1
|
Trenaman A, Glover L, Hutchinson S, Horn D. A post-transcriptional respiratome regulon in trypanosomes. Nucleic Acids Res 2019; 47:7063-7077. [PMID: 31127277 PMCID: PMC6648352 DOI: 10.1093/nar/gkz455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/25/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Post-transcriptional regulons coordinate the expression of groups of genes in eukaryotic cells, yet relatively few have been characterized. Parasitic trypanosomatids are particularly good models for studies on such mechanisms because they exhibit almost exclusive polycistronic, and unregulated, transcription. Here, we identify the Trypanosoma brucei ZC3H39/40 RNA-binding proteins as regulators of the respiratome; the mitochondrial electron transport chain (complexes I-IV) and the FoF1-ATP synthase (complex V). A high-throughput RNAi screen initially implicated both ZC3H proteins in variant surface glycoprotein (VSG) gene silencing. This link was confirmed and both proteins were shown to form a cytoplasmic ZC3H39/40 complex. Transcriptome and mRNA-interactome analyses indicated that the impact on VSG silencing was indirect, while the ZC3H39/40 complex specifically bound and stabilized transcripts encoding respiratome-complexes. Quantitative proteomic analyses revealed specific positive control of >20 components from complexes I, II and V. Our findings establish a link between the mitochondrial respiratome and VSG gene silencing in bloodstream form T. brucei. They also reveal a major respiratome regulon controlled by the conserved trypanosomatid ZC3H39/40 RNA-binding proteins.
Collapse
Affiliation(s)
- Anna Trenaman
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lucy Glover
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sebastian Hutchinson
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
2
|
Lueong S, Merce C, Fischer B, Hoheisel JD, Erben ED. Gene expression regulatory networks in Trypanosoma brucei: insights into the role of the mRNA-binding proteome. Mol Microbiol 2016; 100:457-71. [PMID: 26784394 DOI: 10.1111/mmi.13328] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Control of gene expression at the post-transcriptional level is essential in all organisms, and RNA-binding proteins play critical roles from mRNA synthesis to decay. To fully understand this process, it is necessary to identify the complete set of RNA-binding proteins and the functional consequences of the protein-mRNA interactions. Here, we provide an overview of the proteins that bind to mRNAs and their functions in the pathogenic bloodstream form of Trypanosoma brucei. We describe the production of a small collection of open-reading frames encoding proteins potentially involved in mRNA metabolism. With this ORFeome collection, we used tethering to screen for proteins that play a role in post-transcriptional control. A yeast two-hybrid screen showed that several of the discovered repressors interact with components of the CAF1/NOT1 deadenylation complex. To identify the RNA-binding proteins, we obtained the mRNA-bound proteome. We identified 155 high-confidence candidates, including many not previously annotated as RNA-binding proteins. Twenty seven of these proteins affected reporter expression in the tethering screen. Our study provides novel insights into the potential trypanosome mRNPs composition, architecture and function.
Collapse
Affiliation(s)
- Smiths Lueong
- Functional Genome Analysis, Deutsche Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Clementine Merce
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282
| | - Bernd Fischer
- Computational Genome Biology, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg
| | - Jörg D Hoheisel
- Functional Genome Analysis, Deutsche Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Esteban D Erben
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282
| |
Collapse
|
3
|
Alves LR, Oliveira C, Mörking PA, Kessler RL, Martins ST, Romagnoli BAA, Marchini FK, Goldenberg S. The mRNAs associated to a zinc finger protein from Trypanosoma cruzi shift during stress conditions. RNA Biol 2014; 11:921-33. [PMID: 25180711 PMCID: PMC4179965 DOI: 10.4161/rna.29622] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Trypanosome gene expression is regulated almost exclusively at the posttranscriptional level, through mRNA stability, storage and degradation. Here, we characterize the ribonucleoprotein complex (mRNPs) corresponding to the zinc finger protein TcZC3H39 from T. cruzi comparing cells growing in normal conditions and under nutritional stress. The nutritional stress is a key step during T. cruzi differentiation from epimastigote form to human infective metacyclic trypomastigote form. The mechanisms by which the stress, altogether with other stimuli, triggers differentiation is not well understood. This work aims to characterize the TcZC3H39 protein during stress response. Using cells cultured in normal and stress conditions, we observed a dynamic change in TcZC3H39 granule distribution, which appeared broader in stressed epimastigotes. The protein core of the TcZC3H39-mRNP is composed of ribosomes, translation factors and RBPs. The TcZC3H39-mRNP could act sequestering highly expressed mRNAs and their associated ribosomes, potentially slowing translation in stress conditions. A shift were observed in the mRNAs associated with TcZC3H39: the number of targets in unstressed epimastigotes was smaller than that in stressed parasites, with no clear functional clustering in normal conditions. By contrast, in stressed parasites, the targets of TcZC3H39 were mRNAs encoding ribosomal proteins and a remarkable enrichment in mRNAs for the cytochrome c complex (COX), highly expressed mRNAs in the replicative form. This identification of a new component of RNA granules in T. cruzi, the TcZC3H39 protein, provides new insight into the mechanisms involved in parasite stress responses and the regulation of gene expression during T. cruzi differentiation.
