1
|
Abstract
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder with multifaceted neuropathological features, including β-amyloid plaques, neurofibrillary tangles, and neuroinflammation. Over the past decade, emerging evidence has implicated both beneficial and pathological roles for innate immune genes and immune cells, including peripheral immune cells such as T cells, which can infiltrate the brain and either ameliorate or exacerbate AD neuropathogenesis. These findings support a neuroimmune axis of AD, in which the interplay of adaptive and innate immune systems inside and outside the brain critically impacts the etiology and pathogenesis of AD. In this review, we discuss the complexities of AD neuropathology at the levels of genetics and cellular physiology, highlighting immune signaling pathways and genes associated with AD risk and interactions among both innate and adaptive immune cells in the AD brain. We emphasize the role of peripheral immune cells in AD and the mechanisms by which immune cells, such as T cells and monocytes, influence AD neuropathology, including microglial clearance of amyloid-β peptide, the key component of β-amyloid plaque cores, pro-inflammatory and cytotoxic activity of microglia, astrogliosis, and their interactions with the brain vasculature. Finally, we review the challenges and outlook for establishing immune-based therapies for treating and preventing AD.
Collapse
|
2
|
Beheshti M, Rabiei N, Taghizadieh M, Eskandari P, Mollazadeh S, Dadgostar E, Hamblin MR, Salmaninejad A, Emadi R, Mohammadi AH, Mirazei H. Correlations between single nucleotide polymorphisms in obsessive-compulsive disorder with the clinical features or response to therapy. J Psychiatr Res 2023; 157:223-238. [PMID: 36508934 DOI: 10.1016/j.jpsychires.2022.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder, in which the patient endures intrusive thoughts or is compelled to perform repetitive or ritualized actions. Many cases of OCD are considered to be familial or heritable in nature. It has been shown that a variety of internal and external risk factors are involved in the pathogenesis of OCD. Among the internal factors, genetic modifications play a critical role in the pathophysiological process. Despite many investigations performed to determine the candidate genes, the precise genetic factors involved in the disease remain largely undetermined. The present review summarizes the single nucleotide polymorphisms that have been proposed to be associated with OCD symptoms, early onset disease, neuroimaging results, and response to therapy. This information could help us to draw connections between genetics and OCD symptoms, better characterize OCD in individual patients, understand OCD prognosis, and design more targeted personalized treatment approaches.
Collapse
Affiliation(s)
- Masoumeh Beheshti
- Pathophysiology Laboratory, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pariya Eskandari
- Department of Biology, School of Basic Sciences, University of Guilan, Rasht, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Arash Salmaninejad
- Regenerative Medicine, Organ Procurement and Transplantation Multi Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Raziye Emadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirazei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Zhou L, Wang T, Zhang K, Zhang X, Jiang S. The development of small-molecule inhibitors targeting HPK1. Eur J Med Chem 2022; 244:114819. [DOI: 10.1016/j.ejmech.2022.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
|
4
|
Li N, Wang J, Zhan X. Identification of Immune-Related Gene Signatures in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. Front Immunol 2021; 12:752643. [PMID: 34887858 PMCID: PMC8649721 DOI: 10.3389/fimmu.2021.752643] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence indicates that immunotherapy helped to improve the survival and quality-of-life of patients with lung adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC) besides chemotherapy and gene targeting treatment. This study aimed to develop immune-related gene signatures in LUAD and LUSC subtypes, respectively. LUAD and LUSC samples were divided into high- and low-abundance groups of immune cell infiltration (Immunity_H and Immunity_L) based on the abundance of immune cell infiltrations. The distribution of immune cells was significantly different between the high- and low-immunity subtypes in LUAD and LUSC samples. The differentially expressed genes (DEGs) between those two groups in LUAD and LUSC contain some key immune-related genes, such as PDL1, PD1, CTLA-4, and HLA families. The DEGs were enriched in multiple immune-related pathways. Furthermore, the seven-immune-related-gene-signature (CD1B, CHRNA6, CLEC12B, CLEC17A, CLNK, INHA, and SLC14A2) prognostic model-based high- and low-risk groups were significantly associated with LUAD overall survival and clinical characteristics. The eight-immune-related-gene-signature (C4BPB, FCAMR, GRAPL, MAP1LC3C, MGC2889, TRIM55, UGT1A1, and VIPR2) prognostic model-based high- and low-risk groups were significantly associated with LUSC overall survival and clinical characteristics. The prognostic models were tested as good ones by receiver operating characteristic, principal component analysis, univariate and multivariate analysis, and nomogram. The verifications of these two immune-related-gene-signature prognostic models showed consistency in the train and test cohorts of LUAD and LUSC. In addition, patients with LUAD in the low-risk group responded better to immunotherapy than those in the high-risk group. This study revealed two reliable immune-related-gene-signature models that were significantly associated with prognosis and tumor microenvironment cell infiltration in LUAD and LUSC, respectively. Evaluation of the integrated characterization of multiple immune-related genes and pathways could help to predict the response to immunotherapy and monitor immunotherapy strategies.
