1
|
Yang C, Basnet P, Sharmin S, Shen H, Kaplan C, Murakami K. Transcription start site scanning requires the fungi-specific hydrophobic loop of Tfb3. Nucleic Acids Res 2024; 52:11602-11611. [PMID: 39287137 PMCID: PMC11514446 DOI: 10.1093/nar/gkae805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/07/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
RNA polymerase II (pol II) initiates transcription from transcription start sites (TSSs) located ∼30-35 bp downstream of the TATA box in metazoans, whereas in the yeast Saccharomyces cerevisiae, pol II scans further downstream TSSs located ∼40-120 bp downstream of the TATA box. Previously, we found that removal of the kinase module TFIIK (Kin28-Ccl1-Tfb3) from TFIIH shifts the TSS in a yeast in vitro system upstream to the location observed in metazoans and that addition of recombinant Tfb3 back to TFIIH-ΔTFIIK restores the downstream TSS usage. Here, we report that this biochemical activity of yeast TFIIK in TSS scanning is attributable to the Tfb3 RING domain at the interface with pol II in the pre-initiation complex (PIC): especially, swapping Tfb3 Pro51-a residue conserved among all fungi-with Ala or Ser as in MAT1, the metazoan homolog of Tfb3, confers an upstream TSS shift in vitro in a similar manner to the removal of TFIIK. Yeast genetic analysis suggests that both Pro51 and Arg64 of Tfb3 are required to maintain the stability of the Tfb3-pol II interface in the PIC. Cryo-electron microscopy analysis of a yeast PIC lacking TFIIK reveals considerable variability in the orientation of TFIIH, which impairs TSS scanning after promoter opening.
Collapse
Affiliation(s)
- Chun Yang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 415 CurieBlvd. Philadelphia, PA 19104, USA
| | - Pratik Basnet
- Department of Biological Sciences, University of Pittsburgh, 5th and Ruskin Avenues, Pittsburgh, PA 15260, USA
| | - Samah Sharmin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 415 CurieBlvd. Philadelphia, PA 19104, USA
| | - Hui Shen
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing 210009, China
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, 5th and Ruskin Avenues, Pittsburgh, PA 15260, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 415 CurieBlvd. Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Chen X, Liu W, Wang Q, Wang X, Ren Y, Qu X, Li W, Xu Y. Structural visualization of transcription initiation in action. Science 2023; 382:eadi5120. [PMID: 38127763 DOI: 10.1126/science.adi5120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
Transcription initiation is a complex process, and its mechanism is incompletely understood. We determined the structures of de novo transcribing complexes TC2 to TC17 with RNA polymerase II halted on G-less promoters when nascent RNAs reach 2 to 17 nucleotides in length, respectively. Connecting these structures generated a movie and a working model. As initially synthesized RNA grows, general transcription factors (GTFs) remain bound to the promoter and the transcription bubble expands. Nucleoside triphosphate (NTP)-driven RNA-DNA translocation and template-strand accumulation in a nearly sealed channel may promote the transition from initially transcribing complexes (ITCs) (TC2 to TC9) to early elongation complexes (EECs) (TC10 to TC17). Our study shows dynamic processes of transcription initiation and reveals why ITCs require GTFs and bubble expansion for initial RNA synthesis, whereas EECs need GTF dissociation from the promoter and bubble collapse for promoter escape.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xuechun Qu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Wanjun Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Caroli J, Mattevi A. The NPAC-LSD2 complex in nucleosome demethylation. Enzymes 2023; 53:97-111. [PMID: 37748839 DOI: 10.1016/bs.enz.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
NPAC is a transcriptional co-activator widely associated with the H3K36me3 epigenetic marks present in the gene bodies. NPAC plays a fundamental role in RNA polymerase progression, and its depletion downregulates gene transcription. In this chapter, we review the current knowledge on the functional and structural features of this multi-domain protein. NPAC (also named GLYR1 or NP60) contains a PWWP motif, a chromatin binder and epigenetic reader that is proposed to weaken the DNA-histone contacts facilitating polymerase passage through the nucleosomes. The C-terminus of NPAC is a catalytically inactive dehydrogenase domain that forms a stable and rigid tetramer acting as an oligomerization module for the formation of co-transcriptional multimeric complexes. The PWWP and dehydrogenase domains are connected by a long, mostly disordered, linker that comprises putative sites for protein and DNA interactions. A short dodecapeptide sequence (residues 214-225) forms the binding site for LSD2, a flavin-dependent lysine-specific histone demethylase. This stretch of residues binds on the surface of LSD2 and facilitates the capture and processing of the H3 tail in the nucleosome context, thus promoting the H3K4me1/2 epigenetic mark removal. LSD2 is associated with other two chromatin modifiers, G9a and NSD3. The LSD2-G9a-NSD3 complex modifies the pattern of the post translational modifications deposited on histones, thus converting the relaxed chromatin into a transcriptionally refractory state after the RNA polymerase passage. NPAC is a scaffolding factor that organizes and coordinates the epigenetic activities required for optimal transcription elongation.
