1
|
Seidler JF, Sträßer K. Understanding nuclear mRNA export: Survival under stress. Mol Cell 2024; 84:3681-3691. [PMID: 39366354 DOI: 10.1016/j.molcel.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Nuclear messenger RNA (mRNA) export is vital for cell survival under both physiological and stress conditions. To cope with stress, cells block bulk mRNA export while selectively exporting stress-specific mRNAs. Under physiological conditions, nuclear adaptor proteins recruit the mRNA exporter to the mRNA for export. By contrast, during stress conditions, the mRNA exporter is likely directly recruited to stress-specific mRNAs at their transcription sites to facilitate selective mRNA export. In this review, we summarize our current understanding of nuclear mRNA export. Importantly, we explore insights into the mechanisms that block bulk mRNA export and facilitate transcript-specific mRNA export under stress, highlighting the gaps that still need to be filled.
Collapse
Affiliation(s)
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, 35392 Giessen, Germany.
| |
Collapse
|
2
|
Arul Nambi Rajan A, Asada R, Montpetit B. Gle1 is required for tRNA to stimulate Dbp5 ATPase activity in vitro and promote Dbp5-mediated tRNA export in vivo in Saccharomyces cerevisiae. eLife 2024; 12:RP89835. [PMID: 38189406 PMCID: PMC10945473 DOI: 10.7554/elife.89835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Cells must maintain a pool of processed and charged transfer RNAs (tRNA) to sustain translation capacity and efficiency. Numerous parallel pathways support the processing and directional movement of tRNA in and out of the nucleus to meet this cellular demand. Recently, several proteins known to control messenger RNA (mRNA) transport were implicated in tRNA export. The DEAD-box Protein 5, Dbp5, is one such example. In this study, genetic and molecular evidence demonstrates that Dbp5 functions parallel to the canonical tRNA export factor Los1. In vivo co-immunoprecipitation data further shows Dbp5 is recruited to tRNA independent of Los1, Msn5 (another tRNA export factor), or Mex67 (mRNA export adaptor), which contrasts with Dbp5 recruitment to mRNA that is abolished upon loss of Mex67 function. However, as with mRNA export, overexpression of Dbp5 dominant-negative mutants indicates a functional ATPase cycle and that binding of Dbp5 to Gle1 is required by Dbp5 to direct tRNA export. Biochemical characterization of the Dbp5 catalytic cycle demonstrates the direct interaction of Dbp5 with tRNA (or double-stranded RNA) does not activate Dbp5 ATPase activity, rather tRNA acts synergistically with Gle1 to fully activate Dbp5. These data suggest a model where Dbp5 directly binds tRNA to mediate export, which is spatially regulated via Dbp5 ATPase activation at nuclear pore complexes by Gle1.
Collapse
Affiliation(s)
- Arvind Arul Nambi Rajan
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, DavisDavisUnited States
| | - Ryuta Asada
- Department of Viticulture and Enology, University of California, DavisDavisUnited States
| | - Ben Montpetit
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, DavisDavisUnited States
- Department of Viticulture and Enology, University of California, DavisDavisUnited States
| |
Collapse
|
3
|
Rajan AAN, Asada R, Montpetit B. Gle1 is required for tRNA to stimulate Dbp5 ATPase activity in vitro and to promote Dbp5 mediated tRNA export in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547072. [PMID: 37425677 PMCID: PMC10327206 DOI: 10.1101/2023.06.29.547072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cells must maintain a pool of processed and charged transfer RNAs (tRNA) to sustain translation capacity and efficiency. Numerous parallel pathways support the processing and directional movement of tRNA in and out of the nucleus to meet this cellular demand. Recently, several proteins known to control messenger RNA (mRNA) transport were implicated in tRNA export. The DEAD-box Protein 5, Dbp5, is one such example. In this study, genetic and molecular evidence demonstrates that Dbp5 functions parallel to the canonical tRNA export factor Los1. In vivo co-immunoprecipitation data further shows Dbp5 is recruited to tRNA independent of Los1, Msn5 (another tRNA export factor), or Mex67 (mRNA export adaptor), which contrasts with Dbp5 recruitment to mRNA that is abolished upon loss of Mex67 function. However, as with mRNA export, overexpression of Dbp5 dominant-negative mutants indicates a functional ATPase cycle and that binding of Dbp5 to Gle1 is required by Dbp5 to direct tRNA export. Biochemical characterization of the Dbp5 catalytic cycle demonstrates the direct interaction of Dbp5 with tRNA (or double stranded RNA) does not activate Dbp5 ATPase activity, rather tRNA acts synergistically with Gle1 to fully activate Dbp5. These data suggest a model where Dbp5 directly binds tRNA to mediate export, which is spatially regulated via Dbp5 ATPase activation at nuclear pore complexes by Gle1.