Collapse
Affiliation(s)
- Na Li
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jiahong Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Abstract
Dendritic cells are a specialized subset of hematopoietic cells essential for mounting immunity against tumors and infectious disease as well as inducing tolerance for maintenance of homeostasis. DCs are equipped with number of immunoregulatory or stimulatory molecules that interact with other leukocytes to modulate their functions. Recent advances in DC biology identified a specific role for the conventional dendritic cell type 1 (cDC1) in eliciting cytotoxic CD8+ T cells essential for clearance of tumors and infected cells. The critical role of this subset in eliciting immune responses or inducing tolerance has largely been defined in mice whereas the biology of human cDC1 is poorly characterized owing to their extremely low frequency in tissues. A detailed characterization of the functions of many immunoregulatory and stimulatory molecules expressed by human cDC1 is critical for understanding their biology to exploit this subset for designing novel therapeutic modalities against cancer, infectious disease and autoimmune disorders.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Kristen J Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Extramural member Parker Institute of Cancer Immunotherapy, CA, United States.
| |
Collapse
|
6
|
Akula S, Paivandy A, Fu Z, Thorpe M, Pejler G, Hellman L. How Relevant Are Bone Marrow-Derived Mast Cells (BMMCs) as Models for Tissue Mast Cells? A Comparative Transcriptome Analysis of BMMCs and Peritoneal Mast Cells. Cells 2020; 9:cells9092118. [PMID: 32957735 PMCID: PMC7564378 DOI: 10.3390/cells9092118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/09/2023] Open
Abstract
Bone marrow-derived mast cells (BMMCs) are often used as a model system for studies of the role of MCs in health and disease. These cells are relatively easy to obtain from total bone marrow cells by culturing under the influence of IL-3 or stem cell factor (SCF). After 3 to 4 weeks in culture, a nearly homogenous cell population of toluidine blue-positive cells are often obtained. However, the question is how relevant equivalents these cells are to normal tissue MCs. By comparing the total transcriptome of purified peritoneal MCs with BMMCs, here we obtained a comparative view of these cells. We found several important transcripts that were expressed at very high levels in peritoneal MCs, but were almost totally absent from the BMMCs, including the major chymotryptic granule protease Mcpt4, the neurotrophin receptor Gfra2, the substance P receptor Mrgprb2, the metalloprotease Adamts9 and the complement factor 2 (C2). In addition, there were a number of other molecules that were expressed at much higher levels in peritoneal MCs than in BMMCs, including the transcription factors Myb and Meis2, the MilR1 (Allergin), Hdc (Histidine decarboxylase), Tarm1 and the IL-3 receptor alpha chain. We also found many transcripts that were highly expressed in BMMCs but were absent or expressed at low levels in the peritoneal MCs. However, there were also numerous MC-related transcripts that were expressed at similar levels in the two populations of cells, but almost absent in peritoneal macrophages and B cells. These results reveal that the transcriptome of BMMCs shows many similarities, but also many differences to that of tissue MCs. BMMCs can thereby serve as suitable models in many settings concerning the biology of MCs, but our findings also emphasize that great care should be taken when extrapolating findings from BMMCs to the in vivo function of tissue-resident MCs.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Aida Paivandy
- Department of Medical Biochemistry and Microbiology, Uppsala University, The Biomedical Center, Box 589, SE-751 23 Uppsala, Sweden; (A.P.); (G.P.)
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, The Biomedical Center, Box 589, SE-751 23 Uppsala, Sweden; (A.P.); (G.P.)
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-75007 Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
- Correspondence: ; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862
| |
Collapse
|
7
|
Clarke J, Panwar B, Madrigal A, Singh D, Gujar R, Wood O, Chee SJ, Eschweiler S, King EV, Awad AS, Hanley CJ, McCann KJ, Bhattacharyya S, Woo E, Alzetani A, Seumois G, Thomas GJ, Ganesan AP, Friedmann PS, Sanchez-Elsner T, Ay F, Ottensmeier CH, Vijayanand P. Single-cell transcriptomic analysis of tissue-resident memory T cells in human lung cancer. J Exp Med 2019; 216:2128-2149. [PMID: 31227543 PMCID: PMC6719422 DOI: 10.1084/jem.20190249] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/04/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
High numbers of tissue-resident memory T (TRM) cells are associated with better clinical outcomes in cancer patients. However, the molecular characteristics that drive their efficient immune response to tumors are poorly understood. Here, single-cell and bulk transcriptomic analysis of TRM and non-TRM cells present in tumor and normal lung tissue from patients with lung cancer revealed that PD-1-expressing TRM cells in tumors were clonally expanded and enriched for transcripts linked to cell proliferation and cytotoxicity when compared with PD-1-expressing non-TRM cells. This feature was more prominent in the TRM cell subset coexpressing PD-1 and TIM-3, and it was validated by functional assays ex vivo and also reflected in their chromatin accessibility profile. This PD-1+TIM-3+ TRM cell subset was enriched in responders to PD-1 inhibitors and in tumors with a greater magnitude of CTL responses. These data highlight that not all CTLs expressing PD-1 are dysfunctional; on the contrary, TRM cells with PD-1 expression were enriched for features suggestive of superior functionality.
