1
|
Deshmukh K, Apte U. The Role of Endoplasmic Reticulum Stress Response in Liver Regeneration. Semin Liver Dis 2023; 43:279-292. [PMID: 37451282 PMCID: PMC10942737 DOI: 10.1055/a-2129-8977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Exposure to hepatotoxic chemicals is involved in liver disease-related morbidity and mortality worldwide. The liver responds to damage by triggering compensatory hepatic regeneration. Physical agent or chemical-induced liver damage disrupts hepatocyte proteostasis, including endoplasmic reticulum (ER) homeostasis. Post-liver injury ER experiences a homeostatic imbalance, followed by active ER stress response signaling. Activated ER stress response causes selective upregulation of stress response genes and downregulation of many hepatocyte genes. Acetaminophen overdose, carbon tetrachloride, acute and chronic alcohol exposure, and physical injury activate the ER stress response, but details about the cellular consequences of the ER stress response on liver regeneration remain unclear. The current data indicate that inhibiting the ER stress response after partial hepatectomy-induced liver damage promotes liver regeneration, whereas inhibiting the ER stress response after chemical-induced hepatotoxicity impairs liver regeneration. This review summarizes key findings and emphasizes the knowledge gaps in the role of ER stress in injury and regeneration.
Collapse
Affiliation(s)
- Kshitij Deshmukh
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
2
|
Dang TT, Kim MJ, Lee YY, Le HT, Kim KH, Nam S, Hyun SH, Kim HL, Chung SW, Chung HT, Jho EH, Yoshida H, Kim K, Park CY, Lee MS, Back SH. Phosphorylation of EIF2S1 (eukaryotic translation initiation factor 2 subunit alpha) is indispensable for nuclear translocation of TFEB and TFE3 during ER stress. Autophagy 2023; 19:2111-2142. [PMID: 36719671 PMCID: PMC10283430 DOI: 10.1080/15548627.2023.2173900] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
There are diverse links between macroautophagy/autophagy pathways and unfolded protein response (UPR) pathways under endoplasmic reticulum (ER) stress conditions to restore ER homeostasis. Phosphorylation of EIF2S1/eIF2α is an important mechanism that can regulate all three UPR pathways through transcriptional and translational reprogramming to maintain cellular homeostasis and overcome cellular stresses. In this study, to investigate the roles of EIF2S1 phosphorylation in regulation of autophagy during ER stress, we used EIF2S1 phosphorylation-deficient (A/A) cells in which residue 51 was mutated from serine to alanine. A/A cells exhibited defects in several steps of autophagic processes (such as autophagosome and autolysosome formation) that are regulated by the transcriptional activities of the autophagy master transcription factors TFEB and TFE3 under ER stress conditions. EIF2S1 phosphorylation was required for nuclear translocation of TFEB and TFE3 during ER stress. In addition, EIF2AK3/PERK, PPP3/calcineurin-mediated dephosphorylation of TFEB and TFE3, and YWHA/14-3-3 dissociation were required for their nuclear translocation, but were insufficient to induce their nuclear retention during ER stress. Overexpression of the activated ATF6/ATF6α form, XBP1s, and ATF4 differentially rescued defects of TFEB and TFE3 nuclear translocation in A/A cells during ER stress. Consequently, overexpression of the activated ATF6 or TFEB form more efficiently rescued autophagic defects, although XBP1s and ATF4 also displayed an ability to restore autophagy in A/A cells during ER stress. Our results suggest that EIF2S1 phosphorylation is important for autophagy and UPR pathways, to restore ER homeostasis and reveal how EIF2S1 phosphorylation connects UPR pathways to autophagy.Abbreviations: A/A: EIF2S1 phosphorylation-deficient; ACTB: actin beta; Ad-: adenovirus-; ATF6: activating transcription factor 6; ATZ: SERPINA1/α1-antitrypsin with an E342K (Z) mutation; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CDK4: cyclin dependent kinase 4; CDK6: cyclin dependent kinase 6; CHX: cycloheximide; CLEAR: coordinated lysosomal expression and regulation; Co-IP: coimmunoprecipitation; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; EBSS: Earle's Balanced Salt Solution; EGFP: enhanced green fluorescent protein; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERAD: endoplasmic reticulum-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBS: fetal bovine serum; gRNA: guide RNA; GSK3B/GSK3β: glycogen synthase kinase 3 beta; HA: hemagglutinin; Hep: immortalized hepatocyte; IF: immunofluorescence; IRES: internal ribosome entry site; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LMB: leptomycin B; LPS: lipopolysaccharide; MAP1LC3A/B/LC3A/B: microtubule associated protein 1 light chain 3 alpha/beta; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; NES: nuclear export signal; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OE: overexpression; PBS: phosphate-buffered saline; PLA: proximity ligation assay; PPP3/calcineurin: protein phosphatase 3; PTM: post-translational modification; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; TEM: transmission electron microscopy; TFE3: transcription factor E3; TFEB: transcription factor EB; TFs: transcription factors; Tg: thapsigargin; Tm: tunicamycin; UPR: unfolded protein response; WB: western blot; WT: wild-type; Xbp1s: spliced Xbp1; XPO1/CRM1: exportin 1.
Collapse
Affiliation(s)
- Thao Thi Dang
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Mi-Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Yoon Young Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Hien Thi Le
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Kook Hwan Kim
- Severance Biomedical Research Institute, Yonsei University College of Medicine, 03722, Seoul, Korea
| | - Somi Nam
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Seung Hwa Hyun
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su Wol Chung
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Hiderou Yoshida
- Department of Molecular Biochemistry, Graduate School of Life Science, University of Hyogo, 678-1297, Hyogo, Japan
| | - Kyoungmi Kim
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, 02841, Seoul, Korea
| | - Chan Young Park
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Myung-Shik Lee
- Department of Integrated Biomedical Science & Division of Endocrinology, Department of Internal Medicine, SIMS (Soonchunhyang Institute of Medi-bio Science) & Soonchunhyang University Hospital, Soonchunhyang University, 31151, Cheonan, Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea
| |
Collapse
|
3
|
Tuğrul B, Balcan E, Öztel Z, Çöllü F, Gürcü B. Prion protein-dependent regulation of p53-MDM2 crosstalk during endoplasmic reticulum stress and doxorubicin treatments might be essential for cell fate in human breast cancer cell line, MCF-7. Exp Cell Res 2023:113656. [PMID: 37245583 DOI: 10.1016/j.yexcr.2023.113656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
In this study, we investigated the effect of doxorubicin and tunicamycin treatment alone or in combination on MDM-, Cul9-and prion protein (PrP)-mediated subcellular regulation of p53 in the context of apoptosis and autophagy. MTT analysis was performed to determine the cytotoxic effect of the agents. Apoptosis was monitorized by ELISA, flow cytometry and JC-1 assay. Monodansylcadaverine assay was performed for autophagy. Western blotting and immunofluorescence were performed to determine p53, MDM2, CUL9 and PrP levels. Doxorubicin increased p53, MDM2 and CUL9 levels in a dose-dependent manner. Expression of p53 and MDM2 was higher at the 0.25 μM concentration of tunicamycin compared to the control, but it decreased at 0.5 μM and 1 μM concentrations. CUL9 expression was significantly decreased only after treatment of tunicamycin at 0.25 μM. According to its glycosylation status, the upper band of PrP increased only in combination treatment. In combination treatment, p53 expression was higher than control, whereas MDM2 and CUL9 expressions were decreased. Combination treatments may make MCF-7 cells more susceptible to apoptosis rather than autophagy. In conclusion, PrP may be important in determining the fate of cell death through crosstalk between proteins such as p53 and MDM2 under endoplasmic reticulum (ER) stress conditions. Further studies are needed to obtain in-depth information on these potential molecular networks.