Collapse
|
4
|
Guha K, Bhandari D, Sen T, Saha P. Ubiquitination-mediated interaction among domains is responsible for inhibition of RNA endonuclease activity of mRNA cycling sequence binding protein from L. donovani (LdCSBP). Parasitol Res 2014; 113:2941-9. [PMID: 24908431 DOI: 10.1007/s00436-014-3956-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/20/2014] [Indexed: 11/25/2022]
Abstract
In nearly complete absence of transcriptional regulation, messenger RNA (mRNA) turnover mediated through specific cis-elements plays a predominant role in the control of differential gene expression for the disease causing trypanosomatid parasites. In these organisms, the periodic accumulation of S-phase messages during cell cycle is determined by the presence of one or more copies of a conserved CAUAGAAG octanucleotide motif in the untranslated regions of mRNAs. In our previous studies, a multi-domain cycling sequence binding protein LdCSBP from Leishmania donovani was characterized, which binds specifically to the octamer-containing RNAs via its uniquely arranged CCCH-type Zn fingers and degrades them through its small MutS-related (Smr) endonuclease domain, indicative of its potential role in the turnover of the S-phase mRNAs. Interestingly, the protein is modified by the incorporation of a monoubiquitin residue, and the posttranslational modification inhibits its riboendonuclease activity. However, the mechanism of such inhibition was previously unknown. Here, we establish that the CCCH-type Zn finger domain is the site of ubiquitination in LdCSBP and the interaction of CUE domain of the protein with the ubiquitinated Zn finger domain is responsible for inhibition of its riboendonuclease activity. The findings elucidate an inhibitory mechanism of RNA cleavage through ubiquitination-mediated intramolecular interaction among domains of the enzyme. Furthermore, the riboendonuclease activity is inhibited by anti-leishmanial drug paromomycin suggesting that the regulation of RNA metabolism could be a target of the drug.
Collapse
Affiliation(s)
- Kasturi Guha
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India
| | | | | | | |
Collapse
|
5
|
Rico E, Rojas F, Mony BM, Szoor B, Macgregor P, Matthews KR. Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei. Front Cell Infect Microbiol 2013; 3:78. [PMID: 24294594 PMCID: PMC3827541 DOI: 10.3389/fcimb.2013.00078] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/24/2013] [Indexed: 12/04/2022] Open
Abstract
African trypanosomes are sustained in the bloodstream of their mammalian hosts by their extreme capacity for antigenic variation. However, for life cycle progression, trypanosomes also must generate transmission stages called stumpy forms that are pre-adapted to survive when taken up during the bloodmeal of the disease vector, tsetse flies. These stumpy forms are rather different to the proliferative slender forms that maintain the bloodstream parasitaemia. Firstly, they are non proliferative and morphologically distinct, secondly, they show particular sensitivity to environmental cues that signal entry to the tsetse fly and, thirdly, they are relatively robust such that they survive the changes in temperature, pH and proteolytic environment encountered within the tsetse midgut. These characteristics require regulated changes in gene expression to pre-adapt the parasite and the use of environmental sensing mechanisms, both of which allow the rapid initiation of differentiation to tsetse midgut procyclic forms upon transmission. Interestingly, the generation of stumpy forms is also regulated and periodic in the mammalian blood, this being governed by a density-sensing mechanism whereby a parasite-derived signal drives cell cycle arrest and cellular development both to optimize transmission and to prevent uncontrolled parasite multiplication overwhelming the host. In this review we detail recent developments in our understanding of the molecular mechanisms that underpin the production of stumpy forms in the mammalian bloodstream and their signal perception pathways both in the mammalian bloodstream and upon entry into the tsetse fly. These discoveries are discussed in the context of conserved eukaryotic signaling and differentiation mechanisms. Further, their potential to act as targets for therapeutic strategies that disrupt parasite development either in the mammalian bloodstream or upon their transmission to tsetse flies is also discussed.