Collapse
Affiliation(s)
- James Clarke
- La Jolla Institute for Immunology, La Jolla, CA
- National Institute for Health Research and Cancer Research UK Southampton Experimental Cancer Medicine Center, National Institute for Health Research Southampton Biomedical Research Center, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | | | - Divya Singh
- La Jolla Institute for Immunology, La Jolla, CA
| | | | - Oliver Wood
- National Institute for Health Research and Cancer Research UK Southampton Experimental Cancer Medicine Center, National Institute for Health Research Southampton Biomedical Research Center, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Serena J Chee
- National Institute for Health Research and Cancer Research UK Southampton Experimental Cancer Medicine Center, National Institute for Health Research Southampton Biomedical Research Center, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Southampton University Hospitals National Health Service Foundation Trust, Southampton, UK
| | | | - Emma V King
- National Institute for Health Research and Cancer Research UK Southampton Experimental Cancer Medicine Center, National Institute for Health Research Southampton Biomedical Research Center, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Otolaryngology, Poole Hospital National Health Service Foundation Trust, Poole, Dorset, UK
| | - Amiera S Awad
- Southampton University Hospitals National Health Service Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences, National Institute for Health Research Southampton, Respiratory Biomedical Research Unit, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Christopher J Hanley
- National Institute for Health Research and Cancer Research UK Southampton Experimental Cancer Medicine Center, National Institute for Health Research Southampton Biomedical Research Center, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Katy J McCann
- National Institute for Health Research and Cancer Research UK Southampton Experimental Cancer Medicine Center, National Institute for Health Research Southampton Biomedical Research Center, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Edwin Woo
- Southampton University Hospitals National Health Service Foundation Trust, Southampton, UK
| | - Aiman Alzetani
- Southampton University Hospitals National Health Service Foundation Trust, Southampton, UK
| | | | - Gareth J Thomas
- National Institute for Health Research and Cancer Research UK Southampton Experimental Cancer Medicine Center, National Institute for Health Research Southampton Biomedical Research Center, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Peter S Friedmann
- Clinical and Experimental Sciences, National Institute for Health Research Southampton, Respiratory Biomedical Research Unit, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Tilman Sanchez-Elsner
- Clinical and Experimental Sciences, National Institute for Health Research Southampton, Respiratory Biomedical Research Unit, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA
| | - Christian H Ottensmeier
- National Institute for Health Research and Cancer Research UK Southampton Experimental Cancer Medicine Center, National Institute for Health Research Southampton Biomedical Research Center, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA
- Clinical and Experimental Sciences, National Institute for Health Research Southampton, Respiratory Biomedical Research Unit, University of Southampton, Faculty of Medicine, Southampton, UK
- Department of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
8
|
Gerth E, Mattner J. The Role of Adaptor Proteins in the Biology of Natural Killer T (NKT) Cells. Front Immunol 2019; 10:1449. [PMID: 31293596 PMCID: PMC6603179 DOI: 10.3389/fimmu.2019.01449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Adaptor proteins contribute to the selection, differentiation and activation of natural killer T (NKT) cells, an innate(-like) lymphocyte population endowed with powerful immunomodulatory properties. Distinct from conventional T lymphocytes NKT cells preferentially home to the liver, undergo a thymic maturation and differentiation process and recognize glycolipid antigens presented by the MHC class I-like molecule CD1d on antigen presenting cells. NKT cells express a semi-invariant T cell receptor (TCR), which combines the Vα14-Jα18 chain with a Vβ2, Vβ7, or Vβ8 chain in mice and the Vα24 chain with the Vβ11 chain in humans. The avidity of interactions between their TCR, the presented glycolipid antigen and CD1d govern the selection and differentiation of NKT cells. Compared to TCR ligation on conventional T cells engagement of the NKT cell TCR delivers substantially stronger signals, which trigger the unique NKT cell developmental program. Furthermore, NKT cells express a panoply of primarily inhibitory NK cell receptors (NKRs) that control their self-reactivity and avoid autoimmune activation. Adaptor proteins influence NKT cell biology through the integration of TCR, NKR and/or SLAM (signaling lymphocyte-activation molecule) receptor signals or the variation of CD1d-restricted antigen presentation. TCR and NKR ligation engage the SH2 domain-containing leukocyte protein of 76kDa slp-76 whereas the SLAM associated protein SAP serves as adaptor for the SLAM receptor family. Indeed, the selection and differentiation of NKT cells selectively requires co-stimulation via SLAM receptors. Furthermore, SAP deficiency causes X-linked lymphoproliferative disease with multiple immune defects including a lack of circulating NKT cells. While a deletion of slp-76 leads to a complete loss of all peripheral T cell populations, mutations in the SH2 domain of slp-76 selectively affect NKT cell biology. Furthermore, adaptor proteins influence the expression and trafficking of CD1d in antigen presenting cells and subsequently selection and activation of NKT cells. Adaptor protein complex 3 (AP-3), for example, is required for the efficient presentation of glycolipid antigens which require internalization and processing. Thus, our review will focus on the complex contribution of adaptor proteins to the delivery of TCR, NKR and SLAM receptor signals in the unique biology of NKT cells and CD1d-restricted antigen presentation.