Collapse
Affiliation(s)
- Jonatan Caroli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
4
|
DeLaney E, Luse DS. Gdown1 Associates Efficiently with RNA Polymerase II after Promoter Clearance and Displaces TFIIF during Transcript Elongation. PLoS One 2016; 11:e0163649. [PMID: 27716820 PMCID: PMC5055313 DOI: 10.1371/journal.pone.0163649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
Pausing during the earliest stage of transcript elongation by RNA polymerase II (Pol II) is a nearly universal control point in metazoan gene expression. The substoichiometric Pol II subunit Gdown1 facilitates promoter proximal pausing in vitro in extract-based transcription reactions, out-competes the initiation/elongation factor TFIIF for binding to free Pol II and co-localizes with paused Pol II in vivo. However, we have shown that Gdown1 cannot functionally associate with the Pol II preinitiation complex (PIC), which contains TFIIF. In the present study, we determined at what point after initiation Gdown1 can associate with Pol II and how rapidly this competition with TFIIF occurs. We show that, as with the PIC, Gdown1 cannot functionally load into open complexes or complexes engaged in abortive synthesis of very short RNAs. Gdown1 can load into early elongation complexes (EECs) with 5–9 nt RNAs, but efficient association with EECs does not take place until the point at which the upstream segment of the long initial transcription bubble reanneals. Tests of EECs assembled on a series of promoter variants confirm that this bubble collapse transition, and not transcript length, modulates Gdown1 functional affinity. Gdown1 displaces TFIIF effectively from all complexes downstream of the collapse transition, but this displacement is surprisingly slow: complete loss of TFIIF stimulation of elongation requires 5 min of incubation with Gdown1. The relatively slow functional loading of Gdown1 in the presence of TFIIF suggests that Gdown1 works in promoter-proximal pausing by locking in the paused state after elongation is already antagonized by other factors, including DSIF, NELF and possibly the first downstream nucleosome.
Collapse
Affiliation(s)
- Elizabeth DeLaney
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Donal S. Luse
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
5
|
Hochschild A. Mastering Transcription: Multiplexed Analysis of Transcription Start Site Sequences. Mol Cell 2016; 60:829-31. [PMID: 26687597 DOI: 10.1016/j.molcel.2015.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this issue of Molecular Cell, Vvedenskaya et al. (2015) describe a high-throughput sequencing-based methodology for the massively parallel analysis of transcription from a high-complexity barcoded template library both in vitro and in vivo, providing a powerful new tool for the study of transcription.
Collapse
Affiliation(s)
- Ann Hochschild
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Horn AE, Kugel JF, Goodrich JA. Single molecule microscopy reveals mechanistic insight into RNA polymerase II preinitiation complex assembly and transcriptional activity. Nucleic Acids Res 2016; 44:7132-43. [PMID: 27112574 PMCID: PMC5009721 DOI: 10.1093/nar/gkw321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/13/2016] [Indexed: 01/18/2023] Open
Abstract
Transcription by RNA polymerase II (Pol II) is a complex process that requires general transcription factors and Pol II to assemble on DNA into preinitiation complexes that can begin RNA synthesis upon binding of NTPs (nucleoside triphosphate). The pathways by which preinitiation complexes form, and how this impacts transcriptional activity are not completely clear. To address these issues, we developed a single molecule system using TIRF (total internal reflection fluorescence) microscopy and purified human transcription factors, which allows us to visualize transcriptional activity at individual template molecules. We see that stable interactions between polymerase II (Pol II) and a heteroduplex DNA template do not depend on general transcription factors; however, transcriptional activity is highly dependent upon TATA-binding protein, TFIIB and TFIIF. We also found that subsets of general transcription factors and Pol II can form stable complexes that are precursors for functional transcription complexes upon addition of the remaining factors and DNA. Ultimately we found that Pol II, TATA-binding protein, TFIIB and TFIIF can form a quaternary complex in the absence of promoter DNA, indicating that a stable network of interactions exists between these proteins independent of promoter DNA. Single molecule studies can be used to learn how different modes of preinitiation complex assembly impact transcriptional activity.