Collapse
Affiliation(s)
- Berrin Tuğrul
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Molecular Biology Section, 45140, Yunusemre, Manisa, Turkey.
| | - Erdal Balcan
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Molecular Biology Section, 45140, Yunusemre, Manisa, Turkey.
| | - Zübeyde Öztel
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Molecular Biology Section, 45140, Yunusemre, Manisa, Turkey.
| | - Fatih Çöllü
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Zoology Section, 45140, Yunusemre, Manisa, Turkey.
| | - Beyhan Gürcü
- Manisa Celal Bayar University, Faculty of Science and Letters, Department of Biology, Zoology Section, 45140, Yunusemre, Manisa, Turkey.
| |
Collapse
|
4
|
Hong F, Lin CY, Yan J, Dong Y, Ouyang Y, Kim D, Zhang X, Liu B, Sun S, Gu W, Li Z. Canopy Homolog 2 contributes to liver oncogenesis by promoting unfolded protein response-dependent destabilization of tumor protein P53. Hepatology 2022; 76:1587-1601. [PMID: 34986508 DOI: 10.1002/hep.32318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUD AND AIMS Abnormalities in the tumor protein P53 (p53) gene and overexpression of mouse double minute 2 homolog (MDM2), a negative regulator of p53, are commonly observed in cancers. p53 destabilization is regulated by endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in cancer. However, the mechanisms remain enigmatic. Canopy homolog 2 (CNPY2) is a key UPR initiator that primarily involved in ER stress and is highly expressed in the liver, but its functional role in regulating liver carcinogenesis is poorly understood. Therefore, we aimed to investigate the role of CNPY2 in hepartocarcinogenesis through URP-dependent p53 destabilization. APPROACH AND RESULTS Here, we showed that CNPY2 expression is up-regulated in HCC and negatively correlated with survival rate in liver cancer patients. Deletion of Cnpy2 obliterates diethylnitrosamine (DEN)-induced HCC in mice. Mechanistic studies demonstrated that CNPY2 binds and prevents ribosome proteins from inhibiting MDM2 and enhances the UPR activity of protein kinase RNA-like endoplasmic reticulum kinase and inositol-requiring transmembrane kinase endoribonuclease-1α, leading to p53 destabilization and cell-cycle progression. In addition, transcriptome analyses uncovered that CNPY2 is also required for DEN-induced expression of oncogenes, including c-Jun and fibroblast growth factor 21. Intratumoral injection of nanoparticle-based CRISPR single-guide RNA/CRISPR-associated protein 9 mRNA against Cnpy2 has antitumor effects in HCC. CONCLUSIONS These findings demonstrate that CNPY2 is crucial for liver oncogenesis through UPR-dependent repression of p53 and activation of oncogenes, providing insights into the design of a therapeutic target for HCC.
Collapse
Affiliation(s)
- Feng Hong
- Pelotonia Institute for Immune-OncologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA.,The Ohio State University James Comprehensive Cancer CenterThe Ohio State University Wexner Medical CenterColumbusOhioUSA.,Division of Medical OncologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Ching Ying Lin
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Jingyue Yan
- Division of Pharmaceutics & PharmacologyCollege of PharmacyThe Ohio State UniversityColumbusOhio43210USA
| | - Yizhou Dong
- Division of Pharmaceutics & PharmacologyCollege of PharmacyThe Ohio State UniversityColumbusOhio43210USA
| | - Yuli Ouyang
- Pelotonia Institute for Immune-OncologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA.,The Ohio State University James Comprehensive Cancer CenterThe Ohio State University Wexner Medical CenterColumbusOhioUSA.,Division of Medical OncologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Doyeon Kim
- Pelotonia Institute for Immune-OncologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA.,The Ohio State University James Comprehensive Cancer CenterThe Ohio State University Wexner Medical CenterColumbusOhioUSA.,Division of Medical OncologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Xiaoli Zhang
- Department of Biomedical InformaticsThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Bei Liu
- Division of HematologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Shaoli Sun
- Department of PathologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Wei Gu
- Institute for Cancer GeneticsColumbia UniversityNew YorkNew YorkUSA
| | - Zihai Li
- Pelotonia Institute for Immune-OncologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA.,The Ohio State University James Comprehensive Cancer CenterThe Ohio State University Wexner Medical CenterColumbusOhioUSA.,Division of Medical OncologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
5
|
Lee S, Hong E, Jo E, Kim ZH, Yim KJ, Woo SH, Choi YS, Jang HJ. Gossypol Induces Apoptosis of Human Pancreatic Cancer Cells via CHOP/Endoplasmic Reticulum Stress Signaling Pathway. J Microbiol Biotechnol 2022; 32:645-656. [PMID: 35283426 PMCID: PMC9628887 DOI: 10.4014/jmb.2110.10019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Gossypol, a natural phenolic aldehyde present in cotton plants, was originally used as a means of contraception, but is currently being studied for its anti-proliferative and anti-metastatic effects on various cancers. However, the intracellular mechanism of action regarding the effects of gossypol on pancreatic cancer cells remains unclear. Here, we investigated the anti-cancer effects of gossypol on human pancreatic cancer cells (BxPC-3 and MIA PaCa-2). Cell counting kit-8 assays, annexin V/propidium iodide staining assays, and transmission electron microscopy showed that gossypol induced apoptotic cell death and apoptotic body formation in both cell lines. RNA sequencing analysis also showed that gossypol increased the mRNA levels of CCAAT/enhancer-binding protein homologous protein (CHOP) and activating transcription factor 3 (ATF3) in pancreatic cancer cell lines. In addition, gossypol facilitated the cleavage of caspase-3 via protein kinase RNA-like ER kinase (PERK), CHOP, and Bax/Bcl-2 upregulation in both cells, whereas the upregulation of ATF was limited to BxPC-3 cells. Finally, a three-dimensional culture experiment confirmed the successful suppression of cancer cell spheroids via gossypol treatment. Taken together, our data suggest that gossypol may trigger apoptosis in pancreatic cancer cells via the PERK-CHOP signaling pathway. These findings propose a promising therapeutic approach to pancreatic cancer treatment using gossypol.
Collapse
Affiliation(s)
- Soon Lee
- Division of Analytical Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Eunmi Hong
- Division of Analytical Science, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Eunbi Jo
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Z-Hun Kim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Kyung June Yim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Sung Hwan Woo
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Yong-Soo Choi
- Department of Biotechnology, CHA University, Seongnam 13488, Republic of Korea
| | - Hyun-Jin Jang
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Corresponding author Phone: +82-42-860-4563 E-mail:
| |
Collapse
|
6
|
Drug Resistance and Endoplasmic Reticulum Stress in Hepatocellular Carcinoma. Cells 2022; 11:cells11040632. [PMID: 35203283 PMCID: PMC8870354 DOI: 10.3390/cells11040632] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide. It is usually diagnosed in an advanced stage and is characterized by a high intrinsic drug resistance, leading to limited chemotherapeutic efficacy and relapse after treatment. There is therefore a vast need for understanding underlying mechanisms that contribute to drug resistance and for developing therapeutic strategies that would overcome this. The rapid proliferation of tumor cells, in combination with a highly inflammatory microenvironment, causes a chronic increase of protein synthesis in different hepatic cell populations. This leads to an intensified demand of protein folding, which inevitably causes an accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic reticulum (ER). This process is called ER stress and triggers the unfolded protein response (UPR) in order to restore protein synthesis or—in the case of severe or prolonged ER stress—to induce cell death. Interestingly, the three different arms of the ER stress signaling pathways have been shown to drive chemoresistance in several tumors and could therefore form a promising therapeutic target. This review provides an overview of how ER stress and activation of the UPR contributes to drug resistance in HCC.