Collapse
Affiliation(s)
- Eva Rico
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
6
|
Walrad PB, Capewell P, Fenn K, Matthews KR. The post-transcriptional trans-acting regulator, TbZFP3, co-ordinates transmission-stage enriched mRNAs in Trypanosoma brucei. Nucleic Acids Res 2011; 40:2869-83. [PMID: 22140102 PMCID: PMC3326296 DOI: 10.1093/nar/gkr1106] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Post-transcriptional gene regulation is essential to eukaryotic development. This is particularly emphasized in trypanosome parasites where genes are co-transcribed in polycistronic arrays but not necessarily co-regulated. The small CCCH protein, TbZFP3, has been identified as a trans-acting post-transcriptional regulator of Procyclin surface antigen expression in Trypanosoma brucei. To investigate the wider role of TbZFP3 in parasite transmission, a global analysis of associating transcripts was carried out. Examination of a subset of the selected transcripts revealed their increased abundance through mRNA stabilization upon TbZFP3 ectopic overexpression, dependent upon the integrity of the CCCH zinc finger domain. Reporter assays demonstrated that this regulation was mediated through 3′-UTR sequences for two target transcripts. Global developmental expression profiling of the cohort of TbZFP3-selected transcripts revealed their significant enrichment in transmissible stumpy forms of the parasite. This analysis of the specific mRNAs selected by the TbZFP3mRNP provides evidence for a developmental regulon with the potential to co-ordinate genes important in parasite transmission.
Collapse
Affiliation(s)
- Pegine B Walrad
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, King's Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | | | | | | |
Collapse
|
7
|
The cell cycle regulated transcriptome of Trypanosoma brucei. PLoS One 2011; 6:e18425. [PMID: 21483801 PMCID: PMC3069104 DOI: 10.1371/journal.pone.0018425] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
Progression of the eukaryotic cell cycle requires the regulation of hundreds of genes to ensure that they are expressed at the required times. Integral to cell cycle progression in yeast and animal cells are temporally controlled, progressive waves of transcription mediated by cell cycle-regulated transcription factors. However, in the kinetoplastids, a group of early-branching eukaryotes including many important pathogens, transcriptional regulation is almost completely absent, raising questions about the extent of cell-cycle regulation in these organisms and the mechanisms whereby regulation is achieved. Here, we analyse gene expression over the Trypanosoma brucei cell cycle, measuring changes in mRNA abundance on a transcriptome-wide scale. We developed a “double-cut” elutriation procedure to select unperturbed, highly synchronous cell populations from log-phase cultures, and compared this to synchronization by starvation. Transcriptome profiling over the cell cycle revealed the regulation of at least 430 genes. While only a minority were homologous to known cell cycle regulated transcripts in yeast or human, their functions correlated with the cellular processes occurring at the time of peak expression. We searched for potential target sites of RNA-binding proteins in these transcripts, which might earmark them for selective degradation or stabilization. Over-represented sequence motifs were found in several co-regulated transcript groups and were conserved in other kinetoplastids. Furthermore, we found evidence for cell-cycle regulation of a flagellar protein regulon with a highly conserved sequence motif, bearing similarity to consensus PUF-protein binding motifs. RNA sequence motifs that are functional in cell-cycle regulation were more widespread than previously expected and conserved within kinetoplastids. These findings highlight the central importance of post-transcriptional regulation in the proliferation of parasitic kinetoplastids.
Collapse
|
8
|
Abstract
Trypanosomes are a group of protozoan eukaryotes, many of which are major parasites of humans and livestock. The genomes of trypanosomes and their modes of gene expression differ in several important aspects from those of other eukaryotic model organisms. Protein-coding genes are organized in large directional gene clusters on a genome-wide scale, and their polycistronic transcription is not generally regulated at initiation. Transcripts from these polycistrons are processed by global trans-splicing of pre-mRNA. Furthermore, in African trypanosomes, some protein-coding genes are transcribed by a multifunctional RNA polymerase I from a specialized extranucleolar compartment. The primary DNA sequence of the trypanosome genomes and their cellular organization have usually been treated as separate entities. However, it is becoming increasingly clear that in order to understand how a genome functions in a living cell, we will need to unravel how the one-dimensional genomic sequence and its trans-acting factors are arranged in the three-dimensional space of the eukaryotic nucleus. Understanding this cell biology of the genome will be crucial if we are to elucidate the genetic control mechanisms of parasitism. Here, we integrate the concepts of nuclear architecture, deduced largely from studies of yeast and mammalian nuclei, with recent developments in our knowledge of the trypanosome genome, gene expression, and nuclear organization. We also compare this nuclear organization to those in other systems in order to shed light on the evolution of nuclear architecture in eukaryotes.