Collapse
Affiliation(s)
- Arvind Arul Nambi Rajan
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
| | - Ryuta Asada
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Ben Montpetit
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| |
Collapse
|
4
|
Full-Length Transcriptome Comparison Provides Novel Insights into the Molecular Basis of Adaptation to Different Ecological Niches of the Deep-Sea Hydrothermal Vent in Alvinocaridid Shrimps. DIVERSITY 2022. [DOI: 10.3390/d14050371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The deep-sea hydrothermal vent ecosystem is one of the extreme chemoautotrophic environments. Shinkaicaris leurokolos Kikuchi and Hashimoto, 2000, and Alvinocaris longirostris Kikuchi and Ohta, 1995, are typically co-distributed and closely related alvinocaridid shrimps in hydrothermal vent areas with different ecological niches, providing an excellent model for studying the adaptive evolution mechanism of animals in the extreme deep-sea hydrothermal vent environment. The shrimp S. leurokolos lives in close proximity to the chimney vent discharging high-temperature fluid, while A. longirostris inhabits the peripheral areas of hydrothermal vents. In this study, full-length transcriptomes of S. leurokolos and A. longirostris were generated using a combination of single-molecule real-time (SMRT) and Illumina RNA-seq technology. Expression analyses of the transcriptomes showed that among the top 30% of highly expressed genes of each species, more genes related to sulfide and heavy metal metabolism (sulfide: quinone oxidoreductase, SQR; persulfide dioxygenase, ETHE1; thiosulfate sulfurtransferase, TST, and ferritin, FRI) were specifically highly expressed in S. leurokolos, while genes involved in maintaining epibiotic bacteria or pathogen resistance (beta-1,3-glucan-binding protein, BGBP; endochitinase, CHIT; acidic mammalian chitinase, CHIA, and anti-lipopolysaccharide factors, ALPS) were highly expressed in A. longirostris. Gene family expansion analysis revealed that genes related to anti-oxidant metabolism (cytosolic manganese superoxide dismutase, SODM; glutathione S-transferase, GST, and glutathione peroxidase, GPX) and heat stress (heat shock cognate 70 kDa protein, HSP70 and heat shock 70 kDa protein cognate 4, HSP7D) underwent significant expansion in S. leurokolos, while CHIA and CHIT involved in pathogen resistance significantly expanded in A. longirostris. Finally, 66 positively selected genes (PSGs) were identified in the vent shrimp S. leurokolos. Most of the PSGs were involved in DNA repair, antioxidation, immune defense, and heat stress response, suggesting their function in the adaptive evolution of species inhabiting the extreme vent microhabitat. This study provides abundant genetic resources for deep-sea invertebrates, and is expected to lay the foundation for deep decipherment of the adaptive evolution mechanism of shrimps in a deep-sea chemosynthetic ecosystem based on further whole-genome comparison.
Collapse
|
5
|
Yu B, Zhou S, Long D, Ning Y, Yao H, Zhou E, Wang Y. DDX55 promotes HCC progression via interacting with BRD4 and participating in exosome-mediated cell-cell communication. Cancer Sci 2022; 113:3002-3017. [PMID: 35514200 PMCID: PMC9459289 DOI: 10.1111/cas.15393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/27/2022] Open
Abstract
The involvement of DEAD‐box helicase 55 (DDX55) in oncogenesis has been suggested, but its biological role in hepatocellular carcinoma (HCC) remains unknown. The present study verified the upregulation of DDX55 in HCC tissues compared with non‐tumor controls. DDX55 displayed the highest prognostic values among the DEAD‐box protein family for recurrence‐free survival and overall survival of HCC patients. In addition, the effects of DDX55 in the promotion of HCC cell proliferation, migration, and invasion were determined ex vivo and in vivo. Mechanistically, we revealed that DDX55 could interact with BRD4 to form a transcriptional regulatory complex that positively regulated PIK3CA transcription. Following that, β‐catenin signaling was activated in a PI3K/Akt/GSK‐3β dependent manner, thus inducing cell cycle progression and epithelial–mesenchymal transition. Intriguingly, both DDX55 mRNA and protein were identified in the exosomes derived from HCC cells. Exosomal DDX55 was implicated in intercellular communication between HCC cells with high or low DDX55 levels and between HCC cells and endothelial cells, thereby promoting the malignant phenotype of HCC cells and angiogenesis. In conclusion, DDX55 may be a valuable prognostic biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Bin Yu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Dakun Long
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Yuxiang Ning
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Hanlin Yao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Encheng Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| |
Collapse
|
6
|
Lin DH, Correia AR, Cai SW, Huber FM, Jette CA, Hoelz A. Structural and functional analysis of mRNA export regulation by the nuclear pore complex. Nat Commun 2018; 9:2319. [PMID: 29899397 PMCID: PMC5998080 DOI: 10.1038/s41467-018-04459-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/27/2018] [Indexed: 11/25/2022] Open
Abstract
The nuclear pore complex (NPC) controls the passage of macromolecules between the nucleus and cytoplasm, but how the NPC directly participates in macromolecular transport remains poorly understood. In the final step of mRNA export, the DEAD-box helicase DDX19 is activated by the nucleoporins Gle1, Nup214, and Nup42 to remove Nxf1•Nxt1 from mRNAs. Here, we report crystal structures of Gle1•Nup42 from three organisms that reveal an evolutionarily conserved binding mode. Biochemical reconstitution of the DDX19 ATPase cycle establishes that human DDX19 activation does not require IP6, unlike its fungal homologs, and that Gle1 stability affects DDX19 activation. Mutations linked to motor neuron diseases cause decreased Gle1 thermostability, implicating nucleoporin misfolding as a disease determinant. Crystal structures of human Gle1•Nup42•DDX19 reveal the structural rearrangements in DDX19 from an auto-inhibited to an RNA-binding competent state. Together, our results provide the foundation for further mechanistic analyses of mRNA export in humans. The export of mRNA to the cytosol depends on the nuclear pore complex (NPC) and the activation of the helicase DDX19, but their interplay in humans remains poorly understood. Here, the authors present a structural and functional analysis of DDX19 activation, revealing how the human NPC regulates mRNA export.