Collapse
Affiliation(s)
- Abigail E Horn
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jennifer F Kugel
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - James A Goodrich
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
7
|
Luse DS. The RNA polymerase II preinitiation complex. Through what pathway is the complex assembled? Transcription 2015; 5:e27050. [PMID: 25764109 DOI: 10.4161/trns.27050] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The general transcription factors required for the assembly of the RNA polymerase II preinitiation complex at TATA-dependent promoters are well known. However, recent studies point to two quite distinct pathways for assembly of these components into functional transcription complexes. In this review, the two pathways are compared and potential implications for gene regulatory mechanisms are discussed.
Collapse
Affiliation(s)
- Donal S Luse
- a Department of Molecular Genetics; Lerner Research Institute; Cleveland Clinic; Cleveland, OH USA
| |
Collapse
|
8
|
Voss C, Schmitt B, Werner-Simon S, Lutz C, Simon W, Anderl J. A novel, non-radioactive eukaryotic in vitro transcription assay for sensitive quantification of RNA polymerase II activity. BMC Mol Biol 2014; 15:7. [PMID: 24694320 PMCID: PMC4021065 DOI: 10.1186/1471-2199-15-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 03/11/2014] [Indexed: 11/28/2022] Open
Abstract
Background Many studies of the eukaryotic transcription mechanism and its regulation rely on in vitro assays. Conventional RNA polymerase II transcription assays are based on radioactive labelling of the newly synthesized RNA. Due to the inefficient in vitro transcription, the detection of the RNA involving purification and gel electrophoresis is laborious and not always quantitative. Results Herein, we describe a new, non-radioactive, robust and reproducible eukaryotic in vitro transcription assay that has been established in our laboratory. Upon transcription, the newly synthesized RNA is directly detected and quantified using the QuantiGene assay. Alternatively, the RNA can be purified and a primer extension followed by PCR detection or qPCR quantification can be performed. When applied to assess the activity of RNA polymerase II inhibitors, this new method allowed an accurate estimation of their relative potency. Conclusions Our novel assay provides a non-radioactive alternative to a standard in vitro transcription assay that allows for sensitive detection and precise quantification of the newly transcribed, unlabelled RNA and is particularly useful for quantification of strong transcriptional inhibitors like α-amanitin. Moreover, the method can be easily adapted to quantify the reaction yield and the transcription efficiency of other eukaryotic in vitro systems, thus providing a complementary tool for the field of transcriptional research.
Collapse
Affiliation(s)
- Cristina Voss
- Department of Biochemistry and Cell Biology, Heidelberg-Pharma GmbH, Schriesheimer Str, 101, Ladenburg D-68526, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Nock A, Ascano JM, Barrero MJ, Malik S. Mediator-regulated transcription through the +1 nucleosome. Mol Cell 2012; 48:837-48. [PMID: 23159738 DOI: 10.1016/j.molcel.2012.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 06/21/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
Many genes are regulated at the level of a Pol II that is recruited to a nucleosome-free region upstream of the +1 nucleosome. How the Mediator coactivator complex, which functions at multiple steps, affects transcription through the promoter proximal region, including this nucleosome, remains largely unaddressed. We have established a fully defined in vitro assay system to delineate mechanisms for Pol II transit across the +1 nucleosome. Our results reveal cooperative functions of multiple cofactors, particularly of Mediator and elongation factor SII, in transcribing into this nucleosome. This is achieved, in part, through an unusual activity of SII that alters the intrinsic catalytic properties of promoter-proximal Pol II and, in concert with the Mediator, leads to enhancement in transcription of nucleosomal DNA. Our data provide additional mechanistic bases for Mediator function after recruitment of Pol II and, potentially, for regulation of genes controlled via nucleosome-mediated promoter-proximal pausing.