Collapse
|
9
|
Bhandari D, Guha K, Bhaduri N, Saha P. Ubiquitination of mRNA cycling sequence binding protein from Leishmania donovani (LdCSBP) modulates the RNA endonuclease activity of its Smr domain. FEBS Lett 2011; 585:809-13. [PMID: 21315716 DOI: 10.1016/j.febslet.2011.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 02/04/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
Abstract
In trypanosomatid parasites, an octanucleotide sequence (C/A)AUAGAA(G/A) in the UTRs primarily determines the stability of S-phase specific mRNAs. A multi-domain protein LdCSBP from Leishmania donovani interacts with the UTR of an S-phase RNA containing the octanucleotide sequence through its unique CCCH-type Zn-finger motifs. Interestingly, the RNA binding protein contains a previously characterized DNA endonuclease domain - Smr. It has been demonstrated here that the LdCSBP Smr domain independently possesses both DNA and RNA endonuclease activities, but the full-length LdCSBP exhibits only riboendonuclease activity. Moreover, LdCSBP protein has been shown to be ubiquitinated, resulting in the down-regulation of its riboendonuclease activity. In conclusion, the results described here suggest a novel regulatory mechanism of mRNA degradation through ubiquitination in eukaryotes.
Collapse
Affiliation(s)
- Dipankar Bhandari
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | | | | | | |
Collapse
|
10
|
Kramer S, Carrington M. Trans-acting proteins regulating mRNA maturation, stability and translation in trypanosomatids. Trends Parasitol 2010; 27:23-30. [PMID: 20609625 PMCID: PMC3070815 DOI: 10.1016/j.pt.2010.06.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/05/2010] [Accepted: 06/07/2010] [Indexed: 12/30/2022]
Abstract
In trypanosomatids, alterations in gene expression in response to intrinsic or extrinsic signals are achieved through post-transcriptional mechanisms. In the last 20 years, research has concentrated on defining the responsible cis-elements in the untranslated regions of several regulated mRNAs. More recently, the focus has shifted towards the identification of RNA-binding proteins that act as trans-acting factors. Trypanosomatids have a large number of predicted RNA-binding proteins of which the vast majority have no orthologues in other eukaryotes. Several RNA-binding proteins have been shown to bind and/or regulate the expression of a group of mRNAs that code for functionally related proteins, indicating the possible presence of co-regulated mRNA cohorts.
Collapse
Affiliation(s)
- Susanne Kramer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK, CB2 1QW
| | | |
Collapse
|
11
|
Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. BMC Genomics 2010; 11:283. [PMID: 20444260 PMCID: PMC2873481 DOI: 10.1186/1471-2164-11-283] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 05/05/2010] [Indexed: 11/24/2022] Open
Abstract
Background CCCH type zinc finger proteins are RNA binding proteins with regulatory functions at all stages of mRNA metabolism. The best-characterized member, tritetraproline (TTP), binds to AU rich elements in 3' UTRs of unstable mRNAs, mediating their degradation. In kinetoplastids, CCCH type zinc finger proteins have been identified as being involved in the regulation of the life cycle and possibly the cell cycle. To date, no systematic listing of CCCH proteins in kinetoplastids is available. Results We have identified the complete set of CCCH type zinc finger proteins in the available genomes of the kinetoplastid protozoa Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. One fifths (20%) of all CCCH motifs fall into non-conventional classes and many had not been previously identified. One third of all CCCH proteins have more than one CCCH motif, suggesting multivalent RNA binding. One third have additional recognizable domains. The vast majority are unique to Kinetoplastida or to a subgroup within. Two exceptions are of interest: the putative orthologue of the mRNA nuclear export factor Mex67 and a 3'-5' exoribonuclease restricted to Leishmania species. CCCH motifs are absent from these proteins in other organisms and might be unique, novel features of the Kinetoplastida homologues. Of the others, several have a predicted, and in one case experimentally confirmed, connection to the ubiquitination pathways, for instance a HECT-type E3 ubiquitin ligase. The total number of kinetoplastid CCCH proteins is similar to the number in higher eukaryotes but lower than in yeast. A comparison of the genomic loci between the Trypanosomatidae homologues provides insight into both the evolution of the CCCH proteins as well as the CCCH motifs. Conclusion This study provides the first systematic listing of the Kinetoplastida CCCH proteins. The number of CCCH proteins with more then one CCCH motif is larger than previously estimated, due to the identification of non-conventional CCCH motifs. Experimental approaches are now necessary to examine the functions of the many unique CCCH proteins as well as the function of the putative Mex67 and the Leishmania 3'-5' exoribonuclease.