Collapse
Affiliation(s)
- Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Ana R Correia
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Sarah W Cai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Ferdinand M Huber
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Claudia A Jette
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
| |
Collapse
|
7
|
Adams RL, Mason AC, Glass L, Aditi, Wente SR. Nup42 and IP 6 coordinate Gle1 stimulation of Dbp5/DDX19B for mRNA export in yeast and human cells. Traffic 2017; 18:776-790. [PMID: 28869701 DOI: 10.1111/tra.12526] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 11/30/2022]
Abstract
The mRNA lifecycle is driven through spatiotemporal changes in the protein composition of mRNA particles (mRNPs) that are triggered by RNA-dependent DEAD-box protein (Dbp) ATPases. As mRNPs exit the nuclear pore complex (NPC) in Saccharomyces cerevisiae, this remodeling occurs through activation of Dbp5 by inositol hexakisphosphate (IP6 )-bound Gle1. At the NPC, Gle1 also binds Nup42, but Nup42's molecular function is unclear. Here we employ the power of structure-function analysis in S. cerevisiae and human (h) cells, and find that the high-affinity Nup42-Gle1 interaction is integral to Dbp5 (hDDX19B) activation and efficient mRNA export. The Nup42 carboxy-terminal domain (CTD) binds Gle1/hGle1B at an interface distinct from the Gle1-Dbp5/hDDX19B interaction site. A nup42-CTD/gle1-CTD/Dbp5 trimeric complex forms in the presence of IP6 . Deletion of NUP42 abrogates Gle1-Dbp5 interaction, and disruption of the Nup42 or IP6 binding interfaces on Gle1/hGle1B leads to defective mRNA export in S. cerevisiae and human cells. In vitro, Nup42-CTD and IP6 stimulate Gle1/hGle1B activation of Dbp5 and DDX19B recombinant proteins in similar, nonadditive manners, demonstrating complete functional conservation between humans and S. cerevisiae. Together, a highly conserved mechanism governs spatial coordination of mRNP remodeling during export. This has implications for understanding human disease mutations that perturb the Nup42-hGle1B interaction.
Collapse
Affiliation(s)
- Rebecca L Adams
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Aaron C Mason
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Laura Glass
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Aditi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
8
|
Nucleoporin FG domains facilitate mRNP remodeling at the cytoplasmic face of the nuclear pore complex. Genetics 2014; 197:1213-24. [PMID: 24931410 DOI: 10.1534/genetics.114.164012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Directional export of messenger RNA (mRNA) protein particles (mRNPs) through nuclear pore complexes (NPCs) requires multiple factors. In Saccharomyces cerevisiae, the NPC proteins Nup159 and Nup42 are asymmetrically localized to the cytoplasmic face and have distinct functional domains: a phenylalanine-glycine (FG) repeat domain that docks mRNP transport receptors and domains that bind the DEAD-box ATPase Dbp5 and its activating cofactor Gle1, respectively. We speculated that the Nup42 and Nup159 FG domains play a role in positioning mRNPs for the terminal mRNP-remodeling steps carried out by Dbp5. Here we find that deletion (Δ) of both the Nup42 and Nup159 FG domains results in a cold-sensitive poly(A)+ mRNA export defect. The nup42ΔFG nup159ΔFG mutant also has synthetic lethal genetic interactions with dbp5 and gle1 mutants. RNA cross-linking experiments further indicate that the nup42ΔFG nup159ΔFG mutant has a reduced capacity for mRNP remodeling during export. To further analyze the role of these FG domains, we replaced the Nup159 or Nup42 FG domains with FG domains from other Nups. These FG "swaps" demonstrate that only certain FG domains are functional at the NPC cytoplasmic face. Strikingly, fusing the Nup42 FG domain to the carboxy-terminus of Gle1 bypasses the need for the endogenous Nup42 FG domain, highlighting the importance of proximal positioning for these factors. We conclude that the Nup42 and Nup159 FG domains target the mRNP to Gle1 and Dbp5 for mRNP remodeling at the NPC. Moreover, these results provide key evidence that character and context play a direct role in FG domain function and mRNA export.
Collapse
|
9
|
Ethanol Stress Response in the mRNA Flux ofSaccharomyces cerevisiae. Biosci Biotechnol Biochem 2014; 74:7-12. [DOI: 10.1271/bbb.90686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Tieg B, Krebber H. Dbp5 - from nuclear export to translation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:791-8. [PMID: 23128325 DOI: 10.1016/j.bbagrm.2012.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/17/2012] [Accepted: 10/26/2012] [Indexed: 12/17/2022]
Abstract
The DEAD-box RNA helicase Dbp5 is an essential and conserved mRNA export factor which functions in the ATP dependent remodeling of RNA/protein complexes. As such it displaces mRNA bound proteins at the cytoplasmic site of the nuclear pore complex. For the regulation of its RNA-dependent ATPase activity during late steps of nuclear transport, Dbp5 requires the nucleoporin Nup159 and its cofactors Gle1 and IP6. In addition to its role in mRNA export, a second important function of Dbp5 was identified in translation termination, where it acts together with eRF1 once the translation machinery has reached the stop codon. Similar to mRNA export, this function also requires Gle1-IP6, however, the counterpart of Nup159 is still missing. Potential other functions of the nucleo-cytoplasmic protein Dbp5 are discussed as well as its substrate specificity and details in its regulatory cycle that are based on recent biochemical and structural characterization. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Bettina Tieg
- Georg-August Universität Göttingen, Göttingen, Germany
| | | |
Collapse
|
11
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
12
|
Abstract