Collapse
Affiliation(s)
- Adam Nock
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | | | | |
Collapse
|
10
|
Luse DS. Promoter clearance by RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:63-8. [PMID: 22982364 DOI: 10.1016/j.bbagrm.2012.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/17/2012] [Accepted: 08/29/2012] [Indexed: 12/17/2022]
Abstract
Many changes must occur to the RNA polymerase II (pol II) transcription complex as it makes the transition from initiation into transcript elongation. During this intermediate phase of transcription, contact with initiation factors is lost and stable association with the nascent transcript is established. These changes collectively comprise promoter clearance. Once the transcript elongation complex has reached a point where its properties are indistinguishable from those of complexes with much longer transcripts, promoter clearance is complete. The clearance process for pol II consists of a number of steps and it extends for a surprisingly long distance downstream of transcription start. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Donal S Luse
- Department of Molecular Genetics, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
11
|
Strathern JN, Jin DJ, Court DL, Kashlev M. Isolation and characterization of transcription fidelity mutants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:694-9. [PMID: 22366339 DOI: 10.1016/j.bbagrm.2012.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/27/2012] [Accepted: 02/01/2012] [Indexed: 10/28/2022]
Abstract
Accurate transcription is an essential step in maintaining genetic information. Error-prone transcription has been proposed to contribute to cancer, aging, adaptive mutagenesis, and mutagenic evolution of retroviruses and retrotransposons. The mechanisms controlling transcription fidelity and the biological consequences of transcription errors are poorly understood. Because of the transient nature of mRNAs and the lack of reliable experimental systems, the identification and characterization of defects that increase transcription errors have been particularly challenging. In this review we describe novel genetic screens for the isolation of fidelity mutants in both Saccharomyces cerevisiae and Escherichia coli RNA polymerases. We obtained and characterized two distinct classes of mutants altering NTP misincorporation and transcription slippage both in vivo and in vitro. Our study not only validates the genetic schemes for the isolation of RNA polymerase mutants that alter fidelity, but also sheds light on the mechanism of transcription accuracy. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Jeffrey N Strathern
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
12
|
Liu X, Bushnell DA, Silva DA, Huang X, Kornberg RD. Initiation complex structure and promoter proofreading. Science 2011; 333:633-7. [PMID: 21798951 DOI: 10.1126/science.1206629] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The initiation of transcription by RNA polymerase II is a multistage process. X-ray crystal structures of transcription complexes containing short RNAs reveal three structural states: one with 2- and 3-nucleotide RNAs, in which only the 3'-end of the RNA is detectable; a second state with 4- and 5-nucleotide RNAs, with an RNA-DNA hybrid in a grossly distorted conformation; and a third state with RNAs of 6 nucleotides and longer, essentially the same as a stable elongating complex. The transition from the first to the second state correlates with a markedly reduced frequency of abortive initiation. The transition from the second to the third state correlates with partial "bubble collapse" and promoter escape. Polymerase structure is permissive for abortive initiation, thereby setting a lower limit on polymerase-promoter complex lifetime and allowing the dissociation of nonspecific complexes. Abortive initiation may be viewed as promoter proofreading, and the structural transitions as checkpoints for promoter control.
Collapse
Affiliation(s)
- Xin Liu
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
13
|
Larson MH, Landick R, Block SM. Single-molecule studies of RNA polymerase: one singular sensation, every little step it takes. Mol Cell 2011; 41:249-62. [PMID: 21292158 DOI: 10.1016/j.molcel.2011.01.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/09/2010] [Accepted: 01/05/2011] [Indexed: 11/17/2022]
Abstract
Transcription is the first of many biochemical steps that turn the genetic information found in DNA into the proteins responsible for driving cellular processes. In this review, we highlight certain advantages of single-molecule techniques in the study of prokaryotic and eukaryotic transcription, and the specific ways in which these techniques complement conventional, ensemble-based biochemistry. We focus on recent literature, highlighting examples where single-molecule methods have provided fresh insights into mechanism. We also present recent technological advances and outline future directions in the field.
Collapse
Affiliation(s)
- Matthew H Larson
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
14
|
Turnbough CL. Regulation of gene expression by reiterative transcription. Curr Opin Microbiol 2011; 14:142-7. [PMID: 21334966 DOI: 10.1016/j.mib.2011.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
Gene regulation involves many different types of transcription control mechanisms, including mechanisms based on reiterative transcription in which nucleotides are repetitively added to the 3' end of a nascent transcript due to upstream transcript slippage. In these mechanisms, reiterative transcription is typically modulated by interactions between RNA polymerase and its nucleoside triphosphate substrates without the involvement of regulatory proteins. This review describes the current state of knowledge of gene regulation involving reiterative transcription. It focuses on the methods by which reiterative transcription is controlled and emphasizes the different fates of transcripts produced by this reaction. The review also includes a discussion of possible new and fundamentally different mechanisms of gene regulation that rely on conditional reiterative transcription.
Collapse
Affiliation(s)
- Charles L Turnbough
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
15
|
Transcript Slippage and Recoding. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2010. [DOI: 10.1007/978-0-387-89382-2_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Gilman B, Drullinger LF, Kugel JF, Goodrich JA. TATA-binding protein and transcription factor IIB induce transcript slipping during early transcription by RNA polymerase II. J Biol Chem 2009; 284:9093-8. [PMID: 19193635 DOI: 10.1074/jbc.m900019200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better understand the mechanism of steps in early transcription by RNA polymerase II (pol II), we investigated the molecular determinants of transcript slipping within complexes assembled on promoters containing a pre-melted transcription bubble from -9 to +3. Transcript slippage occurs when an RNA transcript contains a repetitive sequence that allows the transcript to slip back and pair with the template strand of the DNA at a new register before transcription continues. We established the contributions of individual transcription factors, DNA elements, and RNA length to slipping on a heteroduplex template using a highly purified human pol II transcription system. We found that transcripts slip at a very defined point in the transcription reaction, after pol II completes phosphodiester bond synthesis at register +5. This point is set by the position of the polymerase active site on the DNA template, as opposed to the length of the transcript, as well as by a repetitive CUCU sequence that must occur from +2 to +5. Interestingly, slipping at this juncture is induced by TATA-binding protein and transcription factor IIB and requires a TATA box but not a transcription factor IIB recognition sequence. We propose a model in which transcribing complexes, upon completing phosphodiester bond synthesis at register +5, enter one of two branches in which they either complete productive synthesis of the transcript or undergo multiple rounds of transcript slipping.