Collapse
|
12
|
A mitochondrial DNA primase is essential for cell growth and kinetoplast DNA replication in Trypanosoma brucei. Mol Cell Biol 2010; 30:1319-28. [PMID: 20065037 DOI: 10.1128/mcb.01231-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kinetoplast DNA in African trypanosomes contains a novel form of mitochondrial DNA consisting of thousands of minicircles and dozens of maxicircles topologically interlocked to form a two-dimensional sheet. The replication of this unusual form of mitochondrial DNA has been studied for more than 30 years, and although a large number of kinetoplast replication genes and proteins have been identified, in vitro replication of these DNAs has not been possible since a kinetoplast DNA primase has not been available. We describe here a Trypanosoma brucei DNA primase gene, PRI1, that encodes a 70-kDa protein that localizes to the kinetoplast and is essential for both cell growth and kinetoplast DNA replication. The expression of PRI1 mRNA is cyclic and reaches maximum levels at a time corresponding to duplication of the kinetoplast DNA. A 3'-hydroxyl-terminated oligoriboadenylate is synthesized on a poly(dT) template by a recombinant form of the PRI1 protein and is subsequently elongated by DNA polymerase and added dATP. Poly(dA) synthesis is dependent on both PRI1 protein and ATP and is inhibited by RNase H treatment of the product of PRI1 synthesis.
Collapse
|
13
|
Identification of new kinetoplast DNA replication proteins in trypanosomatids based on predicted S-phase expression and mitochondrial targeting. EUKARYOTIC CELL 2007; 6:2303-10. [PMID: 17965251 DOI: 10.1128/ec.00284-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosomatid parasites contain an unusual form of mitochondrial DNA (kinetoplast DNA [kDNA]) consisting of a catenated network of several thousand minicircles and a smaller number of maxicircles. Many of the proteins involved in the replication and division of kDNA are likely to have no counterparts in other organisms and would not be identified by similarity to known replication proteins in other organisms. A new kDNA replication protein conserved in kinetoplastids has been identified based on the presence of posttranscriptional regulatory sequences associated with S-phase gene expression and predicted mitochondrial targeting. The Leishmania major protein P105 (LmP105) and Trypanosoma brucei protein P93 (TbP93) localize to antipodal sites flanking the kDNA disk, where several other replication proteins and nascent minicircles have been localized. Like some of these kDNA replication proteins, the LmP105 protein is only present at the antipodal sites during S phase. RNA interference (RNAi) of TbP93 expression resulted in a cessation of cell growth and the loss of kDNA. Nicked/gapped forms of minicircles, the products of minicircle replication, were preferentially lost from the population of free minicircles during RNAi, suggesting involvement of TbP93 in minicircle replication. This approach should allow the identification of other novel proteins involved in the duplication of kDNA.
Collapse
|
14
|
Clayton C, Shapira M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol 2007; 156:93-101. [PMID: 17765983 DOI: 10.1016/j.molbiopara.2007.07.007] [Citation(s) in RCA: 311] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 11/25/2022]
Abstract
Gene expression in Kinetoplastids is very unusual in that the open reading frames are arranged in long polycistronic arrays, monocistronic mRNAs being created by post-transcriptional processing. Thus the regulation of gene expression is post-transcriptional. We here discuss recent results concerning the enzymes required for mRNA degradation, and components of the translation initiation machinery, and how both are regulated.
Collapse
Affiliation(s)
- Christine Clayton
- Zentrum für Molekualre Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D69120 Heidelberg, Germany.
| | | |
Collapse
|
15
|
Bhandari D, Saha P. mRNA cycling sequence binding protein from Leishmania donovani (LdCSBP) is covalently modified by ubiquitination. FEMS Microbiol Lett 2007; 273:206-13. [PMID: 17559572 DOI: 10.1111/j.1574-6968.2007.00789.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The lack of transcriptional regulation in trypanosomatids suggests the presence of distinct posttranscriptional mechanisms to control differential gene expression. In fact, the stability of S-phase specific mRNAs in these parasites is determined primarily by the presence of the octanucleotide sequence (C/A)AUAGAA(G/A) in the UTRs of the transcripts. Here, the characterization of LdCSBP is reported, which specifically binds to the octanucleotide containing RNA. The LdCSBP protein contains multiple putative functional domains, including two types of ubiquitin binding domains (UBA and CUE), two CCCH-type Zn-finger motifs probably responsible for specific RNA binding activity and a speculative endonuclease domain SMR. Interestingly, the protein is covalently modified through ubiquitination. This observation and the occurrence of multiple ubiquitin binding domains in the protein raise the possibility of regulation of the activity of LdCSBP by ubiquitination.