Collapse
Affiliation(s)
- Evelyn Gerth
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Hibar DP, Cheung JW, Medland SE, Mufford MS, Jahanshad N, Dalvie S, Ramesar R, Stewart E, van den Heuvel OA, Pauls DL, Knowles JA, Stein DJ, Thompson PM. Significant concordance of genetic variation that increases both the risk for obsessive-compulsive disorder and the volumes of the nucleus accumbens and putamen. Br J Psychiatry 2018; 213:430-436. [PMID: 29947313 PMCID: PMC6053271 DOI: 10.1192/bjp.2018.62] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Many studies have identified changes in the brain associated with obsessive-compulsive disorder (OCD), but few have examined the relationship between genetic determinants of OCD and brain variation.AimsWe present the first genome-wide investigation of overlapping genetic risk for OCD and genetic influences on subcortical brain structures. METHOD Using single nucleotide polymorphism effect concordance analysis, we measured genetic overlap between the first genome-wide association study (GWAS) of OCD (1465 participants with OCD, 5557 controls) and recent GWASs of eight subcortical brain volumes (13 171 participants). RESULTS We found evidence of significant positive concordance between OCD risk variants and variants associated with greater nucleus accumbens and putamen volumes. When conditioning OCD risk variants on brain volume, variants influencing putamen, amygdala and thalamus volumes were associated with risk for OCD. CONCLUSIONS These results are consistent with current OCD neurocircuitry models. Further evidence will clarify the relationship between putamen volume and OCD risk, and the roles of the detected variants in this disorder.Declaration of interestThe authors have declared that no competing interests exist.
Collapse
Affiliation(s)
- Derrek P. Hibar
- Imaging Genetics Center, Keck School of Medicine of the University of Southern California, Marina del Rey, USA
| | - Joshua W. Cheung
- Imaging Genetics Center, Keck School of Medicine of the University of Southern California, Marina del Rey, USA
| | | | - Mary S. Mufford
- University of Cape Town/Medical Research Council Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Neda Jahanshad
- Imaging Genetics Center, Keck School of Medicine of the University of Southern California, Marina del Rey, USA
| | - Shareefa Dalvie
- Department of Psychiatry and Mental Health, Groote Schuur Hospital, Cape Town, South Africa
| | - Raj Ramesar
- University of Cape Town/Medical Research Council Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Evelyn Stewart
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Harvard Medical School, Boston, USA, Department of Psychiatry, Massachusetts General Hospital, Boston, USA and British Columbia Mental Health and Addictions Research Institute, University of British Columbia, Vancouver, Canada
| | - Odile A. van den Heuvel
- Department of Psychiatry, Neuroscience Campus Amsterdam and Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - David L. Pauls
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Harvard Medical School and Department of Psychiatry, Massachusetts General Hospital, Boston, USA
| | - James A. Knowles
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, USA
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, Groote Schuur Hospital and Medical Research Council Unit on Risk and Resilience, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Paul M. Thompson
- Imaging Genetics Center, Keck School of Medicine of the University of Southern California, Marina del Rey, USA
| | | |
Collapse
|
10
|
Zhang Q, Ding S, Zhang H. Interactions between hematopoietic progenitor kinase 1 and its adaptor proteins. Mol Med Rep 2017; 16:6472-6482. [DOI: 10.3892/mmr.2017.7494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
|
11
|
Cai S, Batra S, Langohr I, Iwakura Y, Jeyaseelan S. IFN-γ induction by neutrophil-derived IL-17A homodimer augments pulmonary antibacterial defense. Mucosal Immunol 2016; 9:718-29. [PMID: 26349661 PMCID: PMC4785101 DOI: 10.1038/mi.2015.95] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 08/11/2015] [Indexed: 02/06/2023]
Abstract
The role of interleukin-17A (IL-17A) in host defense against Legionella pneumophila remains elusive. To address this issue, we used Il17a(-/-), Il17f(-/-), and Il17a/Il17f(-/-) mice on a C57Bl/6 (non-permissive) background and IL-17 neutralizing Abs in mice on an A/J (permissive) background. Higher bacterial (L. pneumophila) counts in the lung and blood along with reduced neutrophil recruitment were detected in Il17a(-/-), but not Il17f(-/-), mice. We found that neutrophils produce IL-17A homodimer (IL-17A) during L. pneumophila infection, and hematopoietic cell-derived IL-17A is known to be important for bacterial clearance. Thus, intratracheal administration of wild-type neutrophils or recombinant IL-17A restored bacterial clearance and neutrophil recruitment in Il17a(-/-) mice. Furthermore, neutrophil-depleted Rag2(-/-) and Rag2/Il-2rγ(-/-) mice exhibited increased bacterial burden, reduced neutrophil influx and IL-17A production in the lung. Recombinant IFN-γ administration in Il17a(-/-) mice augmented bacterial elimination, whereas IL-17A administration in Ifnγ(-/-) mice did not augment bacterial clearance. IFN-γ is produced by T cells, but not neutrophils or macrophages, suggesting that neutrophil-derived IL-17A induces IFN-γ in a paracrine fashion. Human pneumonic lungs and human neutrophils challenged with L. pneumophila exhibited increased numbers of IL-17A producing cells. These findings display a novel function of neutrophil-derived IL-17A in antibacterial defense via the induction of IFN-γ in a paracrine manner.