Studies in the past several years highlight important features of the messenger RNA (mRNA) export process. For instance, groups of mRNAs acting in the same biochemical processes can be retained or exported in a coordinated manner thereby impacting on specific biochemistries and ultimately on cell physiology. mRNAs can be transported by either bulk export pathways involving NXF1/TAP or more specialized pathways involving chromosome region maintenance 1 (CRM1). Studies on primary tumor specimens indicate that many common and specialized mRNA export factors are dysregulated in cancer including CRM1, eukaryotic translation initiation factor 4E (eIF4E), HuR, nucleoporin 88, REF/Aly, and THO. This positions these pathways as potential therapeutic targets. Recently, specific targeting of the eIF4E-dependent mRNA export pathway in a phase II proof-of-principle trial with ribavirin led to impaired eIF4E-dependent mRNA export correlating with clinical responses including remissions in leukemia patients. Here, we provide an overview of these mRNA export pathways and highlight their relationship to cancer.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | | |
Collapse
|
13
|
Muthuswamy S, Meier I. Genetic and environmental changes in SUMO homeostasis lead to nuclear mRNA retention in plants. PLANTA 2011; 233:201-8. [PMID: 20872268 DOI: 10.1007/s00425-010-1278-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 09/12/2010] [Indexed: 05/23/2023]
Abstract
Protein sumoylation plays an important role in plant development, flowering-time regulation, and abiotic stress response. However, the molecular role of sumoylation in these pathways is largely unknown. It was shown previously that in mutants of the inner nuclear basket nucleoporin NUA a large increase in the abundance of high-molecular weight SUMO conjugated proteins correlated with nuclear retention of bulk mRNA. Here, the connection between sumoylation and mRNA export in plants was further investigated. Both SUMO-conjugate accumulation and mRNA retention were also found in a second nucleoporin mutant that does not affect NUA, and SUMO conjugates accumulated predominantly in the nucleus. Similarly, after heat and ethanol treatment, two abiotic stress treatments known to lead to the accumulation of sumoylated proteins, nuclear mRNA was retained. To establish a causal relationship between sumoylation and mRNA export, mutations in two enzymes in the SUMO pathway were tested. Mutating either SUMO E3 ligase or SUMO isopeptidase lead to nuclear mRNA retention, indicating that both an increase and a decrease in the pool of sumoylated nuclear proteins blocks mRNA export. Together, these data show that sumoylation acts upstream of mRNA export in plants, likely through the transient sumoylation status of one or more factors involved in mRNA trafficking.
Collapse
|
14
|
The mitogen-activated protein kinase Slt2 regulates nuclear retention of non-heat shock mRNAs during heat shock-induced stress. Mol Cell Biol 2010; 30:5168-79. [PMID: 20823268 DOI: 10.1128/mcb.00735-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cellular adaptation to environmental stress conditions requires rapid and specific changes in gene expression. During heat shock, most polyadenylated mRNAs are retained in the nucleus, whereas the export of heat shock-induced mRNAs is allowed. Although essential mRNA export factors are known, the precise mechanism for regulating transport is not fully understood. Here we find that during heat shock in Saccharomyces cerevisiae, the mRNA-binding protein Nab2 is phosphorylated on threonine 178 and serine 180 by the mitogen-activated protein (MAP) kinase Slt2/Mpk1. Slt2 is required for nuclear poly(A(+)) mRNA accumulation upon heat shock, and thermotolerance is decreased in a nup42 nab2-T178A/S180A mutant. Coincident with phosphorylation, Nab2 and Yra1 colocalize in nuclear foci with Mlp1, a protein involved in mRNA retention. Nab2 nuclear focus formation and Nab2 phosphorylation are independent, suggesting that heat shock induces multiple cellular alterations that impinge upon transport efficiency. Under normal conditions, we find that the mRNA export receptor Mex67 and Nab2 directly interact. However, upon heat shock stress, Mex67 does not localize to the Mlp1 nuclear foci, and its association with Nab2 complexes is reduced. These results reveal a novel mechanism by which the MAP kinase Slt2 and Mlp1 control mRNA export factors during heat shock stress.
Collapse
|
15
|
Structure of the C-terminus of the mRNA export factor Dbp5 reveals the interaction surface for the ATPase activator Gle1. Proc Natl Acad Sci U S A 2009; 106:16251-6. [PMID: 19805289 DOI: 10.1073/pnas.0902251106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The DExD/H-box RNA-dependent ATPase Dbp5 plays an essential role in the nuclear export of mRNA. Dbp5 localizes to the nuclear pore complex, where its ATPase activity is stimulated by Gle1 and its coactivator inositol hexakisphosphate. Here, we present the crystal structure of the C-terminal domain of Dbp5, refined to 1.8 A. The structure reveals a RecA-like fold that contains two defining characteristics not present in other structurally characterized DExD/H-box proteins: a C-terminal alpha-helix and a loop connecting beta5 and alpha4, both of which are composed of conserved and unique elements in the Dbp5 primary sequence. Using structure-guided mutagenesis, we have identified several charged surface residues that, when mutated, weaken the binding of Gle1 and inhibit the ability of Gle1 to stimulate Dbp5's ATPase activity. In vivo analysis of the same mutations reveals that those mutants displaying the weakest ATPase stimulation in vitro are also unable to support yeast growth. Analysis of the correlation between the in vitro and in vivo data indicates that a threshold level of Dbp5 ATPase activity is required for cellular mRNA export that is not met by the unstimulated enzyme, suggesting a possible mechanism by which Dbp5's activity can be modulated to regulate mRNA export.