Collapse
Affiliation(s)
- Dipankar Bhandari
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | |
Collapse
|
16
|
Zamudio JR, Mittra B, Zeiner GM, Feder M, Bujnicki JM, Sturm NR, Campbell DA. Complete cap 4 formation is not required for viability in Trypanosoma brucei. EUKARYOTIC CELL 2006; 5:905-15. [PMID: 16757738 PMCID: PMC1489268 DOI: 10.1128/ec.00080-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In kinetoplastids spliced leader (SL) RNA is trans-spliced onto the 5' ends of all nuclear mRNAs, providing a universal exon with a unique cap. Mature SL contains an m(7)G cap, ribose 2'-O methylations on the first four nucleotides, and base methylations on nucleotides 1 and 4 (AACU). This structure is referred to as cap 4. Mutagenized SL RNAs that exhibit reduced cap 4 are trans-spliced, but these mRNAs do not associate with polysomes, suggesting a direct role in translation for cap 4, the primary SL sequence, or both. To separate SL RNA sequence alterations from cap 4 maturation, we have examined two ribose 2'-O-methyltransferases in Trypanosoma brucei. Both enzymes fall into the Rossmann fold class of methyltransferases and model into a conserved structure based on vaccinia virus homolog VP39. Knockdown of the methyltransferases individually or in combination did not affect growth rates and suggests a temporal placement in the cap 4 formation cascade: TbMT417 modifies A(2) and is not required for subsequent steps; TbMT511 methylates C(3), without which U(4) methylations are reduced. Incomplete cap 4 maturation was reflected in substrate SL and mRNA populations. Recombinant methyltransferases bind to a methyl donor and show preference for m(7)G-capped RNAs in vitro. Both enzymes reside in the nucleoplasm. Based on the cap phenotype of substrate SL stranded in the cytosol, A(2), C(3), and U(4) methylations are added after nuclear reimport of Sm protein-complexed substrate SL RNA. As mature cap 4 is dispensable for translation, cap 1 modifications and/or SL sequences are implicated in ribosomal interaction.
Collapse
Affiliation(s)
- Jesse R Zamudio
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Sinha KM, Hines JC, Ray DS. Cell cycle-dependent localization and properties of a second mitochondrial DNA ligase in Crithidia fasciculata. EUKARYOTIC CELL 2006; 5:54-61. [PMID: 16400168 PMCID: PMC1360255 DOI: 10.1128/ec.5.1.54-61.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mitochondrial DNA in kinetoplastid protozoa is contained in a single highly condensed structure consisting of thousands of minicircles and approximately 25 maxicircles. The disk-shaped structure is termed kinetoplast DNA (kDNA) and is located in the mitochondrial matrix near the basal body. We have previously identified a mitochondrial DNA ligase (LIG kbeta) in the trypanosomatid Crithidia fasciculata that localizes to antipodal sites flanking the kDNA disk where several other replication proteins are localized. We describe here a second mitochondrial DNA ligase (LIG kalpha). LIG kalpha localizes to the kinetoplast primarily in cells that have completed mitosis and contain either a dividing kinetoplast or two newly divided kinetoplasts. Essentially all dividing or newly divided kinetoplasts show localization of LIG kalpha. The ligase is present on both faces of the kDNA disk and at a high level in the kinetoflagellar zone of the mitochondrial matrix. Cells containing a single nucleus show localization of the LIG kalpha to the kDNA but at a much lower frequency. The mRNA level of LIG kalpha varies during the cell cycle out of phase with that of LIG kbeta. LIG kalpha transcript levels are maximal during the phase when cells contain two nuclei, whereas LIG kbeta transcript levels are maximal during S phase. The LIG kalpha protein decays with a half-life of 100 min in the absence of protein synthesis. The periodic expression of the LIG kalpha transcript and the instability of the LIG kalpha protein suggest a possible role of the ligase in regulating minicircle replication.