Collapse
|
7
|
Cui D, Qu R, Liu D, Xiong X, Liang T, Zhao Y. The Cross Talk Between p53 and mTOR Pathways in Response to Physiological and Genotoxic Stresses. Front Cell Dev Biol 2021; 9:775507. [PMID: 34869377 PMCID: PMC8638743 DOI: 10.3389/fcell.2021.775507] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor p53 is activated upon multiple cellular stresses, including DNA damage, oncogene activation, ribosomal stress, and hypoxia, to induce cell cycle arrest, apoptosis, and senescence. Mammalian target of rapamycin (mTOR), an evolutionarily conserved serine/threonine protein kinase, serves as a central regulator of cell growth, proliferation, and survival by coordinating nutrients, energy, growth factors, and oxygen levels. p53 dysfunction and mTOR pathway hyperactivation are hallmarks of human cancer. The balance between response to stresses or commitment to cell proliferation and survival is governed by various regulatory loops between the p53 and mTOR pathways. In this review, we first briefly introduce the tumor suppressor p53 and then describe the upstream regulators and downstream effectors of the mTOR pathway. Next, we discuss the role of p53 in regulating the mTOR pathway through its transcriptional and non-transcriptional effects. We further describe the complicated role of the mTOR pathway in modulating p53 activity. Finally, we discuss the current knowledge and future perspectives on the coordinated regulation of the p53 and mTOR pathways.
Collapse
Affiliation(s)
- Danrui Cui
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Ruirui Qu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Wang L, Li J, Di LJ. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 2021; 42:946-982. [PMID: 34729791 PMCID: PMC9298385 DOI: 10.1002/med.21867] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/01/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022]
Abstract
Glycogen synthase kinase‐3 (GSK3) is a highly evolutionarily conserved serine/threonine protein kinase first identified as an enzyme that regulates glycogen synthase (GS) in response to insulin stimulation, which involves GSK3 regulation of glucose metabolism and energy homeostasis. Both isoforms of GSK3, GSK3α, and GSK3β, have been implicated in many biological and pathophysiological processes. The various functions of GSK3 are indicated by its widespread distribution in multiple cell types and tissues. The studies of GSK3 activity using animal models and the observed effects of GSK3‐specific inhibitors provide more insights into the roles of GSK3 in regulating energy metabolism and homeostasis. The cross‐talk between GSK3 and some important energy regulators and sensors and the regulation of GSK3 in mitochondrial activity and component function further highlight the molecular mechanisms in which GSK3 is involved to regulate the metabolic activity, beyond its classical regulatory effect on GS. In this review, we summarize the specific roles of GSK3 in energy metabolism regulation in tissues that are tightly associated with energy metabolism and the functions of GSK3 in the development of metabolic disorders. We also address the impacts of GSK3 on the regulation of mitochondrial function, activity and associated metabolic regulation. The application of GSK3 inhibitors in clinical tests will be highlighted too. Interactions between GSK3 and important energy regulators and GSK3‐mediated responses to different stresses that are related to metabolism are described to provide a brief overview of previously less‐appreciated biological functions of GSK3 in energy metabolism and associated diseases through its regulation of GS and other functions.
Collapse
Affiliation(s)
- Li Wang
- Proteomics, Metabolomics, and Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
9
|
Pluquet O, Abbadie C. Cellular senescence and tumor promotion: Role of the Unfolded Protein Response. Adv Cancer Res 2021; 150:285-334. [PMID: 33858599 DOI: 10.1016/bs.acr.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Senescence is a cellular state which can be viewed as a stress response phenotype implicated in various physiological and pathological processes, including cancer. Therefore, it is of fundamental importance to understand why and how a cell acquires and maintains a senescent phenotype. Direct evidence has pointed to the homeostasis of the endoplasmic reticulum whose control appears strikingly affected during senescence. The endoplasmic reticulum is one of the sensing organelles that transduce signals between different pathways in order to adapt a functional proteome upon intrinsic or extrinsic challenges. One of these signaling pathways is the Unfolded Protein Response (UPR), which has been shown to be activated during senescence. Its exact contribution to senescence onset, maintenance, and escape, however, is still poorly understood. In this article, we review the mechanisms through which the UPR contributes to the appearance and maintenance of characteristic senescent features. We also discuss whether the perturbation of the endoplasmic reticulum proteostasis or accumulation of misfolded proteins could be possible causes of senescence, and-as a consequence-to what extent the UPR components could be considered as therapeutic targets allowing for the elimination of senescent cells or altering their secretome to prevent neoplastic transformation.
Collapse
Affiliation(s)
- Olivier Pluquet
- Univ Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France.
| | - Corinne Abbadie
- Univ Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
10
|
Falagan-Lotsch P, Murphy CJ. Network-based analysis implies critical roles of microRNAs in the long-term cellular responses to gold nanoparticles. NANOSCALE 2020; 12:21172-21187. [PMID: 32990715 PMCID: PMC7606723 DOI: 10.1039/d0nr04701e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since gold nanoparticles (AuNPs) have great potential to bring improvements to the biomedical field, their impact on biological systems should be better understood, particularly over the long term, using realistic doses of exposure. MicroRNAs (miRNAs) are small noncoding RNAs that play key roles in the regulation of biological pathways, from development to cellular stress responses. In this study, we performed genome-wide miRNA expression profiling in primary human dermal fibroblasts 20 weeks after chronic and acute (non-chronic) treatments to four AuNPs with different shapes and surface chemistries at a low dose. The exposure condition and AuNP surface chemistry had a significant impact on the modulation of miRNA levels. In addition, a network-based analysis was employed to provide a more complex, systems-level perspective of the miRNA expression changes. In response to the stress caused by AuNPs, miRNA co-expression networks perturbed in cells under non-chronic exposure to AuNPs were enriched for target genes implicated in the suppression of proliferative pathways, possibly in attempt to restore cell homeostasis, while changes in miRNA co-expression networks enriched for target genes related to activation of proliferative and suppression of apoptotic pathways were observed in cells chronically exposed to one specific type of AuNPs. In this case, miRNA dysregulation might be contributing to enforce a new cell phenotype during stress. Our findings suggest that miRNAs exert critical roles in the cellular responses to the stress provoked by a low dose of NPs in the long term and provide a fertile ground for further targeted experimental studies.
Collapse
Affiliation(s)
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
11
|
Li CF, Pan YK, Gao Y, Shi F, Wang YC, Sun XQ. Autophagy protects HUVECs against ER stress-mediated apoptosis under simulated microgravity. Apoptosis 2020; 24:812-825. [PMID: 31359205 PMCID: PMC6711952 DOI: 10.1007/s10495-019-01560-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astronauts exposed to a gravity-free environment experience cardiovascular deconditioning that causes post-spaceflight orthostatic intolerance and other pathological conditions. Endothelial dysfunction is an important factor responsible for this alteration. Our previous study showed enhanced autophagy in endothelial cells under simulated microgravity. The present study explored the cytoprotective role of autophagy under microgravity in human umbilical vein endothelial cells (HUVECs). We found that clinorotation for 48 h induced apoptosis and endoplasmic reticulum (ER) stress in HUVECs. ER stress and the unfolded protein response (UPR) partially contributed to apoptosis under clinorotation. Autophagy partially reduced ER stress and restored UPR signaling by autophagic clearance of ubiquitin-protein aggregates, thereby reducing apoptosis. In addition, the ER stress antagonist 4-phenylbutyric acid upregulated autophagy in HUVECs. Taken together, these findings indicate that autophagy plays a protective role against apoptosis under clinorotation by clearing protein aggregates and partially restoring the UPR.