Collapse
|
16
|
Fan JS, Cheng Z, Zhang J, Noble C, Zhou Z, Song H, Yang D. Solution and crystal structures of mRNA exporter Dbp5p and its interaction with nucleotides. J Mol Biol 2009; 388:1-10. [PMID: 19281819 DOI: 10.1016/j.jmb.2009.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/28/2009] [Accepted: 03/03/2009] [Indexed: 11/19/2022]
Abstract
DEAD-box protein 5 (Dbp5p) plays very important roles in RNA metabolism from transcription, to translation, to RNA decay. It is an RNA helicase and functions as an essential RNA export factor from nucleus. Here, we report the solution NMR structures of the N- and C-terminal domains (NTD and CTD, respectively) of Dbp5p from Saccharomyces cerevisiae (ScDbp5p) and X-ray crystal structure of Dbp5p from Schizosaccharomyces pombe (SpDbp5p) in the absence of nucleotides and RNA. The crystal structure clearly shows that SpDbp5p comprises two RecA-like domains that do not interact with each other. NMR results show that the N-terminal flanking region of ScDpbp5 (M1-E70) is intrinsically unstructured and the region Y71-R121 including the Q motif is highly dynamic on millisecond-microsecond timescales in solution. The C-terminal flanking region of ScDbp5p forms a short beta-strand and a long helix. This helix is unique for ScDbp5p and has not been observed in other DEAD-box proteins. Compared with other DEAD-box proteins, Dbp5p has an extra insert with six residues in the CTD. NMR structure reveals that the insert is located in a solvent-exposed loop capable of interacting with other proteins. ATP and ADP titration experiments show that both ADP and ATP bind to the consensus binding site in the NTD of ScDbp5p but do not interact with the CTD at all. Binding of ATP or ADP to NTD induces significant conformational rearrangement too.
Collapse
Affiliation(s)
- Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | | | | | | | | | | | |
Collapse
|
17
|
Heat shock and ethanol stress provoke distinctly different responses in 3′-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae. Biochem J 2008; 414:111-9. [DOI: 10.1042/bj20071567] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Under conditions of heat shock at 42 °C, mRNAs of HSP (heat shock protein) genes are exported out of the nucleus, whereas bulk poly(A)+ (polyadenylated) mRNA shows a nuclear accumulation in Saccharomyces cerevisiae. Such a selective mRNA export seems an efficacious strategy of yeast cells to adapt rapidly to stress. Although ethanol stress (10%, v/v) as well as heat shock blocks the export of bulk poly(A)+ mRNA, the differences and/or similarity between heat shock and ethanol stress in the mechanisms of selective mRNA export still remain to be clarified. We found that ethanol stress induced transcriptional activation of a subset of yeast HSP genes; however, intriguingly, most such transcripts remained in the nucleus in a hyperadenylated state and, as a consequence, were not translated into HSPs. Elimination of ethanol resulted in a rapid shortening of the poly(A) tails of HSP mRNAs, loss of their nuclear retention, and the coincidental synthesis of the respective HSPs. Since HSP mRNAs are selectively exported from the nucleus in heat-shocked cells, yeast cells respond differently to ethanol stress and heat shock in the 3′-processing and transport of HSP mRNAs. Furthermore, these results also suggest that hyperadenylation and nuclear retention of mRNAs might be used as a means to control eukaryotic gene expression under stressed conditions.
Collapse
|
18
|
Chinnusamy V, Gong Z, Zhu JK. Nuclear RNA Export and Its Importance in Abiotic Stress Responses of Plants. Curr Top Microbiol Immunol 2008; 326:235-55. [DOI: 10.1007/978-3-540-76776-3_13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Rollenhagen C, Hodge CA, Cole CN. Following temperature stress, export of heat shock mRNA occurs efficiently in cells with mutations in genes normally important for mRNA export. EUKARYOTIC CELL 2007; 6:505-13. [PMID: 17259545 PMCID: PMC1828927 DOI: 10.1128/ec.00317-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heat shock leads to accumulation of polyadenylated RNA in nuclei of Saccharomyces cerevisiae cells, transcriptional induction of heat shock genes, and efficient export of polyadenylated heat shock mRNAs. These studies were conducted to examine the requirements for export of mRNA following heat shock. We used in situ hybridization to detect SSA4 mRNA (encoding Hsp70) and flow cytometry to measure the amount of Ssa4p-green fluorescent protein (GFP) produced following heat shock. Npl3p and Yra1p are mRNA-binding proteins recruited to nascent mRNAs and are essential for proper mRNA biogenesis and export. Heat shock mRNA was exported efficiently in temperature-sensitive npl3, yra1, and npl3 yra1 mutant strains. Nevertheless, Yra1p was recruited to heat shock mRNA, as were Nab2p and Npl3p. Interestingly, Yra1p was not recruited to heat shock mRNA in yra1-1 cells, suggesting that Npl3p is required for recruitment of Yra1p. The THO complex, which functions in transcription elongation and in recruitment of Yra1p, was not required for heat shock mRNA export, although normal mRNA export is impaired in growing cells lacking THO complex proteins. Taken together, these studies indicate that export following heat shock depends upon fewer factors than does mRNA export in growing cells. Furthermore, even though some mRNA-binding proteins are dispensable for efficient export of heat shock mRNA, those that are present in nuclei of heat shocked cells were recruited to heat shock mRNA.
Collapse
|
20
|
Selitrennik M, Duek L, Lotan R, Choder M. Nucleocytoplasmic shuttling of the Rpb4p and Rpb7p subunits of Saccharomyces cerevisiae RNA polymerase II by two pathways. EUKARYOTIC CELL 2006; 5:2092-103. [PMID: 17056745 PMCID: PMC1694818 DOI: 10.1128/ec.00288-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rpb4p and Rpb7p are subunits of the RNA polymerase II of Saccharomyces cerevisiae that form a dissociable heterodimeric complex. Whereas the only reported function of Rpb7p is related to transcription, Rpb4p has been found to also act in mRNA export and in the major mRNA decay pathway that operates in the cytoplasm, thus raising the possibility that Rpb4p links between the nuclear and cytoplasmic processes. Here we show that both Rpb4p and Rpb7p shuttle between the nucleus and the cytoplasm. Shuttling kinetics of the two proteins are similar as long as their interaction is possible, suggesting that they shuttle as a heterodimer. Under normal conditions, shuttling of Rpb4p and Rpb7p depends on ongoing transcription. However, during severe stresses of heat shock, ethanol, and starvation, the two proteins shuttle via a transcription-independent pathway. Thus, Rpb4p and Rpb7p shuttle via two pathways, depending on environmental conditions.