Collapse
Affiliation(s)
- Benjamin Gilman
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Single-pair fluorescence resonance energy transfer was used to track RNA exiting from RNA polymerase II (Pol II) in elongation complexes. Measuring the distance between the RNA 5' end and three known locations within the elongation complex allows us determine its position by means of triangulation. RNA leaves the polymerase active center cleft via the previously proposed exit tunnel and then disengages from the enzyme surface. When the RNA reaches lengths of 26 and 29 nt, its 5' end associates with Pol II at the base of the dock domain. Because the initiation factor TFIIB binds to the dock domain and exit tunnel, exiting RNA may prevent TFIIB reassociation during elongation. RNA further extends toward the linker connecting to the polymerase C-terminal repeat domain (CTD), which binds the 5'-capping enzyme and other RNA processing factors.
Collapse
|
18
|
Hieb AR, Baran S, Goodrich JA, Kugel JF. An 8 nt RNA triggers a rate-limiting shift of RNA polymerase II complexes into elongation. EMBO J 2006; 25:3100-9. [PMID: 16778763 PMCID: PMC1500975 DOI: 10.1038/sj.emboj.7601197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 05/22/2006] [Indexed: 11/08/2022] Open
Abstract
To better understand the critical conversions that RNA polymerase II complexes undergo during promoter escape, we determined in vitro the precise positions of the rate-limiting step and the last step requiring negative superhelicity or TFIIE and TFIIH. We found that both steps occur after synthesis of an 8 nt RNA during the stage encompassing translocation of the polymerase active site to the ninth register. When added to reactions just before this step, TFIIE and TFIIH overcame the requirement for negative superhelicity. The positions at which both steps occur were strictly dependent on RNA length as opposed to the location of the polymerase relative to promoter elements, showing that the transcript itself controls transformations during promoter escape. We propose a model in which completion of promoter escape involves a rate-limiting conversion of early transcribing complexes into elongation complexes. This transformation is triggered by synthesis of an 8 nt RNA, occurs independent of the general transcription factors, and requires under-winding in the DNA template via negative superhelicity or the action of TFIIE and TFIIH.
Collapse
Affiliation(s)
- Aaron R Hieb
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Sean Baran
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - James A Goodrich
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, Boulder, CO 80309-0215, USA. Tel.: +1 303 492 3273; Fax: +1 303 492 5894; E-mail:
| | - Jennifer F Kugel
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, Boulder, CO 80309-0215, USA. Tel.: +1 303 735 0955; Fax: +1 303 492 5894; E-mail:
| |
Collapse
|
19
|
Ujvári A, Luse DS. RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit. Nat Struct Mol Biol 2005; 13:49-54. [PMID: 16327806 DOI: 10.1038/nsmb1026] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 10/25/2005] [Indexed: 01/22/2023]
Abstract
Structural studies of RNA polymerase II have suggested two possible exit paths for the nascent RNA: groove 1, which points toward the subcomplex of subunits Rpb4 and Rpb7, and groove 2, which points toward Rpb8. These alternatives could not be distinguished previously because less than 10 nucleotides (nt) of transcript were resolved in the structures. We have approached this question by UV cross-linking nascent RNA to components of the transcription complex through uridine analogs located within the first six nucleotides of the RNA. We find that the emerging transcript cross-links to the Rpb7 subunit of RNA polymerase II in various complexes containing 26- to 32-nt transcripts. This interaction is greatly reduced in complexes with 41- or 43-nt RNAs and absent when the transcript is 125 nt. Our results are consistent with groove 1 being the exit path for nascent RNA.