Collapse
Affiliation(s)
- Cheng-Fei Li
- Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yi-Kai Pan
- Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yuan Gao
- Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Fei Shi
- Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yong-Chun Wang
- Key Lab of Aerospace Medicine, Chinese Ministry of Education, Xi'an, 710032, Shaanxi, China.
| | - Xi-Qing Sun
- Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
| |
Collapse
|
12
|
Fusée LTS, Marín M, Fåhraeus R, López I. Alternative Mechanisms of p53 Action During the Unfolded Protein Response. Cancers (Basel) 2020; 12:cancers12020401. [PMID: 32050651 PMCID: PMC7072472 DOI: 10.3390/cancers12020401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
The tumor suppressor protein p53 orchestrates cellular responses to a vast number of stresses, with DNA damage and oncogenic activation being some of the best described. The capacity of p53 to control cellular events such as cell cycle progression, DNA repair, and apoptosis, to mention some, has been mostly linked to its role as a transcription factor. However, how p53 integrates different signaling cascades to promote a particular pathway remains an open question. One way to broaden its capacity to respond to different stimuli is by the expression of isoforms that can modulate the activities of the full-length protein. One of these isoforms is p47 (p53/47, Δ40p53, p53ΔN40), an alternative translation initiation variant whose expression is specifically induced by the PERK kinase during the Unfolded Protein Response (UPR) following Endoplasmic Reticulum stress. Despite the increasing knowledge on the p53 pathway, its activity when the translation machinery is globally suppressed during the UPR remains poorly understood. Here, we focus on the expression of p47 and we propose that the alternative initiation of p53 mRNA translation offers a unique condition-dependent mechanism to differentiate p53 activity to control cell homeostasis during the UPR. We also discuss how the manipulation of these processes may influence cancer cell physiology in light of therapeutic approaches.
Collapse
Affiliation(s)
| | - Mónica Marín
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Robin Fåhraeus
- INSERM U1162, 27 rue Juliette Dodu, 75010 Paris, France
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Correspondence: ; Tel.: +598-25252095
| |
Collapse
|
13
|
Li J, Song M, Moh S, Kim H, Kim DH. Cytoplasmic Restriction of Mutated SOD1 Impairs the DNA Repair Process in Spinal Cord Neurons. Cells 2019; 8:cells8121502. [PMID: 31771229 PMCID: PMC6952796 DOI: 10.3390/cells8121502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 12/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) caused by mutation of superoxide dismutase 1 (SOD1), affects various cellular processes and results in the death of motor neurons with fatal defects. Currently, several neurological disorders associated with DNA damage are known to directly induce neurodegenerative diseases. In this research, we found that cytoplasmic restriction of SOD1G93A, which inhibited the nucleic translocation of SOD1WT, was directly related to increasing DNA damage in SOD1- mutated ALS disease. Our study showed that nucleic transport of DNA repair- processing proteins, such as p53, APEX1, HDAC1, and ALS- linked FUS were interfered with under increased endoplasmic reticulum (ER) stress in the presence of SOD1G93A. During aging, the unsuccessful recognition and repair process of damaged DNA, due to the mislocalized DNA repair proteins might be closely associated with the enhanced susceptibility of DNA damage in SOD1- mutated neurons. In addition, the co-expression of protein disulphide isomerase (PDI) directly interacting with SOD1 protein in neurons enhances the nucleic transport of cytoplasmic- restricted SOD1G93A. Therefore, our results showed that enhanced DNA damage by SOD1 mutation-induced ALS disease and further suggested that PDI could be a strong candidate molecule to protect neuronal apoptosis by reducing DNA damage in ALS disease.
Collapse
Affiliation(s)
- Jiaojie Li
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Miyoung Song
- Anti-Aging Research Institute of Bio-FD&C Co, Ltd., Incheon 21990, Korea; (M.S.); (S.M.)
| | - Sanghyun Moh
- Anti-Aging Research Institute of Bio-FD&C Co, Ltd., Incheon 21990, Korea; (M.S.); (S.M.)
| | - Heemin Kim
- Department of Medicine, Seoul National University, Seoul 03080, Korea
| | - Dae-Hwan Kim
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence: ; Tel.: +82-53-785-6692; Fax: +82-53-785-6639
| |
Collapse
|
14
|
Barabutis N. Unfolded Protein Response supports endothelial barrier function. Biochimie 2019; 165:206-209. [PMID: 31404589 DOI: 10.1016/j.biochi.2019.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022]
Abstract
Ongoing efforts are oriented towards the development of novel therapeutic agents to repress lung hyperpermeability responses due to inflammation. The endothelial barrier dysfunction triggered by such events, may eventually lead to severe cardiovascular complications, such as the Acute Respiratory Distress Syndrome. Hsp90 inhibitors are anticancer compounds, associated with strong anti-inflammatory responses in the endothelium. Our latest observations in experimental models of Acute Lung Injury suggest that P53 orchestrates, at least in part, such activities. Remarkably, both Hsp90 inhibition and P53 induction are associated with the activation of the Unfolded Protein Response element. The purpose of the current manuscript, is to introduce the hypotheses that UPR induction protects the vasculature against inflammation.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
| |
Collapse
|
15
|
Farahani R, Rezaei-Lotfi S, Simonian M, Hunter N. Bi-modal reprogramming of cell cycle by MiRNA-4673 amplifies human neurogenic capacity. Cell Cycle 2019; 18:848-868. [PMID: 30907228 DOI: 10.1080/15384101.2019.1595873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular mechanisms that inform heterochronic adaptations of neurogenesis in Homo sapiens remain largely unknown. Here, we uncover a signature in the cell cycle that amplifies the proliferative capacity of human neural progenitors by input from microRNA4673 encoded in Notch-1. The miRNA instructs bimodal reprogramming of the cell cycle, leading to initial synchronization of neural precursors at the G0 phase of the cell cycle followed by accelerated progression through interphase. The key event in G0 synchronization is transient inhibition by miR4673 of cyclin-dependent kinase-18, a member of an ancient family of cyclins that license M-G1 transition. In parallel, autophagic degradation of p53/p21 and transcriptional silencing of XRCC3/BRCA2 relax G1/S cell cycle checkpoint and accelerate interphase by ≈2.8-fold. The resultant reprogrammed cell cycle amplifies the proliferative capacity and delays the differentiation of human neural progenitors.
Collapse
Affiliation(s)
- Ramin Farahani
- a IDR/Westmead Institute for Medical Research , Sydney , NSW , Australia.,b Department of Life Sciences, Faculty of Medicine and Health Sciences , University of Sydney , Sydney , NSW , Australia
| | - Saba Rezaei-Lotfi
- b Department of Life Sciences, Faculty of Medicine and Health Sciences , University of Sydney , Sydney , NSW , Australia
| | - Mary Simonian
- a IDR/Westmead Institute for Medical Research , Sydney , NSW , Australia
| | - Neil Hunter
- a IDR/Westmead Institute for Medical Research , Sydney , NSW , Australia.,b Department of Life Sciences, Faculty of Medicine and Health Sciences , University of Sydney , Sydney , NSW , Australia
| |
Collapse
|
16
|
Zhou Q, Song C, Liu X, Qin H, Miao L, Zhang X. Peptidylarginine deiminase 4 overexpression resensitizes MCF-7/ADR breast cancer cells to adriamycin via GSK3β/p53 activation. Cancer Manag Res 2019; 11:625-636. [PMID: 30666159 PMCID: PMC6331075 DOI: 10.2147/cmar.s191353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Adriamycin (ADR) is widely used in the clinical chemotherapy against breast cancer. But its efficacy is strongly limited due to the acquisition of multidrug resistance (MDR). Therefore, acquisition of the resistance to ADR is still a major cause of chemotherapy failure in breast cancer patients. Peptidylarginine deiminase IV (PAD4) is reported to target non-histone proteins for citrullination, regulate their substrate activities, and thereby play critical roles in maintaining cell phenotype in breast cancer cells. However, whether PAD4 is involved in the development of MDR in breast cancer is poorly understood. Materials and methods We examined the expression of PAD family members, including PAD4 in ADR-resistant MCF-7 cells compared with the parental control cells by real-time PCR and Western blotting analyses. Rescue of PAD4 expression in MCF-7/ADR cells was performed to assess whether PAD4 could restore the sensitivity of MCF-7/ADR cells to ADR treatment with cell counting kit-8, flow cytometry, TUNEL, nuclear and cytoplasmic extract preparations, and immunofluorescence staining analyses. Results Both PAD2 and PAD4 were significantly decreased in ADR-resistant cells. However, only PAD4 overexpression can increase the sensitivity of MCF-7/ADR cells to ADR treatment and decrease MDR1 gene expression. Overexpression of PAD4 in MCF-7/ADR cells inhibited cell proliferation by inducing cell apoptosis. Under ADR treatment, overexpression of PAD4 promoted nuclear accumulation of glycogen synthase kinase-3β and p53, which further activated proapoptotic gene expression and downregulated MDR1 expression. Moreover, PAD4 activity was required for activating proapoptotic gene transcripts. Conclusion We demonstrate the previously unappreciated role of PAD4 in reversing ADR resistance in MCF-7/ADR cells and help establish PAD4 as a candidate biomarker of prognosis and chemotherapy target for MDR in breast cancers.