Collapse
Affiliation(s)
- Michael Selitrennik
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel 31096
| | | | | | | |
Collapse
|
21
|
Sheng Y, Tsai-Morris CH, Gutti R, Maeda Y, Dufau ML. Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is a transport protein involved in gene-specific mRNA export and protein translation during spermatogenesis. J Biol Chem 2006; 281:35048-56. [PMID: 16968703 DOI: 10.1074/jbc.m605086200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25), a member of the DEAD-box protein family, is essential for completion of spermatogenesis. GRTH is present in the cytoplasm and nucleus of meiotic spermatocytes and round spermatids and functions as a component of mRNP particles, implicating its post-transcriptional regulatory roles in germ cells. In this study, GRTH antibodies specific to N- or C-terminal sequences showed differential subcellular expression of GRTH 56- and 61-kDa species in nucleus and cytoplasm, respectively, of rodent testis and transfected COS1 cells. The 56-kDa nuclear species interacted with CRM1 and participated in mRNA transport. The phosphorylated cytoplasmic 61-kDa species was associated with polyribosomes. Confocal studies on COS-1 cells showed that GRTH-GFP was retained in the nucleus by treatment with a RNA polymerase inhibitor or the nuclear protein export inhibitor. This indicated that GRTH is a shuttling protein associated with RNA export. The N-terminal leucine-rich region (61-74 amino acids) was identified as the nuclear export signal that participated in CRM1-dependent nuclear export pathway. Deletion analysis identified a 14-amino acid GRTH sequence (100-114 amino acids) as a nuclear localization signal. GRTH selectively regulated the translation of specific genes including histone 4 and HMG2 in germ cells. In addition, GRTH participated in the nuclear export of RNA messages (PGK2, tACE, and TP2) in a gene-specific manner. These studies strongly indicate that the mammalian GRTH/Ddx25 gene is a multifunctional RNA helicase that is an essential regulator of sperm maturation.
Collapse
Affiliation(s)
- Yi Sheng
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | |
Collapse
|
22
|
Schulze SR, McAllister BF, Sinclair DAR, Fitzpatrick KA, Marchetti M, Pimpinelli S, Honda BM. Heterochromatic genes in Drosophila: a comparative analysis of two genes. Genetics 2006; 173:1433-45. [PMID: 16648646 PMCID: PMC1526689 DOI: 10.1534/genetics.106.056069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 04/29/2006] [Indexed: 01/04/2023] Open
Abstract
Centromeric heterochromatin comprises approximately 30% of the Drosophila melanogaster genome, forming a transcriptionally repressive environment that silences euchromatic genes juxtaposed nearby. Surprisingly, there are genes naturally resident in heterochromatin, which appear to require this environment for optimal activity. Here we report an evolutionary analysis of two genes, Dbp80 and RpL15, which are adjacent in proximal 3L heterochromatin of D. melanogaster. DmDbp80 is typical of previously described heterochromatic genes: large, with repetitive sequences in its many introns. In contrast, DmRpL15 is uncharacteristically small. The orthologs of these genes were examined in D. pseudoobscura and D. virilis. In situ hybridization and whole-genome assembly analysis show that these genes are adjacent, but not centromeric in the genome of D. pseudoobscura, while they are located on different chromosomal elements in D. virilis. Dbp80 gene organization differs dramatically among these species, while RpL15 structure is conserved. A bioinformatic analysis in five additional Drosophila species demonstrates active repositioning of these genes both within and between chromosomal elements. This study shows that Dbp80 and RpL15 can function in contrasting chromatin contexts on an evolutionary timescale. The complex history of these genes also provides unique insight into the dynamic nature of genome evolution.
Collapse
Affiliation(s)
- Sandra R Schulze
- Department of Molecular Biology snd Biochemistry, Simon Fraser University, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
RNA helicases function as molecular motors that rearrange RNA secondary structure, potentially performing roles in any cellular process involving RNA metabolism. Although RNA helicase association with a range of cellular functions is well documented, their importance in response to abiotic stress is only beginning to emerge. This review summarizes the available data on the expression, biochemistry and physiological function(s) of RNA helicases regulated by abiotic stress. Examples originate primarily from non-mammalian organisms while instances from mammalian sources are restricted to post-translational regulation of helicase biochemical activity. Common emerging themes include the requirement of a cold-induced helicase in non-homeothermic organisms, association and regulation of helicase activity by stress-induced phosphorylation cascades, altered nuclear–cytoplasmic shuttling in eukaryotes, association with the transcriptional apparatus and the diversity of biochemical activities catalyzed by a subgroup of stress-induced helicases. The data are placed in the context of a mechanism for RNA helicase involvement in cellular response to abiotic stress. It is proposed that stress-regulated helicases can catalyze a nonlinear, reversible sequence of RNA secondary structure rearrangements which function in RNA maturation or RNA proofreading, providing a mechanism by which helicase activity alters the activation state of target RNAs through regulation of the reaction equilibrium.