Collapse
Affiliation(s)
- Andrea Ujvári
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
20
|
Weaver JR, Kugel JF, Goodrich JA. The Sequence at Specific Positions in the Early Transcribed Region Sets the Rate of Transcript Synthesis by RNA Polymerase II in Vitro. J Biol Chem 2005; 280:39860-9. [PMID: 16210313 DOI: 10.1074/jbc.m509376200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To further understand the mechanism of promoter escape by RNA polymerase II, we have systematically investigated the effect of core promoter sequence on the rate of transcript synthesis in vitro. Chimeric and mutant promoters were made by swapping sequences between the human interleukin-2 promoter and the adenovirus major late promoter, which exhibit different rates of transcript synthesis. Kinetic studies at these promoters revealed that sequences downstream of the start sites set the rate of transcript synthesis. Specifically, the sequences at +2 and +7/+8 are critical for determining the rate; when either +2 is a C (nontemplate strand) or +7/+8 is a TT (nontemplate strand), transcript synthesis is slow. At +7/+8, the thermodynamic stability of the RNA:DNA hybrid controls the overall rate of transcript synthesis. Our data support a model in which the rate-limiting step during transcript synthesis by RNA polymerase II in vitro occurs at the point in the reaction at which early ternary complexes transform into elongation complexes.
Collapse
Affiliation(s)
- Jessica R Weaver
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | |
Collapse
|
21
|
Pal M, Ponticelli AS, Luse DS. The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. Mol Cell 2005; 19:101-10. [PMID: 15989968 DOI: 10.1016/j.molcel.2005.05.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Revised: 04/20/2005] [Accepted: 05/19/2005] [Indexed: 11/27/2022]
Abstract
We have studied promoter clearance at a series of RNA polymerase II promoters with varying spacing of the TATA box and start site. We find that regardless of promoter spacing, the upstream edge of the transcription bubble forms 20 bp from TATA. The bubble expands downstream until 18 bases are unwound and the RNA is at least 7 nt long, at which point the upstream approximately 8 bases of the bubble abruptly reanneal (bubble collapse). If either bubble size or transcript length is insufficient, bubble collapse cannot occur. Bubble collapse coincides with the end of the requirement for the TFIIH helicase for efficient transcript elongation. We also provide evidence that bubble collapse suppresses pausing at +7 to +9 caused by the presence of the B finger segment of TFIIB within the complex. Our results indicate that bubble collapse defines the RNA polymerase II promoter clearance transition.
Collapse
Affiliation(s)
- Mahadeb Pal
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
22
|
Weber A, Liu J, Collins I, Levens D. TFIIH operates through an expanded proximal promoter to fine-tune c-myc expression. Mol Cell Biol 2005; 25:147-61. [PMID: 15601838 PMCID: PMC538784 DOI: 10.1128/mcb.25.1.147-161.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A continuous stream of activating and repressing signals is processed by the transcription complex paused at the promoter of the c-myc proto-oncogene. The general transcription factor IIH (TFIIH) is held at promoters prior to promoter escape and so is well situated to channel the input of activators and repressors to modulate c-myc expression. We have compared cells expressing only a mutated p89 (xeroderma pigmentosum complementation group B [XPB]), the largest TFIIH subunit, with the same cells functionally complemented with the wild-type protein (XPB/wt-p89). Here, we show structural, compositional, and functional differences in transcription complexes between XPB and XPB/wt-89 cells at the native c-myc promoter. Remarkably, although the mean levels of c-Myc are only modestly elevated in XPB compared to those in XPB/wt-p89 cells, the range of expression and the cell-to-cell variation of c-Myc are markedly increased. Our modeling indicates that the data can be explained if TFIIH integrates inputs from multiple signals, regulating transcription at multiple kinetically equivalent steps between initiation and promoter escape. This helps to suppress the intrinsic noise of transcription and to ensure the steady transcriptional output of c-myc necessary for cellular homeostasis.
Collapse
Affiliation(s)
- Achim Weber
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute/NIH, Bldg. 10, Rm. 2N106, Bethesda, MD 20892-1500, USA
| | | | | | | |
Collapse
|
23
|
Sims RJ, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev 2004; 18:2437-68. [PMID: 15489290 DOI: 10.1101/gad.1235904] [Citation(s) in RCA: 533] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Appreciable advances into the process of transcript elongation by RNA polymerase II (RNAP II) have identified this stage as a dynamic and highly regulated step of the transcription cycle. Here, we discuss the many factors that regulate the elongation stage of transcription. Our discussion includes the classical elongation factors that modulate the activity of RNAP II, and the more recently identified factors that facilitate elongation on chromatin templates. Additionally, we discuss the factors that associate with RNAP II, but do not modulate its catalytic activity. Elongation is highlighted as a central process that coordinates multiple stages in mRNA biogenesis and maturation.