Collapse
Affiliation(s)
- Qianqian Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| | - Chao Song
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| | - Xiaoqiu Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Hao Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| | - Lixia Miao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| | - Xuesen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| |
Collapse
|
17
|
Szpotkowska J, Swiatkowska A, Ciesiołka J. Length and secondary structure of the 5' non-coding regions of mouse p53 mRNA transcripts - mouse as a model organism for p53 gene expression studies. RNA Biol 2018; 16:25-41. [PMID: 30518296 DOI: 10.1080/15476286.2018.1556084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Transcription initiation sites of Trp53 gene in mice were determined using the 5'RACE method. Based on sequence alignment of the 5'-terminal regions of p53 mRNA in mammals, the site for the most abundant transcript turned out to be essentially identical with that determined for human TP53 gene and slightly differed for the longest transcripts, in mice and humans. Secondary structures of the 5' -terminal regions of the shorter, most abundant and the longest mouse transcripts were determined in vitro and the shorter transcript was also mapped in transfected mouse cells. For the first time, secondary structure models of the 5' terminus of two mouse p53 mRNAs were proposed. Comparing these models with the conservativeness of the nucleotide sequence of the 5'-terminal region of mRNA in mouse and other mammals, the possible function of the selected structural domains of this region was discussed. To elucidate the translation mechanisms, the two studied mRNAs were translated in the presence of an increasing concentration of the cap analog. For the longest transcript, the data suggested that IRES element(s) was/were involved in translation initiation. Additionally, changes in p53 synthesis under genotoxic and endoplasmic reticulum stress conditions in mouse cells were analyzed.
Collapse
Affiliation(s)
- Joanna Szpotkowska
- a Polish Academy of Sciences , Institute of Bioorganic Chemistry , Poznan , Poland
| | - Agata Swiatkowska
- a Polish Academy of Sciences , Institute of Bioorganic Chemistry , Poznan , Poland
| | - Jerzy Ciesiołka
- a Polish Academy of Sciences , Institute of Bioorganic Chemistry , Poznan , Poland
| |
Collapse
|
18
|
Clinorotation-induced autophagy via HDM2-p53-mTOR pathway enhances cell migration in vascular endothelial cells. Cell Death Dis 2018; 9:147. [PMID: 29396411 PMCID: PMC5833810 DOI: 10.1038/s41419-017-0185-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/14/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Individuals exposed to long-term spaceflight often experience cardiovascular dysfunctions characterized by orthostatic intolerance, disability on physical exercise, and even frank syncope. Recent studies have showed that the alterations of cardiovascular system are closely related to the functional changes of endothelial cells. We have shown previously that autophagy can be induced by simulated microgravity in human umbilical vein endothelial cells (HUVECs). However, the mechanism of enhanced autophagy induced by simulated microgravity and its role in the regulation of endothelial function still remain unclear. We report here that 48 h clinorotation promoted cell migration in HUVECs by induction of autophagy. Furthermore, clinorotation enhanced autophagy by the mechanism of human murine double minute 2 (HDM2)-dependent degradation of cytoplasmic p53 at 26S proteasome, which results in the suppression of mechanistic target of rapamycin (mTOR), but not via activation of AMPK in HUVECs. These results support the key role of HDM2–p53 in direct downregulation of mTOR, but not through AMPK in microgravity-induced autophagy in HUVECs.
Collapse
|
19
|
Kwak GH, Kim HY. MsrB3 deficiency induces cancer cell apoptosis through p53-independent and ER stress-dependent pathways. Arch Biochem Biophys 2017; 621:1-5. [PMID: 28389299 DOI: 10.1016/j.abb.2017.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 01/21/2023]
Abstract
We have previously shown that down-regulation of methionine sulfoxide reductase B3 (MsrB3) induces cancer cell apoptosis through the activation of the intrinsic mitochondrial pathway. However, the mechanism through which MsrB3 deficiency results in cancer cell death is poorly understood. In this study, we investigated whether p53 and endoplasmic reticulum (ER) stress are involved in MsrB3 deficiency-induced cancer cell apoptosis using breast and colon cancer cells. MsrB3 depletion resulted in p53 down-regulation at the post-transcriptional level. MsrB3 deficiency induced cell death to a similar extent in both p53 wild-type (p53+/+) and null (p53-/-) cancer cells, suggesting that MsrB3 deficiency-induced apoptosis occurs independently of p53. MsrB3 deficiency significantly increased ER stress, which resulted in apoptosis. In addition, MsrB3 depletion activated the pro-apoptotic Bim molecule, which is essential for ER stress-induced apoptosis. MsrB3 deficiency increased cytosolic calcium levels, suggesting that MsrB3 down-regulation leads to a disturbance of calcium homeostasis in the ER, which consequently triggers ER stress. MsrB3 overexpression in MsrB3-depleted cells reduced ER stress, and was accompanied by at least partial recovery of cell viability. Taken together, our results suggest that MsrB3 plays a critical role in cancer cell apoptosis through the modulation of ER stress status.
Collapse
Affiliation(s)
- Geun-Hee Kwak
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
20
|
Reyna L, Flores-Martín J, Ridano ME, Panzetta-Dutari GM, Genti-Raimondi S. Chlorpyrifos induces endoplasmic reticulum stress in JEG-3 cells. Toxicol In Vitro 2017; 40:88-93. [DOI: 10.1016/j.tiv.2016.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/24/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022]
|
21
|
Kerkhofs M, Giorgi C, Marchi S, Seitaj B, Parys JB, Pinton P, Bultynck G, Bittremieux M. Alterations in Ca 2+ Signalling via ER-Mitochondria Contact Site Remodelling in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:225-254. [PMID: 28815534 DOI: 10.1007/978-981-10-4567-7_17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inter-organellar contact sites establish microdomains for localised Ca2+-signalling events. One of these microdomains is established between the ER and the mitochondria. Importantly, the so-called mitochondria-associated ER membranes (MAMs) contain, besides structural proteins and proteins involved in lipid exchange, several Ca2+-transport systems, mediating efficient Ca2+ transfer from the ER to the mitochondria. These Ca2+ signals critically control several mitochondrial functions, thereby impacting cell metabolism, cell death and survival, proliferation and migration. Hence, the MAMs have emerged as critical signalling hubs in physiology, while their dysregulation is an important factor that drives or at least contributes to oncogenesis and tumour progression. In this book chapter, we will provide an overview of the role of the MAMs in cell function and how alterations in the MAM composition contribute to oncogenic features and behaviours.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Bruno Seitaj
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Jan B Parys
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Geert Bultynck
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium.