Collapse
Affiliation(s)
- Shanshan Cai
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA 70803
| | - Sanjay Batra
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA 70803
| | - Ingeborg Langohr
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA 70803
| | - Yochiro Iwakura
- Center for Experimental Medicine and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Samithamby Jeyaseelan
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA 70803,Division of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA 70112,Corresponding author: Dr. Samithamby Jeyaseelan (Jey), Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803; Phone: 225-578-9524; Fax: 225-578-9701;
| |
Collapse
|
12
|
Xu M, Cai C, Sun X, Chen W, Li Q, Zhou H. Clnk plays a role in TNF-alpha-induced cell death in murine fibrosarcoma cell line L929. Biochem Biophys Res Commun 2015; 463:275-9. [DOI: 10.1016/j.bbrc.2015.05.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 05/03/2015] [Indexed: 01/24/2023]
|
13
|
Bounab Y, Hesse AM, Iannascoli B, Grieco L, Couté Y, Niarakis A, Roncagalli R, Lie E, Lam KP, Demangel C, Thieffry D, Garin J, Malissen B, Daëron M. Proteomic analysis of the SH2 domain-containing leukocyte protein of 76 kDa (SLP76) interactome in resting and activated primary mast cells [corrected]. Mol Cell Proteomics 2013; 12:2874-89. [PMID: 23820730 PMCID: PMC3790297 DOI: 10.1074/mcp.m112.025908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 05/29/2013] [Indexed: 11/06/2022] Open
Abstract
We report the first proteomic analysis of the SLP76 interactome in resting and activated primary mouse mast cells. This was made possible by a novel genetic approach used for the first time here. It consists in generating knock-in mice that express signaling molecules bearing a C-terminal tag that has a high affinity for a streptavidin analog. Tagged molecules can be used as molecular baits to affinity-purify the molecular complex in which they are engaged, which can then be studied by mass spectrometry. We examined first SLP76 because, although this cytosolic adapter is critical for both T cell and mast cell activation, its role is well known in T cells but not in mast cells. Tagged SLP76 was expressed in physiological amounts and fully functional in mast cells. We unexpectedly found that SLP76 is exquisitely sensitive to mast cell granular proteases, that Zn(2+)-dependent metalloproteases are especially abundant in mast cells and that they were responsible for SLP76 degradation. Adding a Zn(2+) chelator fully protected SLP76 in mast cell lysates, thereby enabling an efficient affinity-purification of this adapter with its partners. Label-free quantitative mass spectrometry analysis of affinity-purified SLP76 interactomes uncovered both partners already described in T cells and novel partners seen in mast cells only. Noticeably, molecules inducibly recruited in both cell types primarily concur to activation signals, whereas molecules recruited in activated mast cells only are mostly associated with inhibition signals. The transmembrane adapter LAT2, and the serine/threonine kinase with an exchange factor activity Bcr were the most recruited molecules. Biochemical and functional validations established the unexpected finding that Bcr is recruited by SLP76 and positively regulates antigen-induced mast cell activation. Knock-in mice expressing tagged molecules with a normal tissue distribution and expression therefore provide potent novel tools to investigate signalosomes and to uncover novel signaling molecules in mast cells.
Collapse
Affiliation(s)
- Yacine Bounab
- From the ‡Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, and Centre d'Immunologie Humaine Paris, France
- §Inserm, U760 and UMS20, Paris, France
| | - Anne-Marie- Hesse
- ¶CEA, IRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- ‖Inserm, U1038, Grenoble, France
- **Univ. Grenoble Alpes, iRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
| | - Bruno Iannascoli
- From the ‡Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, and Centre d'Immunologie Humaine Paris, France
- §Inserm, U760 and UMS20, Paris, France
| | - Luca Grieco
- ‡‡Institut de Biologie de l'Ecole Normale Supérieure (IBENS), UMR ENS-CNRS 8197-Inserm 1024, Paris, France
| | - Yohann Couté
- ¶CEA, IRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- ‖Inserm, U1038, Grenoble, France
- **Univ. Grenoble Alpes, iRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
| | - Anna Niarakis
- ‡‡Institut de Biologie de l'Ecole Normale Supérieure (IBENS), UMR ENS-CNRS 8197-Inserm 1024, Paris, France
| | - Romain Roncagalli
- §§Centre d'Immunologie de Marseille-Luminy (CIML), Université Aix Marseille, UM2, Marseille, France
- ¶¶Inserm, U1104, Marseille, France
- ‖‖CNRS, UMR7280, Marseille, France
- Centre d'Immunophénomique, Inserm US012, CNRS UMS3367, Université Aix Marseille, Marseille, France
| | - Eunkyung Lie
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-601, Korea
| | - Kong-Peng Lam
- Immunology Group, Bioprocessing Technology Institute, A*STAR, Singapore
| | - Caroline Demangel
- Institut Pasteur, Département d'Immunologie, Unité d'Immunobiologie de l'infection, Paris, France
| | - Denis Thieffry