Collapse
Affiliation(s)
- Robert J Sims
- Howard Hughes Medical Institute, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
24
|
Mandal SS, Chu C, Wada T, Handa H, Shatkin AJ, Reinberg D. Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II. Proc Natl Acad Sci U S A 2004; 101:7572-7. [PMID: 15136722 PMCID: PMC419647 DOI: 10.1073/pnas.0401493101] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Capping of the 5' ends of nascent RNA polymerase II transcripts is the first pre-mRNA processing event in all eukaryotic cells. Capping enzyme (CE) is recruited to transcription complexes soon after initiation by the phosphorylation of Ser-5 of the carboxyl-terminal domain of the largest subunit of RNA polymerase II. Here, we analyze the role of CE in promoter clearance and its functional interactions with different factors that are involved in promoter clearance. FCP1-mediated dephosphorylation of the carboxyl-terminal domain results in a drastic decrease in cotranscriptional capping efficiency but is reversed by the presence of DRB sensitivity-inducing factor (DSIF). These results suggest involvement of DSIF in CE recruitment. Importantly, CE relieves transcriptional repression by the negative elongation factor, indicating a critical role of CE in the elongation checkpoint control mechanism during promoter clearance. This functional interaction between CE and the negative elongation factor documents a dynamic role of CE in promoter clearance beyond its catalytic activities.
Collapse
Affiliation(s)
- Subhrangsu S Mandal
- Division of Nucleic Acids Enzymology, Department of Biochemistry, Robert Wood Johnson Medical School and Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, 81377 Munich, Germany
| |
Collapse
|
26
|
Pal M, Luse DS. The initiation-elongation transition: lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23. Proc Natl Acad Sci U S A 2003; 100:5700-5. [PMID: 12719526 PMCID: PMC156264 DOI: 10.1073/pnas.1037057100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RNA polymerase II transcription complexes stalled shortly after initiation over a repetitive segment of the template can undergo efficient transcript slippage, during which the 3' end of the RNA slides upstream and then re-pairs with the template, allowing transcription to continue. In the present study, we have used transcript slippage as an assay to identify possible structural transitions that occur as the polymerase passes from the initiation to the elongation phase of transcription. We reasoned that transcript slippage would not occur in fully processive complexes. We constructed a series of templates that allowed us to stall RNA polymerase II after the synthesis of a repetitive sequence (5'-CUCUCU-3') at varying distances downstream of +1. We found that polymerase must synthesize at least a 23-nt RNA to attain resistance to transcript slippage. The ability to undergo slippage was lost in two discrete steps, suggestive of two distinct transitions. The first transition is the formation of the 8- to 9-bp mature RNA-DNA hybrid, when slippage abruptly dropped by 10-fold. However, easily detectable slippage continued until 14 more bonds were made. Thus, although the transcript becomes tightly constrained within the transcription complex once the hybrid reaches its final length, much more RNA synthesis is required before the RNA is no longer able to slip upstream along the template. This last point may reflect an important stabilizing role for the interaction of the polymerase with the transcript well upstream of the RNA-DNA hybrid.
Collapse
Affiliation(s)
- Mahadeb Pal
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
27
|
Vo NV, Hsu LM, Kane CM, Chamberlin MJ. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 2. Formation and characterization of two distinct classes of initial transcribing complexes. Biochemistry 2003; 42:3787-97. [PMID: 12667070 DOI: 10.1021/bi0269613] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By following the kinetics of abortive and productive synthesis in single-round transcription assays, we confirm the existence of two general classes of initial transcribing complexes (ITCs), which we term "productive ITC" and "unproductive ITC". The productive ITCs are able to escape from the promoter rapidly to produce full-length transcripts, but only after carrying out an obligate series of abortive initiation steps. The unproductive ITCs were found to synthesize mostly abortive transcripts of 2-3 nucleotides and escape from the promoter extremely slowly, if at all. Formation of the unproductive ITC is not due to the inactive RNA polymerase. Instead, RNA polymerase molecules recovered from both the productive and unproductive ITC fractions were shown to carry out abortive and productive synthesis with both the partitioning tendency and transcription kinetics similar to those of the original enzyme. Our results suggest that early transcription complexes are partitioned into the productive and unproductive ITCs most likely during the formation of open promoter complexes. The extent of partitioning varies with individual promoter sequences and is dependent on the nature and concentration of the initiating nucleotide. Thus, multiple classes of ITCs can be formed during promoter binding and transcript initiation.