| | - Mart Bittremieux
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
22
|
Flores-Martín J, Reyna L, Ridano ME, Panzetta-Dutari GM, Genti-Raimondi S. Suppression of StarD7 promotes endoplasmic reticulum stress and induces ROS production. Free Radic Biol Med 2016; 99:286-295. [PMID: 27554972 DOI: 10.1016/j.freeradbiomed.2016.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/29/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022]
Abstract
StarD7 is an intracellular lipid transport protein identified as up-regulated in the choriocarcinoma JEG-3 cell line. StarD7 facilitates the delivery of phosphatidylcholine (PC) to the mitochondria, and StarD7 knockdown causes a reduction in phospholipid synthesis. Since inhibition of PC synthesis may lead to endoplasmic reticulum (ER) stress we hypothesized that StarD7 may be involved in maintaining cell homeostasis. Here, we examined the effect of StarD7 silencing on ER stress response and on the levels of reactive oxygen species (ROS) in the human hepatoma cell line HepG2. StarD7 knockdown induced alterations in mitochondria and ER morphology. These changes were accompanied with an ER stress response as determined by increased expression of inositol-requiring enzyme 1α (IRE1α), calnexin, glucose regulated protein 78/immunoglobulin heavy chain-binding protein (Grp78/BiP), protein kinase-like ER kinase (PERK) as well as the phosphorylated eukaryotic translation initiation factor 2, subunit 1α (p-eIF2α). Additionally, a downregulation of the tumor suppressor p53 by a degradation mechanism was observed in StarD7 siRNA cells. Furthermore, StarD7 silencing induced ROS generation and reduced cell viability after H2O2 exposure. Decreased expression of StarD7 was associated to increased levels of the heme oxygenase-1 (HO-1) and catalase enzymes as well as in catalase enzymatic activity. Finally, no changes in levels of autophagy and apoptosis markers were observed in StarD7 siRNA treated cells respect to control cells. Taken together, these results indicate that StarD7 contributes to modulate cellular redox homeostasis.
Collapse
Affiliation(s)
- Jésica Flores-Martín
- Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica-Centro de Investigaciones en Bioquímica Clínica e Inmunología, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Luciana Reyna
- Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica-Centro de Investigaciones en Bioquímica Clínica e Inmunología, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Magali E Ridano
- Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica-Centro de Investigaciones en Bioquímica Clínica e Inmunología, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Graciela M Panzetta-Dutari
- Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica-Centro de Investigaciones en Bioquímica Clínica e Inmunología, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Susana Genti-Raimondi
- Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica-Centro de Investigaciones en Bioquímica Clínica e Inmunología, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| |
Collapse
|
23
|
Bu Y, Diehl JA. PERK Integrates Oncogenic Signaling and Cell Survival During Cancer Development. J Cell Physiol 2016; 231:2088-96. [PMID: 26864318 DOI: 10.1002/jcp.25336] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/11/2022]
Abstract
Unfolded protein responses (UPR), consisting of three major transducers PERK, IRE1, and ATF6, occur in the midst of a variety of intracellular and extracellular challenges that perturb protein folding in the endoplasmic reticulum (ER). ER stress occurs and is thought to be a contributing factor to a number of human diseases, including cancer, neurodegenerative disorders, and various metabolic syndromes. In the context of neoplastic growth, oncogenic stress resulting from dysregulation of oncogenes such as c-Myc, Braf(V600E) , and HRAS(G12V) trigger the UPR as an adaptive strategy for cancer cell survival. PERK is an ER resident type I protein kinase harboring both pro-apoptotic and pro-survival capabilities. PERK, as a coordinator through its downstream substrates, reprograms cancer gene expression to facilitate survival in response to oncogenes and microenvironmental challenges, such as hypoxia, angiogenesis, and metastasis. Herein, we discuss how PERK kinase engages in tumor initiation, transformation, adaption microenvironmental stress, chemoresistance and potential opportunities, and potential opportunities for PERK targeted therapy. J. Cell. Physiol. 231: 2088-2096, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yiwen Bu
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
24
|
Giorgi C, Bonora M, Missiroli S, Morganti C, Morciano G, Wieckowski MR, Pinton P. Alterations in Mitochondrial and Endoplasmic Reticulum Signaling by p53 Mutants. Front Oncol 2016; 6:42. [PMID: 26942128 PMCID: PMC4766755 DOI: 10.3389/fonc.2016.00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/11/2016] [Indexed: 11/24/2022] Open
Abstract
The p53 protein is probably the most important tumor suppressor, acting as a nuclear transcription factor primarily through the modulation of cell death. However, currently, it is well accepted that p53 can also exert important transcription-independent pro-cell death actions. Indeed, cytosolic localization of endogenous wild-type or transactivation-deficient p53 is necessary and sufficient for the induction of apoptosis and autophagy. Here, we present the extra-nuclear activities of p53 associated with the mitochondria and the endoplasmic reticulum, highlighting the activities of the p53 mutants on these compartments. These two intracellular organelles play crucial roles in the regulation of cell death, and it is now well established that they also represent sites where p53 can accumulate.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Massimo Bonora
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Sonia Missiroli
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Claudia Morganti
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Giampaolo Morciano
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology , Warsaw , Poland
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| |
Collapse
|
25
|
Differential Proteomic Analysis of Human Placenta-Derived Mesenchymal Stem Cells Cultured on Normal Tissue Culture Surface and Hyaluronan-Coated Surface. Stem Cells Int 2015; 2016:2809192. [PMID: 27057169 PMCID: PMC4709773 DOI: 10.1155/2016/2809192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/07/2015] [Accepted: 10/07/2015] [Indexed: 12/15/2022] Open
Abstract
Our previous results showed that hyaluronan (HA) preserved human placenta-derived mesenchymal stem cells (PDMSC) in a slow cell cycling mode similar to quiescence, the pristine state of stem cells in vivo, and HA was found to prevent murine adipose-derived mesenchymal stem cells from senescence. Here, stable isotope labeling by amino acid in cell culture (SILAC) proteomic profiling was used to evaluate the effects of HA on aging phenomenon in stem cells, comparing (1) old and young passage PDMSC cultured on normal tissue culture surface (TCS); (2) old passage on HA-coated surface (CHA) compared to TCS; (3) old and young passage on CHA. The results indicated that senescence-associated protein transgelin (TAGLN) was upregulated in old TCS. Protein CYR61, reportedly senescence-related, was downregulated in old CHA compared to old TCS. The SIRT1-interacting Nicotinamide phosphoribosyltransferase (NAMPT) increased by 2.23-fold in old CHA compared to old TCS, and is 0.48-fold lower in old TCS compared to young TCS. Results also indicated that components of endoplasmic reticulum associated degradation (ERAD) pathway were upregulated in old CHA compared to old TCS cells, potentially for overcoming stress to maintain cell function and suppress senescence. Our data points to pathways that may be targeted by HA to maintain stem cells youth.
Collapse
|
26
|
The Impact of Paeoniflorin on α-Synuclein Degradation Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:182495. [PMID: 26693241 PMCID: PMC4674600 DOI: 10.1155/2015/182495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 01/23/2023]
Abstract
Paeoniflorin (PF) is the major active ingredient in the traditional Chinese medicine Radix. It plays a neuroprotective role by regulating autophagy and the ubiquitin-proteasome degradation pathway. In this study, we found PF significantly reduced cell damage caused by MPP+, returning cells to normal state. Cell viability significantly improved after 24 h exposure to RAPA and PF in the MPP+ group (all P < 0.01). CAT and SOD activities were significantly decreased after PF and RAPA treatment, compared with MPP+ (P < 0.001). In addition, MPP+ activated both LC3-II and E1; RAPA increased LC3-II but inhibited E1. PF significantly upregulated both LC3-II (autophagy) and E1 (ubiquitin-proteasome pathway) expression (P < 0.001), promoted degradation of α-synuclein, and reduced cell damage. We show MPP+ enhanced immunofluorescence signal of intracellular α-synuclein and LC3. Fluorescence intensity of α-synuclein decreased after PF treatment. In conclusion, these data show PF reversed the decline of proteasome activity caused by MPP+ and significantly upregulated both autophagy and ubiquitin-proteasome pathways, promoted the degradation of α-synuclein, and reduced cell damage. These findings suggest PF is a potential therapeutic medicine for neurodegenerative diseases.