- ‡‡Institut de Biologie de l'Ecole Normale Supérieure (IBENS), UMR ENS-CNRS 8197-Inserm 1024, Paris, France
| | - Jérôme Garin
- ¶CEA, IRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- ‖Inserm, U1038, Grenoble, France
- **Univ. Grenoble Alpes, iRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
| | - Bernard Malissen
- §§Centre d'Immunologie de Marseille-Luminy (CIML), Université Aix Marseille, UM2, Marseille, France
- ¶¶Inserm, U1104, Marseille, France
- ‖‖CNRS, UMR7280, Marseille, France
- Centre d'Immunophénomique, Inserm US012, CNRS UMS3367, Université Aix Marseille, Marseille, France
| | - Marc Daëron
- From the ‡Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, and Centre d'Immunologie Humaine Paris, France
- §Inserm, U760 and UMS20, Paris, France
| |
Collapse
|
14
|
Independent and cooperative roles of adaptor molecules in proximal signaling during FcepsilonRI-mediated mast cell activation. Mol Cell Biol 2010; 30:4188-96. [PMID: 20606011 DOI: 10.1128/mcb.00305-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Activation through FcepsilonRI, a high-affinity IgE-binding receptor, is critical for mast cell function during allergy. The formation of a multimolecular proximal signaling complex nucleated by the adaptor molecules SLP-76 and LAT1 is required for activation through this receptor. Based on previous T-cell studies, current dogma dictates that LAT1 is required for plasma membrane recruitment and function of SLP-76. Unexpectedly, we found that the recruitment and phosphorylation of SLP-76 were preserved in LAT1(-/-) mast cells and that SLP-76(-/-) and LAT1(-/-) mast cells harbored distinct functional and biochemical defects. The LAT1-like molecule LAT2 was responsible for the preserved membrane localization and phosphorylation of SLP-76 in LAT1(-/-) mast cells. Although LAT2 supported SLP-76 phosphorylation and recruitment to the plasma membrane, LAT2 only partially compensated for LAT1-mediated cell signaling due to its decreased ability to stabilize interactions with phospholipase Cgamma (PLCgamma). Comparison of SLP-76(-/-) LAT1(-/-) and SLP-76(-/-) mast cells revealed that some functions of LAT1 could occur independently of SLP-76. We propose that while SLP-76 and LAT1 depend on each other for many of their functions, LAT2/SLP-76 interactions and SLP-76-independent LAT1 functions also mediate a positive signaling pathway downstream of FcepsilonRI in mast cells.
Collapse
|
15
|
Abstract
Mast cells are pivotal in innate immunity and play an important role in amplifying adaptive immunity. Nonetheless, they have long been known to be central to the initiation of allergic disorders. This results from the dysregulation of the immune response whereby normally innocuous substances are recognized as non-self, resulting in the production of IgE antibodies to these 'allergens'. Preformed and newly synthesized inflammatory (allergic) mediators are released from the mast cell following allergen-mediated aggregation of allergen-specific IgE bound to the high-affinity receptors for IgE (FcepsilonRI). Thus, the process by which the mast cell is able to interpret the engagement of FcepsilonRI into the molecular events necessary for release of their allergic mediators is of considerable therapeutic interest. Unraveling these molecular events has led to the discovery of a functional class of proteins that are essential in organizing activated signaling molecules and in coordinating and compartmentalizing their activity. These so-called 'adapters' bind multiple signaling proteins and localize them to specific cellular compartments, such as the plasma membrane. This organization is essential for normal mast cell responses. Here, we summarize the role of adapter proteins in mast cells focusing on the most recent advances toward understanding how these molecules work upon FcepsilonRI engagement.
Collapse
Affiliation(s)
- Damiana Alvarez-Errico
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
16
|
Yamasaki S, Takase-Utsugi M, Ishikawa E, Sakuma M, Nishida K, Saito T, Kanagawa O. Selective impairment of FcepsilonRI-mediated allergic reaction in Gads-deficient mice. Int Immunol 2008; 20:1289-97. [PMID: 18664516 DOI: 10.1093/intimm/dxn085] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gads is a Grb2-like adaptor protein expressed in hematopoietic cells. We demonstrated that mast cells from Gads(-/-) mice have selective functional defects. Bone marrow-derived mast cells from Gads(-/-) mice failed to induce Ca(2+) mobilization, degranulation and cytokine production upon cross-linking of FcepsilonRI. In vivo passive cutaneous anaphylaxis was also greatly impaired in Gads(-/-) mice. In contrast, Gads was dispensable for Toll-like receptor-mediated cytokine production in mast cells. Accordingly, mast cell-dependent resistance to acute peritoneal bacterial infection is not reduced in Gads(-/-) mice in vivo. Moreover, mature T and B cell responses and antibody production upon immunization were apparently normal in Gads(-/-) mice. Thus, inhibition of Gads in vivo would suppress the IgE-mediated allergic reaction with minimum adverse effects on both innate and acquired immune responses, and Gads could be an ideal target for the control of allergic responses.