Collapse
Affiliation(s)
- Nam V Vo
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | | | |
Collapse
|
28
|
Hsu LM, Vo NV, Kane CM, Chamberlin MJ. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 1. RNA chain initiation, abortive initiation, and promoter escape at three bacteriophage promoters. Biochemistry 2003; 42:3777-86. [PMID: 12667069 DOI: 10.1021/bi026954e] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA chain initiation and promoter escape is the latter stage of transcription initiation. This stage is characterized by several well-defined biochemical events: synthesis and release of short RNA products ranging 2 to 15 nucleotides in length, release of the sigma subunit from the enzyme-promoter complex, and initial translocation of the polymerase away from the promoter. In this paper, we report the use of a steady-state transcription assay with [gamma-(32)P]ATP labeling to subject the RNA chain initiation-promoter escape reaction to quantitative analysis. The specific parameters we follow to describe the chain initiation-promoter escape process include the abortive and productive rates, the abortive probability, the abortive:productive ratio, and the maximal size of the abortive product. In this study, we measure these parameters for three bacteriophage promoters transcribed by Escherichia coli RNA polymerase: T7 A1, T5 N25, and T5 N25(antiDSR). Our studies show that all three promoters form substantial amounts of abortive products under all conditions we tested. However, each of the promoters shows distinct differences from the others when the various parameters are compared. At 100 microM NTP, in a 10 min reaction, the abortive and productive yields are 87 and 13%, respectively, for T7 A1; 97 and 3%, respectively, for T5 N25; and 99.4 and 0.6%, respectively, for T5 N25(antiDSR). These values correspond to approximately 7, 32, and 165 abortive transcripts per productive transcript for the three promoters, respectively. The yield of most of the abortive products is not affected by the elevated concentration of the NTP substrate corresponding to the next template-specified nucleotide; hence, abortive products are not normally formed through a simple process of "kinetic competition". Instead, formation of abortive products appears to be determined by intrinsic DNA signals embedded in the promoter recognition region and the initial transcribed sequence region of each promoter.
Collapse
Affiliation(s)
- Lilian M Hsu
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 0l075-6456, USA.
| | | | | | | |
Collapse
|
29
|
Watanabe T, Hayashi K, Tanaka A, Furumoto T, Hanaoka F, Ohkuma Y. The carboxy terminus of the small subunit of TFIIE regulates the transition from transcription initiation to elongation by RNA polymerase II. Mol Cell Biol 2003; 23:2914-26. [PMID: 12665589 PMCID: PMC152561 DOI: 10.1128/mcb.23.8.2914-2926.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 11/26/2002] [Accepted: 01/28/2003] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIIE plays essential roles in both transcription initiation and the transition from initiation to elongation. Previously, we systematically deleted the structural motifs and characteristic sequences of the small subunit of human TFIIE (hTFIIE beta) to map its functional regions. Here we introduced point mutations into two regions located near the carboxy terminus of hTFIIE beta and identified the functionally essential amino acid residues that bind to RNA polymerase II (Pol II), the general transcription factors, and single-stranded DNA. Although most residues identified were essential for transcription initiation, use of an in vitro transcription assay with a linearized template revealed that several residues in the carboxy-terminal helix-loop region are crucially involved in the transition stage. Mutations in these residues also affected the ability of hTFIIE beta to stimulate TFIIH-mediated phosphorylation of the carboxy-terminal heptapeptide repeats of the largest subunit of Pol II. Furthermore, these mutations conspicuously augmented the binding of hTFIIE beta to the p44 subunit of TFIIH. The antibody study indicated that they thus altered the conformation of one side of TFIIH, consisting of p44, XPD, and Cdk-activating kinase subunits, that is essential for the transition stage. This is an important clue for elucidating the molecular mechanisms involved in the transition stage.
Collapse
Affiliation(s)
- Tomomichi Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Sijbrandi R, Fiedler U, Timmers HTM. RNA polymerase II complexes in the very early phase of transcription are not susceptible to TFIIS-induced exonucleolytic cleavage. Nucleic Acids Res 2002; 30:2290-8. [PMID: 12034815 PMCID: PMC117193 DOI: 10.1093/nar/30.11.2290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2002] [Revised: 04/03/2002] [Accepted: 04/03/2002] [Indexed: 11/14/2022] Open
Abstract
TFIIS is a transcription elongation factor for RNA polymerase II (pol II), which can suppress ribonucleotide misincorporation. We reconstituted transcription complexes in a highly purified pol II system on adenovirus Major-Late promoter constructs. We noted that these complexes have a high propensity for read-through upon GTP omission. Read-through occurred during the early stages at all registers analyzed. Addition of TFIIS reversed read-through of productive elongation complexes, which indicated that it was due to misincorporation. However, before register 13 transcription complexes were insensitive to TFIIS. These findings are discussed with respect to the structural models for pol II and we propose that TFIIS action is linked to the RNA:DNA hybrid.
Collapse
Affiliation(s)
- Robert Sijbrandi
- Laboratory for Physiological Chemistry, UMCU, Stratenum, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|