Collapse
Affiliation(s)
- George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.
| |
Collapse
|
24
|
Alcázar-Román AR, Tran EJ, Guo S, Wente SR. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat Cell Biol 2006; 8:711-6. [PMID: 16783363 DOI: 10.1038/ncb1427] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 04/21/2006] [Indexed: 01/08/2023]
Abstract
Regulation of nuclear mRNA export is critical for proper eukaryotic gene expression. A key step in this process is the directional translocation of mRNA-ribonucleoprotein particles (mRNPs) through nuclear pore complexes (NPCs) that are embedded in the nuclear envelope. Our previous studies in Saccharomyces cerevisiae defined an in vivo role for inositol hexakisphosphate (InsP6) and NPC-associated Gle1 in mRNA export. Here, we show that Gle1 and InsP6 act together to stimulate the RNA-dependent ATPase activity of the essential DEAD-box protein Dbp5. Overexpression of DBP5 specifically suppressed mRNA export and growth defects of an ipk1 nup42 mutant defective in InsP6 production and Gle1 localization. In vitro kinetic analysis showed that InsP6 significantly increased Dbp5 ATPase activity in a Gle1-dependent manner and lowered the effective RNA concentration for half-maximal ATPase activity. Gle1 alone had minimal effects. Maximal InsP6 binding required both Dbp5 and Gle1. It has been suggested that Dbp5 requires unidentified cofactors. We now propose that Dbp5 activation at NPCs requires Gle1 and InsP6. This would facilitate spatial control of the remodelling of mRNP protein composition during directional transport and provide energy to power transport cycles.
Collapse
Affiliation(s)
- Abel R Alcázar-Román
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, U-3209 MRBIII, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | | | |
Collapse
|
25
|
Weirich CS, Erzberger JP, Flick JS, Berger JM, Thorner J, Weis K. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat Cell Biol 2006; 8:668-76. [PMID: 16783364 DOI: 10.1038/ncb1424] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 05/19/2006] [Indexed: 02/07/2023]
Abstract
The DExD/H-box ATPase Dbp5 is essential for nuclear mRNA export, although its precise role in this process remains poorly understood. Here, we identify the nuclear pore protein Gle1 as a cellular activator of Dbp5. Dbp5 alone is unable to stably bind RNA or effectively hydrolyse ATP under physiological conditions, but addition of Gle1 dramatically stimulates these activities. A gle1 point mutant deficient for Dbp5 stimulation in vitro displays an mRNA export defect in vivo, indicating that activation of Dbp5 is an essential function of Gle1. Interestingly, Gle1 binds directly to inositol hexakisphosphate (InsP6) and InsP6 potentiates the Gle1-mediated stimulation of Dbp5. Dominant mutations in DBP5 and GLE1 that rescue mRNA export phenotypes associated with the lack of InsP6 mimic the InsP6 effects in vitro. Our results define specific functions for Gle1 and InsP6 in mRNA export and suggest that local activation of Dbp5 at the nuclear pore is critical for mRNA export.
Collapse
Affiliation(s)
- Christine S Weirich
- Division of Cell and Developmental Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | |
Collapse
|
26
|
Cole CN, Scarcelli JJ. Transport of messenger RNA from the nucleus to the cytoplasm. Curr Opin Cell Biol 2006; 18:299-306. [PMID: 16682182 DOI: 10.1016/j.ceb.2006.04.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
All movement of molecules and macromolecules between the cytoplasm and the nucleus takes place through nuclear pore complexes (NPCs), very large macromolecular complexes that are the only channels connecting these compartments. mRNA export is mediated by multiple, highly conserved protein factors that couple steps of nuclear pre-mRNA biogenesis to mRNA transport. Mature messenger ribonucleoproteins (mRNPs) diffuse from sites of transcription to NPCs, although some active genes are positioned at the nuclear periphery where they interact physically with components of NPCs. As properly processed mRNPs translocate through the pore, certain mRNP proteins are removed, probably through the enzymatic action of the DEAD-box helicase Dbp5, which binds to Nup159 and Gle1, components of the cytoplasmic filaments of the NPC. Gle1 and the phosphoinositide IP6 activate Dbp5's ATPase activity in vitro and this could provide critical spatial regulation of Dbp5 activity in vivo.
Collapse
Affiliation(s)
- Charles N Cole
- Department of Biochemistry, Dartmouth Medical School Hanover, NH 03755, USA.
| | | |
Collapse
|
27
|
Abstract
Exposure of yeast cells to environmental stresses can disrupt essential intracellular processes, especially those carried out by large macromolecular complexes. The production of mature, translatable mRNAs is most sensitive to stress owing to the inhibition of messenger RNA splicing and alterations in the export of mRNA from the nucleus. Changes in the cytoplasmic pools of mRNAs also occur following exposure to stress conditions. Messenger RNAs accumulate in discrete cytoplasmic foci such as processing bodies and stress granules. These dynamic changes in RNA metabolism, following exposure to stress, ensure the preferential production and export of heat-shock mRNAs and the sequestering of general cellular mRNAs in the nucleus or in cytoplasmic foci, thus allowing for a redirection of the translational machinery to encode stress proteins, which aid in cellular recovery following stress. Stress proteins, such as Hsp70p and Hsp104p, have been shown to play a direct role in the repair of macromolecular complexes involved in RNA metabolism in yeast cells, thus ensuring that the cell returns to homeostasis.