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Analysis of the linker for activation of T cells and the linker for activation of B cells in natural killer cells reveals a novel signaling cassette, dual usage in ITAM signaling, and influence on development of the Ly49 repertoire. Blood 2008; 112:2869-77. [PMID: 18645037 DOI: 10.1182/blood-2007-11-121590] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The linker for activation of T cells (LAT) and the linker for activation of B cells (LAB/NTAL/LAT2) are integral proteins in receptor coupling to downstream events. Both proteins are expressed in natural killer (NK) cells and LAT is phosphorylated during target cell interactions or ligation of the immunoreceptor tyrosine-based activation motif (ITAM)-coupled CD16. Regardless, Lat(-/-) mice exhibit normal natural and antibody-mediated killing. Here we place both LAT and LAB in the DAP12 pathway of NK cells. Moreover, we unveil a LAT-independent pathway that requires expression of Syk. Mice lacking either LAT or LAB have a skewed Ly49 repertoire, and activated NK cells from Lat(-/-) mice have reduced responses to the ITAM-coupled receptor NK1.1. In contrast, resting Lat(-/-) NK cells show intact NK1.1 responses, whereas NK cells without LAB are hyperactive. Elimination of both adaptors severely reduces NK1.1 signaling under both conditions. Together these data show that NK ITAMs preferentially use a signaling cassette regulated by interplay between LAT and LAB. Activation by interleukin-2 causes a shift to greater dependency on LAT due to suppression of Syk signaling. The overlapping use of multiple adaptors permits fine-tuning of NK-cell ITAM responses over the course of an immune response.
Collapse
|
18
|
Hidano S, Sasanuma H, Ohshima K, Seino KI, Kumar L, Hayashi K, Hikida M, Kurosaki T, Taniguchi M, Geha RS, Kitamura D, Goitsuka R. Distinct regulatory functions of SLP-76 and MIST in NK cell cytotoxicity and IFN-gamma production. Int Immunol 2008; 20:345-52. [PMID: 18203684 DOI: 10.1093/intimm/dxm150] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activation of NK cells is triggered by multiple receptors. We demonstrate here that SLP-76 is required for CD16- and NKG2D-mediated NK cell cytotoxicity, while MIST negatively regulates these responses in an SLP-76-dependent manner. Exceptionally, MIST acts as a positive regulator of cytotoxicity against YAC-1 cells, although SLP-76 plays a more key role. SLP-76 acts as a dominant positive regulator for both NKG2D-mediated and YAC-1 cell-triggered IFN-gamma production. Although NKG2D-mediated IFN-gamma production depends on phospholipase C (PLC) gamma 2, YAC-1 cell-triggered IFN-gamma production is PLC gamma 2- and Syk/ZAP-70 independent and nuclear factor-kappa B mediated. SLP-76 is required for this process in the presence of MIST but is dispensable in the absence of MIST. Thus, YAC-1 cell-triggered NKG2D-independent IFN-gamma production appears to be regulated by SLP-76-dependent and -independent pathways, in which the latter is negatively regulated by MIST. Taken together, these results suggest that SLP-76 and MIST distinctly but interactively regulate NK cell cytotoxicity and IFN-gamma production.
Collapse
Affiliation(s)
- Shinya Hidano
- Division of Development and Aging, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tassi I, Klesney-Tait J, Colonna M. Dissecting natural killer cell activation pathways through analysis of genetic mutations in human and mouse. Immunol Rev 2007; 214:92-105. [PMID: 17100878 DOI: 10.1111/j.1600-065x.2006.00463.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural killer (NK) cell cytotoxicity is mediated by multiple germ line-encoded activating receptors that recognize specific ligands expressed by tumor cells and virally infected cells. These activating receptors are opposed by NK inhibitory receptors, which recognize major histocompatibility complex class I molecules on potential targets, raising the threshold for NK cell activation. Once an abnormal cell has been detected, NK cells are the sentinel source of cytolytic mediators, such as granzymes and perforins, as well as interferon-gamma, which can polarize the immune response to a T-helper 1 cell type. Activation signals are transmitted by adhesion-dependent pathways, immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathways, DAP10 ITAM-independent pathways, and by signaling through immunoreceptor tyrosine-based switch motifs. These pathways activate downstream signaling partners to trigger NK cell cytotoxicity. Some of these downstream molecules are unique to the various pathways, and some of these molecules are shared. Because of the complexity of signals involved in NK cell-target cell interaction, the generation of mice with targeted mutations in signaling molecules involved in adhesion, activation, or inhibition is essential for a precise dissection of the mechanisms regulating NK cell effector functions. Here we review recent advances in the genetic analysis of the signaling pathways that mediate NK cell killing.
Collapse
Affiliation(s)
- Ilaria Tassi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
20
|
Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 2006; 22:851-868. [PMID: 16793553 DOI: 10.1016/j.molcel.2006.06.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/19/2006] [Accepted: 06/02/2006] [Indexed: 01/07/2023]
Abstract
SH2 domains are interaction modules uniquely dedicated to the recognition of phosphotyrosine sites and are embedded in proteins that couple protein-tyrosine kinases to intracellular signaling pathways. Here, we report a comprehensive bioinformatics, structural, and functional view of the human and mouse complement of SH2 domain proteins. This information delimits the set of SH2-containing effectors available for PTK signaling and will facilitate the systems-level analysis of pTyr-dependent protein-protein interactions and PTK-mediated signal transduction. The domain-based architecture of SH2-containing proteins is of more general relevance for understanding the large family of protein interaction domains and the modular organization of the majority of human proteins.