Collapse
|
27
|
Liu M, Chen S, Yueh MF, Wang G, Hao H, Tukey RH. Reduction of p53 by knockdown of the UGT1 locus in colon epithelial cells causes an increase in tumorigenesis. Cell Mol Gastroenterol Hepatol 2015; 2:63-76.e5. [PMID: 26807433 PMCID: PMC4721636 DOI: 10.1016/j.jcmgh.2015.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS The UDP-glucuronosyltransferases (UGTs) are part of the cells machinery that protects the tissues from a toxicant insult by environmental and host cell metabolites. We have investigated the mechanism behind tumor growth and UGT repression. METHODS We initially silenced the Ugt1 locus in human colon cell lines and investigated markers and responses linked to p53 activation. To examine the role of the Ugt1 locus in p53-directed apoptosis and tumorigenesis, experiments were conducted to induce acute colon inflammation and chemical induced colon cancer in mice where we have selectively deleted the Ugt1 locus in the intestinal epithelial cells (Ugt1ΔIEC mice). RESULTS Knockdown of the UGT1A proteins by RNAi in human colon cancer cells and knockout of the Ugt1 locus in intestinal crypt stem cells reduces phosphorylated p53 activation and compromises the ability of p53 to control apoptosis. Targeted deletion of intestinal Ugt1 expression in Ugt1ΔIEC mice represses colon inflammation-induced p53 production and pro-apoptotic protein activation. When we induced colon cancer, the size and number of the tumors were significantly greater in the Ugt1ΔIEC mice when compared to wild type mice. Furthermore, analysis of endoplasmic reticulum (ER) stress-related markers indicated that lack of UGT1A expression causes higher ER stress in intestinal epithelial cells and tissue, which may account for the lower expression of p53. CONCLUSIONS Our results demonstrate that UGT1A expression is required to maintain and sustain p53 activation in stress-induced colon epithelial cells and has a significant impact on p53-mediated apoptosis and tumor suppression, thus protecting the colon tissue from neoplastic transformation.
Collapse
Affiliation(s)
- Miao Liu
- Laboratory of Environmental Toxicology, Department of Chemistry & Biochemistry and Pharmacology, University of California at San Diego, La Jolla, California,State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Chemistry & Biochemistry and Pharmacology, University of California at San Diego, La Jolla, California
| | - Mei-Fei Yueh
- Laboratory of Environmental Toxicology, Department of Chemistry & Biochemistry and Pharmacology, University of California at San Diego, La Jolla, California
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, People’s Republic of China,Haiping Hao, PhD, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 21009, China.China Pharmaceutical University, Tongjiaxiang 24Nanjing 21009China
| | - Robert H. Tukey
- Laboratory of Environmental Toxicology, Department of Chemistry & Biochemistry and Pharmacology, University of California at San Diego, La Jolla, California,Correspondence Address correspondence to: Robert H. Tukey, PhD, University of California–San Diego, 9500 Gilman Drive, Leichtag Biomedical Research Building, Room 211, La Jolla, California 92093-0722.University of California–San Diego9500 Gilman DriveLeichtag Biomedical Research BuildingRoom 211La JollaCalifornia 92093-0722
| |
Collapse
|
28
|
Ohashi A, Ohori M, Iwai K, Nakayama Y, Nambu T, Morishita D, Kawamoto T, Miyamoto M, Hirayama T, Okaniwa M, Banno H, Ishikawa T, Kandori H, Iwata K. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nat Commun 2015; 6:7668. [PMID: 26144554 PMCID: PMC4506520 DOI: 10.1038/ncomms8668] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 06/01/2015] [Indexed: 01/14/2023] Open
Abstract
The molecular mechanism responsible that determines cell fate after mitotic slippage is unclear. Here we investigate the post-mitotic effects of different mitotic aberrations—misaligned chromosomes produced by CENP-E inhibition and monopolar spindles resulting from Eg5 inhibition. Eg5 inhibition in cells with an impaired spindle assembly checkpoint (SAC) induces polyploidy through cytokinesis failure without a strong anti-proliferative effect. In contrast, CENP-E inhibition causes p53-mediated post-mitotic apoptosis triggered by chromosome missegregation. Pharmacological studies reveal that aneuploidy caused by the CENP-E inhibitor, Compound-A, in SAC-attenuated cells causes substantial proteotoxic stress and DNA damage. Polyploidy caused by the Eg5 inhibitor does not produce this effect. Furthermore, p53-mediated post-mitotic apoptosis is accompanied by aneuploidy-associated DNA damage response and unfolded protein response activation. Because Compound-A causes p53 accumulation and antitumour activity in an SAC-impaired xenograft model, CENP-E inhibitors could be potential anticancer drugs effective against SAC-impaired tumours. CENP-E regulates chromosome alignment during mitosis to distribute chromosomes equally into daughter cells. Here, the authors show that CENP-E inhibition causes p53-mediated post-mitotic apoptosis in tumours where the spindle assembly checkpoint is compromised, suggesting that CENP-E is a therapeutic target for these cancers.
Collapse
Affiliation(s)
- Akihiro Ohashi
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Momoko Ohori
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Kenichi Iwai
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Yusuke Nakayama
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Tadahiro Nambu
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Daisuke Morishita
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Tomohiro Kawamoto
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Maki Miyamoto
- DMPK Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Takaharu Hirayama
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Masanori Okaniwa
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Hiroshi Banno
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Tomoyasu Ishikawa
- Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Hitoshi Kandori
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| | - Kentaro Iwata
- DMPK Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa 251-8555, Japan
| |
Collapse
|
29
|
Zhu H, Abulimiti M, Liu H, Su XJ, Liu CH, Pei HP. RITA enhances irradiation-induced apoptosis in p53-defective cervical cancer cells via upregulation of IRE1α/XBP1 signaling. Oncol Rep 2015; 34:1279-88. [PMID: 26134873 DOI: 10.3892/or.2015.4083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/29/2015] [Indexed: 11/06/2022] Open
Abstract
Radiation therapy is the most widely used treatment for patients with cervical cancer. Recent studies have shown that endoplasmic reticulum (ER) stress induces apoptosis and sensitizes tumor cells to radiotherapy, which reportedly induces ER stress in cells. Classical key tumor suppressor p53 is involved in the response to a variety of cellular stresses, including those incurred by ionizing irradiation. A recent study demonstrated that small-molecule RITA (reactivation of p53 and induction of tumor cell apoptosis) increased the radiosensitivity of tumor cells expressing mutant p53 (mtp53). In the present study, we explored the effects and the underlying mechanisms of RITA in regards to the radiosensitivity and ER stress in mtp53-expressing human cervix cancer cells. Treatment with 1 µM of RITA for 24 h before irradiation markedly decreased survival and increased apoptosis in C-33A and HT-3 cells; the effects were not significantly altered by knockdown of p53. In the irradiated C-33A and HT-3 cells, RITA significantly increased the expression of IRE1α, the spliced XBP1 mRNA level, as well as apoptosis; the effects were abolished by knockdown of IRE1α. Transcriptional pulse-chase assays revealed that RITA significantly increased the stability of IRE1α mRNA in the irradiated C-33A and HT-3 cells. In contrast, the same RITA treatment did not show any significant effect on sham-irradiated cells. In conclusion, the present study provides initial evidence that RITA upregulates the expression level of IRE1α by increasing the stability of IRE1α mRNA in irradiated mtp53-expressing cervical cancer cells; the effect leads to enhanced IRE1α/XBP1 ER stress signaling and increased apoptosis in the cells. The present study offers novel insight into the pharmacological potential of RITA in the radiotherapy for cervical cancer.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Muyasha Abulimiti
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiang-Jiang Su
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Cai-Hong Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hai-Ping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
30
|
Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene 2014; 34:4613-23. [PMID: 25500539 DOI: 10.1038/onc.2014.390] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 12/11/2022]
Abstract
There is controversy over the role of glycogen synthase kinase-3 (GSK-3) in cancer progression. Recent work has implicated GSK-3 in the regulation of mammalian target of rapamycin (mTOR), a known player in malignant transformation. Autophagy, a self-degradation pathway, is inhibited by mTOR and is tightly associated with cell survival and tumor growth. Here we show that GSK-3 suppresses autophagy via mTOR complex-1 (mTORC1) and lysosomal regulation. We show that overexpression of GSK-3 isoforms (GSK-3α and GSK-3β) activated mTORC1 and suppressed autophagy in MCF-7 human breast cancer cells as indicated by reduced beclin-1 levels and upregulation of sequestosome 1 (p62/SQSTM1). Further, overexpression of GSK-3 increased the number of autophagosomes and inhibited autophagic flux. This activity was directly related to reduced lysosomal acidification triggered by GSK-3 (in which GSK-3β has a stronger impact). We found that lysosomal acidification is reduced in MCF-7 cells that also exhibit increased levels of autophagosomes and p62/SQSTM1 and increased activity of mTORC1. Subsequently, treating cells with GSK-3 inhibitors restored lysosomal acidification, enhanced autophagic flux and inhibited mTORC1. Furthermore, GSK-3 inhibitors inhibited cell proliferation. We provide evidence that GSK3-mediated mTORC1 activity and GSK-3-mediated lysosomal acidification occur via distinct pathways, yet both mTORC1 and lysosomes control cell growth. Finally, we show that GSK-3-reduced lysosomal acidification inhibits endocytic clearance as demonstrated by reduced endocytic degradation of the epidermal growth factor receptor. Taken together, our study places GSK-3 as a key regulator coordinating cellular homeostasis. GSK-3 inhibitors may be useful in targeting mTORC1 and lysosomal acidification for cancer therapy.