Collapse
Affiliation(s)
- Ursula Bond
- Microbiology Department, Moyne Institute for Preventive Medicine, Trinity College, University of Dublin, Dublin, Ireland.
| |
Collapse
|
28
|
Kendirgi F, Rexer DJ, Alcázar-Román AR, Onishko HM, Wente SR. Interaction between the shuttling mRNA export factor Gle1 and the nucleoporin hCG1: a conserved mechanism in the export of Hsp70 mRNA. Mol Biol Cell 2005; 16:4304-15. [PMID: 16000379 PMCID: PMC1196339 DOI: 10.1091/mbc.e04-11-0998] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Translocation of messenger RNAs through the nuclear pore complex (NPC) requires coordinated physical interactions between stable NPC components, shuttling transport factors, and mRNA-binding proteins. In budding yeast (y) and human (h) cells, Gle1 is an essential mRNA export factor. Nucleocytoplasmic shuttling of hGle1 is required for mRNA export; however, the mechanism by which hGle1 associates with the NPC is unknown. We have previously shown that the interaction of hGle1 with the nucleoporin hNup155 is necessary but not sufficient for targeting hGle1 to NPCs. Here, we report that the unique C-terminal 43 amino acid region of the hGle1B isoform mediates binding to the C-terminal non-FG region of the nucleoporin hCG1/NPL1. Moreover, hNup155, hGle1B, and hCG1 formed a heterotrimeric complex in vitro. This suggested that these two nucleoporins were required for the NPC localization of hGle1. Using an siRNA-based approach, decreased levels of hCG1 resulted in hGle1 accumulation in cytoplasmic foci. This was coincident with inhibition of heat shock-induced production of Hsp70 protein and export of the Hsp70 mRNA in HeLa cells. Because this closely parallels the role of the hCG1 orthologue yNup42/Rip1, we speculate that hGle1-hCG1 function in the mRNA export mechanism is highly conserved.
Collapse
Affiliation(s)
- Frederic Kendirgi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | |
Collapse
|
29
|
Izawa S, Takemura R, Miki T, Inoue Y. Characterization of the export of bulk poly(A)+ mRNA in Saccharomyces cerevisiae during the wine-making process. Appl Environ Microbiol 2005; 71:2179-82. [PMID: 15812055 PMCID: PMC1082520 DOI: 10.1128/aem.71.4.2179-2182.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ethanol stress affects the nuclear export of mRNA similarly to heat shock in Saccharomyces cerevisiae. However, we have little information about mRNA transport in actual alcoholic fermentation. Here we characterized the transport of mRNA during wine making and found that bulk poly(A)+ mRNA accumulated in the nucleus as fermentation progressed.
Collapse
Affiliation(s)
- Shingo Izawa
- Laboratory of Molecular Microbiology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | |
Collapse
|
30
|
Verchot-Lubicz J. A new cell-to-cell transport model for Potexviruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:283-90. [PMID: 15828680 DOI: 10.1094/mpmi-18-0283] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the last five years, we have gained significant insight into the role of the Potexvirus proteins in virus movement and RNA silencing. Potexviruses require three movement proteins, named triple gene block (TGB)p1, TGBp2, and TGBp3, and the viral coat protein (CP) to facilitate viral cell-to-cell and vascular transport. TGBp1 is a multifunctional protein that has RNA helicase activity, promotes translation of viral RNAs, increases plasmodesmal size exclusion limits, and suppresses RNA silencing. TGBp2 and TGBp3 are membrane-binding proteins. CP is required for genome encapsidation and forms ribonucleoprotein complexes along with TGBp1 and viral RNA. This review considers the functions of the TGB proteins, how they interact with each other and CP, and how silencing suppression might be linked to viral transport. A new model of the mechanism for Potexvirus transport is proposed.
Collapse
Affiliation(s)
- Jeanmarie Verchot-Lubicz
- Oklahoma State University, Department of Entomology and Plant Pathology, Stillwater, OK 74078, USA.
| |
Collapse
|
31
|
Schulze SR, Sinclair DAR, Fitzpatrick KA, Honda BM. A genetic and molecular characterization of two proximal heterochromatic genes on chromosome 3 of Drosophila melanogaster. Genetics 2005; 169:2165-77. [PMID: 15687284 PMCID: PMC1449577 DOI: 10.1534/genetics.103.023341] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin comprises a transcriptionally repressive chromosome compartment in the eukaryotic nucleus; this is exemplified by the silencing effect it has on euchromatic genes that have been relocated nearby, a phenomenon known as position-effect variegation (PEV), first demonstrated in Drosophila melanogaster. However, the expression of essential heterochromatic genes within these apparently repressive regions of the genome presents a paradox, an understanding of which could provide key insights into the effects of chromatin structure on gene expression. To date, very few of these resident heterochromatic genes have been characterized to any extent, and their expression and regulation remain poorly understood. Here we report the cloning and characterization of two proximal heterochromatic genes in D. melanogaster, located deep within the centric heterochromatin of the left arm of chromosome 3. One of these genes, RpL15, is uncharacteristically small, is highly expressed, and encodes an essential ribosomal protein. Its expression appears to be compromised in a genetic background deficient for heterochromatin protein 1 (HP1), a protein associated with gene silencing in these regions. The second gene in this study, Dbp80, is very large and also appears to show a transcriptional dependence upon HP1; however, it does not correspond to any known lethal complementation group and is likely to be a nonessential gene.
Collapse
MESH Headings
- Alleles
- Animals
- Base Sequence
- Binding Sites
- Blotting, Northern
- Blotting, Southern
- Cell Survival
- Chromatin/genetics
- Chromosome Mapping
- Cloning, Molecular
- Crosses, Genetic
- DNA, Complementary/metabolism
- Drosophila Proteins/biosynthesis
- Drosophila Proteins/genetics
- Drosophila melanogaster/genetics
- Exons
- Female
- Gene Silencing
- Genetic Complementation Test
- Germ-Line Mutation
- Heterochromatin/chemistry
- Heterochromatin/genetics
- Heterozygote
- Introns
- Male
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Phenotype
- Polymerase Chain Reaction
- Ribosomal Proteins/biosynthesis
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Sex Factors
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription, Genetic
- Transgenes
- Wings, Animal/embryology
- Wings, Animal/pathology
Collapse
Affiliation(s)
- Sandra R Schulze
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | |
Collapse
|