Collapse
Affiliation(s)
- Bernard A Liu
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Karl Jablonowski
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Monica Raina
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Michael Arcé
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637
| | - Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.
| | - Piers D Nash
- Ben May Institute for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
21
|
Sasanuma H, Tatsuno A, Hidano S, Ohshima K, Matsuzaki Y, Hayashi K, Lowell CA, Kitamura D, Goitsuka R. Dual function for the adaptor MIST in IFN-γ production by NK and CD4+NKT cells regulated by the Src kinase Fgr. Blood 2006; 107:3647-55. [PMID: 16439675 DOI: 10.1182/blood-2005-10-4102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cells and NKT cells play critical early roles in host defense. Here we show that MIST, an adaptor protein belonging to the SLP-76 family, functions negatively in NK cells but positively in CD4+NKT cells. NK-cell receptor-mediated IFN-γ production was enhanced in NK cells, whereas TCR- or NK-cell receptor-mediated cytokine production was reduced in CD4+NKT cells from MIST-deficient mice. These opposite effects of MIST paralleled the exclusive expression of the Src family kinase, Fgr, in NK cells between the 2 cell populations. We further demonstrated that interaction of MIST with Fgr, mediated by the C-terminal proline-rich region of MIST and the SH3 domain of Fgr, was required for the suppression of NK-cell receptor-induced IFN-γ production. This functional interdependence of signaling molecules demonstrates a new mechanism by which adaptor proteins can act as molecular switches to control diverse responses in different cell populations.
Collapse
Affiliation(s)
- Hiroki Sasanuma
- Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Hematopoietic progenitor kinase 1 (HPK1 or MAP4K1) is a hematopoietic-specific mammalian STE20-like protein serine/threonine kinase, comprised of a STE20-like kinase domain in its N-terminus, four proline-rich motifs, a caspase cleavage site, and a distal C-terminal Citron homology domain. HPK1 is involved in many cellular signaling cascades that include MAPK signaling, antigen receptor signaling, apoptosis, growth factor signaling, and cytokine signaling. HPK1 binds many adaptor proteins including members of the Grb2 family, Nck family, Crk family, SLP-76 family, and actin-binding adaptors like HIP-55. HPK1 tyrosine phosphorylation and kinase activation depend on the presence of adaptor proteins. Adaptor proteins are required not only for linking HPK1 to cell surface receptors like the EGFR, but also for downstream gene transcription like NFAT, AP-1 and IL-2. The HPK1 association with Crk, CrkL, and HIP-55 mediate HPK1-dependent c-Jun N-terminal kinase (JNK) activation, while the association of HPK1 with SLP-76, Gads, CrkL, Grb2, and Grap affect T- and B-cell dependent gene transcription. Interestingly, HPK1 has been implicated in both increasing and decreasing NFAT, AP-1, and IL-2 gene transcription in T-cells where adaptor proteins play a key role. Lastly, HPK1 will phosphorylate Crk and CrkL, in vitro, which presents a novel possibility for the regulation of adaptor proteins and downstream signaling events.
Collapse
Affiliation(s)
- Jonathan S Boomer
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030-3498, USA
| | | |
Collapse
|
23
|
Abstract
Adapter molecules are multidomain proteins lacking intrinsic catalytic activity, functioning instead by nucleating molecular complexes during signal transduction. The SLP-76 family of adapters includes SH2 domain-containing leukocyte phosphoprotein of 76kDa (SLP-76), B cell linker protein (BLNK), and cytokine-dependent hematopoietic cell linker (Clnk). These proteins are critical for integration of numerous signaling cascades downstream of immunotyrosine-based activation motif (ITAM)-bearing receptors and integrins in diverse hematopoietic cell types. Mutations in genes encoding SLP-76 family adapters result in severe phenotypes, underscoring the critical role these proteins play in cellular development and function by directing formation of signaling complexes in a temporally- and spatially-specific manner.
Collapse
Affiliation(s)
- Jennifer N Wu
- Department of Laboratory Medicine and Pathology, School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, 415 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
24
|
Konstantinov IE, Arab S, Kharbanda RK, Li J, Cheung MMH, Cherepanov V, Downey GP, Liu PP, Cukerman E, Coles JG, Redington AN. The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol Genomics 2004; 19:143-50. [PMID: 15304621 DOI: 10.1152/physiolgenomics.00046.2004] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Remote ischemic preconditioning (IPC) reduces tissue injury caused by ischemia-reperfusion (IR) in distant organs. We tested the hypothesis that remote IPC (rIPC) modifies inflammatory gene transcription in humans. Using a microarray method, we demonstrated that a simple model of brief forearm ischemia suppresses proinflammatory gene expression in circulating leukocytes. Genes encoding key proteins involved in cytokine synthesis, leukocyte chemotaxis, adhesion and migration, exocytosis, innate immunity signaling pathways, and apoptosis were all suppressed within 15 min (early phase IPC) and more so after 24 h (second window IPC). Changes in leukocyte CD11b expression measured by flow cytometry mirrored this pattern, with there being a significant (P = 0.01) reduction at 24 h. The results of this study show that the rIPC stimulus modifies leukocyte inflammatory gene expression. This effect may contribute to the protective effect of IPC against IR injury and may have broader implications in other inflammatory processes. This is the first study of human gene expression following rIPC stimulus. rIPC stimulus suppressed proinflammatory gene transcription in human leukocytes.
Collapse
Affiliation(s)
- Igor E Konstantinov
- Division of Cardiovascular Surgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|