Collapse
Affiliation(s)
- Krishna Murari Sinha
- Molecular Biology Institute and Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, 301A Paul D. Boyer Hall, 611 Charles Young Dr. East, Los Angeles, California 90095-1570, USA
| | | | | |
Collapse
|
18
|
Zick A, Onn I, Bezalel R, Margalit H, Shlomai J. Assigning functions to genes: identification of S-phase expressed genes in Leishmania major based on post-transcriptional control elements. Nucleic Acids Res 2005; 33:4235-42. [PMID: 16052032 PMCID: PMC1181863 DOI: 10.1093/nar/gki742] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Assigning functions to genes is one of the major challenges of the post-genomic era. Usually, functions are assigned based on similarity of the coding sequences to sequences of known genes, or by identification of transcriptional cis-regulatory elements that are known to be associated with specific pathways or conditions. In trypanosomatids, where regulation of gene expression takes place mainly at the post-transcriptional level, new approaches for function assignment are needed. Here we demonstrate the identification of novel S-phase expressed genes in Leishmania major, based on a post-transcriptional control element that was recognized in Crithidia fasciculata as involved in the cell cycle-dependent expression of several nuclear and mitochondrial S-phase expressed genes. Hypothesizing that a similar regulatory mechanism is manifested in L.major, we have applied a computational search for similar control elements in the genome of L.major. Our computational scan yielded 132 genes, of which 33% are homologues of known DNA metabolism genes and 63% lack any annotation. Experimental testing of seven of these genes revealed that their mRNAs cycle throughout the cell cycle, reaching a maximum level during S-phase or just prior to it. It is suggested that screening for post-transcriptional control elements associated with a specific function provides an efficient method for assigning functions to trypanosomatid genes.
Collapse
Affiliation(s)
- Aviad Zick
- Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical SchoolJerusalem 91120, Israel
| | - Itay Onn
- Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical SchoolJerusalem 91120, Israel
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical SchoolJerusalem 91120, Israel
| | - Rachel Bezalel
- Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical SchoolJerusalem 91120, Israel
| | - Hanah Margalit
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical SchoolJerusalem 91120, Israel
| | - Joseph Shlomai
- Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical SchoolJerusalem 91120, Israel
- To whom correspondence should be addressed. Tel: 972 2 6758089; Fax: 972 2 6757425; E-mail:
| |
Collapse
|
19
|
Mittra B, Ray DS. Presence of a poly(A) binding protein and two proteins with cell cycle-dependent phosphorylation in Crithidia fasciculata mRNA cycling sequence binding protein II. EUKARYOTIC CELL 2005; 3:1185-97. [PMID: 15470247 PMCID: PMC522618 DOI: 10.1128/ec.3.5.1185-1197.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Crithidia fasciculata cycling sequence binding proteins (CSBP) have been shown to bind with high specificity to sequence elements present in several mRNAs that accumulate periodically during the cell cycle. The first described CSBP has subunits of 35.6 (CSBPA) and 42 kDa (CSBPB). A second distinct binding protein termed CSBP II has been purified from CSBPA null mutant cells, lacking both CSBPA and CSBPB proteins, and contains three major polypeptides with predicted molecular masses of 63, 44.5, and 33 kDa. Polypeptides of identical size were radiolabeled in UV cross-linking assays performed with purified CSBP II and 32P-labeled RNA probes containing six copies of the cycling sequence. The CSBP II binding activity was found to cycle in parallel with target mRNA levels during progression through the cell cycle. We have cloned genes encoding these three CSBP II proteins, termed RBP63, RBP45, and RBP33, and characterized their binding properties. The RBP63 protein is a member of the poly(A) binding protein family. Homologs of RBP45 and RBP33 proteins were found only among the kinetoplastids. Both RBP45 and RBP33 proteins and their homologs have a conserved carboxy-terminal half that contains a PSP1-like domain. All three CSBP II proteins show specificity for binding the wild-type cycling sequence in vitro. RBP45 and RBP33 are phosphoproteins, and RBP45 has been found to bind in vivo specifically to target mRNA containing cycling sequences. The levels of phosphorylation of both RBP45 and RBP33 were found to cycle during the cell cycle.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Molecular Biology Institute, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1570, USA
| | | |
Collapse
|
20
|
Sinha KM, Hines JC, Downey N, Ray DS. Mitochondrial DNA ligase in Crithidia fasciculata. Proc Natl Acad Sci U S A 2004; 101:4361-6. [PMID: 15070723 PMCID: PMC384752 DOI: 10.1073/pnas.0305705101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinetoplast DNA (kDNA), the form of mitochondrial DNA in trypanosomatids, consists of thousands of interlocked circular DNAs organized into a compact disk structure. A type II DNA topoisomerase, a DNA polymerase beta, and a structure-specific endonuclease have been localized to antipodal sites flanking the kDNA disk along with nascent DNA minicircles. We have cloned a gene (LIG k) encoding a mitochondrial DNA ligase in the trypanosomatid Crithidia fasciculata, and we show that an epitope-tagged form of the ligase colocalizes with the other replication proteins at the antipodal sites and also at the two faces of the kDNA disk. DNA LIG k becomes adenylated in reactions with ATP, and the adenylate moiety is removed by incubation with pyrophosphate or nicked DNA. The ligase interacts physically with the beta polymerase and is proposed to be involved in the repair of gaps in the newly synthesized minicircles. In yeast and mammals, a single gene encodes both nuclear and mitochondrial forms of DNA ligase. The LIG K protein sequence has low similarity to mitochondrial DNA ligases in other eukaryotes and is distinct from the C. fasciculata nuclear DNA ligase (LIG I).
