability. Cutting the PAK11 open reading frame (ORF) with restriction enzymes before injection removes this effect entirely. Microinjection of PAK11 ORF flanked by the calmodulin 5' and 3' UTRs also induces the same hyperexcitable phenotype. Direct examination of transformed cells under voltage clamp reveals that two different Ca(2+)-activated K(+)-specific currents are reduced in amplitude. This reduction does not correlate with a deficit of PAK11 message, since RNA is clearly produced from the injected transgenes. Insertion of a single nucleotide at the start of the PAK11 ORF does not affect the RNA level but completely abolishes the phenotypic transformation. Thus, the reduction of K(+) currents by the expression of the K(+)-channel transgenes reported here is likely to be the consequence of a post-translational event. The complexity of behavioral changes, possible mechanisms, and implications in Paramecium biology are discussed.
Collapse
Affiliation(s)
- K Y Ling
- Laboratory of Molecular Biology and Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
47
|
Matsuda A, Takahashi M. The molecular basis for the alternative stable phenotype in a behavioral mutant of Paramecium tetraurelia. Genes Genet Syst 2001; 76:289-94. [PMID: 11817644 DOI: 10.1266/ggs.76.289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the sexual reproduction of Paramecium tetraurelia, the somatic nucleus (macronucleus) undergoes massive genomic rearrangement, including gene amplification and excision of internal eliminated sequences (IESs), in its normal developmental process. Strain d4-662, one of the pawn mutants, is a behavioral mutant of P. tetraurelia that carries a recessive allele of pwB662. ThepwB gene in the macronucleus of the strain has an insertion of the IES because a base substitution within the IES prevents its excision during gene rearrangement. Cultures of this strain frequently contain cells reverting to the wild type in the behavioral phenotype. The mutant and revertant cells maintained stable clonal phenotypes under the various environmental conditions examined unless they underwent sexual reproduction. After sexual reproduction, both mutant and revertant produced 2.7-7.1% reverted progeny. A molecular analysis performed on the macronuclear DNA of the mutant and revertant of d4-662 showed that much less than 1% of the mutant IES was precisely excised at every sexual reproduction of the strain. Therefore, the alternative phenotype of strain d4-662 seems to be caused by an alternative excision of the mutant IES.
Collapse
Affiliation(s)
- A Matsuda
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
48
|
Dessen P, Zagulski M, Gromadka R, Plattner H, Kissmehl R, Meyer E, Bétermier M, Schultz JE, Linder JU, Pearlman RE, Kung C, Forney J, Satir BH, Van Houten JL, Keller AM, Froissard M, Sperling L, Cohen J. Paramecium genome survey: a pilot project. Trends Genet 2001; 17:306-8. [PMID: 11377780 DOI: 10.1016/s0168-9525(01)02307-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A consortium of laboratories undertook a pilot sequencing project to gain insight into the genome of Paramecium. Plasmid-end sequencing of DNA fragments from the somatic nucleus together with similarity searches identified 722 potential protein-coding genes. High gene density and uniform small intron size make random sequencing of somatic chromosomes a cost-effective strategy for gene discovery in this organism.
Collapse
Affiliation(s)
- P Dessen
- Service de Bioinformatique, UMS825 CNRS/SC13 INSERM, 7 rue Guy Môquet BP8, 94801 Villejuif Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Galvani A, Froissard M, Cohen J. Meeting report: International Conference on Paramecium, Honolulu, Hawaii, March 25-28, 2001. Protist 2001; 152:89-92. [PMID: 11545440 DOI: 10.1078/1434-4610-00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Saveliev SV, Cox MM. Product analysis illuminates the final steps of IES deletion in Tetrahymena thermophila. EMBO J 2001; 20:3251-61. [PMID: 11406601 PMCID: PMC150193 DOI: 10.1093/emboj/20.12.3251] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA sequences (IES elements) eliminated from the developing macronucleus in the ciliate Tetrahymena thermophila are released as linear fragments, which have now been detected and isolated. A PCR-mediated examination of fragment end structures reveals three types of strand scission events, reflecting three steps in the deletion process. New evidence is provided for two steps proposed previously: an initiating double-stranded cleavage, and strand transfer to create a branched deletion intermediate. The fragment ends provide evidence for a previously uncharacterized third step: the branched DNA strand is cleaved at one of several defined sites located within 15-16 nucleotides of the IES boundary, liberating the deleted DNA in a linear form.
Collapse
Affiliation(s)
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
Corresponding author e-mail:
| |
Collapse
|