Collapse
Affiliation(s)
- Krishna Murari Sinha
- Molecular Biology Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
21
|
Avliyakulov NK, Hines JC, Ray DS. Sequence elements in both the intergenic space and the 3' untranslated region of the Crithidia fasciculata KAP3 gene are required for cell cycle regulation of KAP3 mRNA. EUKARYOTIC CELL 2003; 2:671-7. [PMID: 12912886 PMCID: PMC178339 DOI: 10.1128/ec.2.4.671-677.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
mRNA levels of several Crithidia fasciculata genes involved in DNA metabolism have previously been found to cycle as cells progress through the cell cycle. Octamer consensus sequences in the 5' untranslated regions (5' UTRs) of these transcripts were shown to be required for cycling of these mRNAs. The KAP3 gene encodes a kinetoplast histone H1-like DNA binding protein, and its mRNA levels cycle in parallel with those of the kinetoplast DNA topoisomerase (TOP2), dihydrofolate reductase-thymidylate synthase (DHFR-TS), and the large subunit of the nuclear single-stranded DNA binding protein (RPA1). KAP3 mRNA contains two octamer consensus sequences in its 3' UTR but none in its 5' UTR. Mutation of these octamer sequences was not sufficient to prevent cycling of a sequence-tagged KAP3 mRNA expressed from a plasmid. Mutation of an octamer sequence contained on the precursor transcript but not on the mRNA, in addition to mutation of the two octamer sequences in the 3' UTR, was necessary to abolish cycling of the mRNA. The requirement for a sequence not present on the mature mRNA indicates that regulation of the mRNA levels by the octamer sequences occurs at or prior to splicing of the transcript. Incompletely processed RNAs containing octamer sequences were also found to accumulate during the cell cycle when the mRNA levels were lowest. These RNA species hybridize to both the KAP3 coding sequence and that of the downstream drug resistance gene, indicating a lack of processing within the intergenic region separating these genes. We propose a cell cycle-dependent interference in transcript processing mediated by octamer consensus sequences as a mechanism contributing to the cycling of such transcripts.
Collapse
Affiliation(s)
- Nuraly K Avliyakulov
- Molecular Biology Institute and Department of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, 90095-1570, USA
| | | | | |
Collapse
|
22
|
Mittra B, Sinha KM, Hines JC, Ray DS. Presence of multiple mRNA cycling sequence element-binding proteins in Crithidia fasciculata. J Biol Chem 2003; 278:26564-71. [PMID: 12730192 DOI: 10.1074/jbc.m304322200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A consensus sequence present in the 5'- or 3'-untranslated regions of several Crithidia fasciculata messenger RNAs encoding proteins involved in DNA metabolism has been shown to be necessary for the periodic accumulation of these mRNAs during the cell cycle. A protein complex termed cycling sequence-binding protein (CSBP) has two subunits, CSBPA and CSBPB, and binds the consensus sequence with high specificity. The binding activity of CSBP was shown to vary during the cell cycle in parallel with the levels of putative target mRNAs. Although disruption of the CSBPA gene resulted in loss of both CSBPA and CSBPB, the putative target message levels still continued to vary during the cell cycle. The presence of an additional and distinct binding activity was revealed in these CSBPA null mutant cells. This activity, termed CSBP II, was also expressed in wild-type Crithidia cells. CSBP II has higher binding specificity for the cycling sequence element than the earlier described CSBP complex. Three polypeptides associated with purified CSBP II show specific binding to the cycling sequence. These proteins may represent a family of sequence-specific RNA-binding proteins involved in post-transcriptional regulation.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Molecular Biology Institute and Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
23
|
|