Collapse
|
31
|
Koromilas AE. Roles of the translation initiation factor eIF2α serine 51 phosphorylation in cancer formation and treatment. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:871-80. [PMID: 25497381 DOI: 10.1016/j.bbagrm.2014.12.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/03/2014] [Accepted: 12/07/2014] [Indexed: 01/12/2023]
Abstract
Cells respond to various forms of stress by activating anti-proliferative pathways, which allow them to correct the damage caused by stress before re-entering proliferation. If the damage, however, is beyond repair, stressed cells are eliminated from the host by undergoing death. The balance between cell survival and death is essential for cancer formation and is determined by several key pathways that impact on different stages of gene expression. In recent years, it has become evident that phosphorylation of the alpha (α) subunit of the translation initiation factor eIF2 at serine 51 (eIF2αS51P) is an important determinant of cell fate in response to stress. Induction of eIF2αS51P is mediated by a family of four kinases namely, HRI, PKR, PERK and GCN2, each of which responds to distinct forms of stress. Increased eIF2αS51P results in a global inhibition of protein synthesis but at the same time enhances the translation of select mRNAs encoding for proteins that control cell adaptation to stress. Short-term induction of eIF2αS51P has been associated with cell survival whereas long-term induction with cell death. Studies in mouse and human models of cancer have provided compelling evidence that eIF2αS51P plays an essential role in stress-induced tumorigenesis. Increased eIF2αS51P exhibits cell autonomous as well as immune regulatory effects, which can influence tumor growth and the efficacy of anti-tumor therapies. The findings suggest that eIF2αS51P may be of prognostic value and a suitable target for the design and implementation of effective anti-tumor therapies. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Antonis E Koromilas
- Lady Davis Institute for Medical Research-McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec H2W 1S6, Canada.
| |
Collapse
|
32
|
Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 2014; 14:581-97. [PMID: 25145482 DOI: 10.1038/nrc3800] [Citation(s) in RCA: 824] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is an essential organelle in eukaryotic cells for the storage and regulated release of calcium and as the entrance to the secretory pathway. Protein misfolding in the ER causes accumulation of misfolded proteins (ER stress) and activation of the unfolded protein response (UPR), which has evolved to maintain a productive ER protein-folding environment. Both ER stress and UPR activation are documented in many different human cancers. In this Review, we summarize the impact of ER stress and UPR activation on every aspect of cancer and discuss outstanding questions for which answers will pave the way for therapeutics.
Collapse
Affiliation(s)
- Miao Wang
- Degenerative Diseases Program, Center for Cancer Research, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Cancer Research, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, California 92037, USA
| |
Collapse
|
33
|
Ji X, Huang Q, Yu L, Nussinov R, Ma B. Bioinformatics study of cancer-related mutations within p53 phosphorylation site motifs. Int J Mol Sci 2014; 15:13275-98. [PMID: 25075982 PMCID: PMC4159794 DOI: 10.3390/ijms150813275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 02/06/2023] Open
Abstract
p53 protein has about thirty phosphorylation sites located at the N- and C-termini and in the core domain. The phosphorylation sites are relatively less mutated than other residues in p53. To understand why and how p53 phosphorylation sites are rarely mutated in human cancer, using a bioinformatics approaches, we examined the phosphorylation site and its nearby flanking residues, focusing on the consensus phosphorylation motif pattern, amino-acid correlations within the phosphorylation motifs, the propensity of structural disorder of the phosphorylation motifs, and cancer mutations observed within the phosphorylation motifs. Many p53 phosphorylation sites are targets for several kinases. The phosphorylation sites match 17 consensus sequence motifs out of the 29 classified. In addition to proline, which is common in kinase specificity-determining sites, we found high propensity of acidic residues to be adjacent to phosphorylation sites. Analysis of human cancer mutations in the phosphorylation motifs revealed that motifs with adjacent acidic residues generally have fewer mutations, in contrast to phosphorylation sites near proline residues. p53 phosphorylation motifs are mostly disordered. However, human cancer mutations within phosphorylation motifs tend to decrease the disorder propensity. Our results suggest that combination of acidic residues Asp and Glu with phosphorylation sites provide charge redundancy which may safe guard against loss-of-function mutations, and that the natively disordered nature of p53 phosphorylation motifs may help reduce mutational damage. Our results further suggest that engineering acidic amino acids adjacent to potential phosphorylation sites could be a p53 gene therapy strategy.
Collapse
Affiliation(s)
- Xiaona Ji
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Long Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
34
|
Li X, Zhang J, Yang Z, Kang J, Jiang S, Zhang T, Chen T, Li M, Lv Q, Chen X, McCrae MA, Zhuang H, Lu F. The function of targeted host genes determines the oncogenicity of HBV integration in hepatocellular carcinoma. J Hepatol 2014; 60:975-84. [PMID: 24362074 DOI: 10.1016/j.jhep.2013.12.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Although hepatitis B virus (HBV) integration into the human genome has been considered as one of the major causative factors to hepatocarcinogenesis, the underlying mechanism(s) was still elusive. Here we investigate the essential difference(s) of HBV integration between HCC tumor and adjacent non-tumor tissues and explore the factor(s) that determine the oncogenicity of HBV integration. METHODS 1115 HBV integration sites were collected from four recent studies. Functional annotation analysis of integration targeted host genes (ITGs) was performed using DAVID based on Gene Ontology and KEGG pathway databases. Array-based expression profiles, real-time qPCR and western blot were used to detect the expression of recurrent integration targeted genes (RTGs). The biological consequences of the overexpression of UBXN8 in 8 HCC cell lines were studied in vitro. RESULTS HBV is prone to integrate in genic regions (exons, introns, and promoters) and gene-dense regions. Functional annotation analysis reveals that, compared to those in adjacent non-tumor tissues, ITGs in HCC tumor tissues were significantly enriched in functional terms related to negative regulation of cell death, transcription regulation, development and differentiation, and cancer related pathways. 32% of the 75 RTGs identified in this analysis expressed abnormally in HCC tissues. UBXN8, one of the RTGs, was identified as a new tumor suppressor candidate which functions in a TP53 dependent manner. CONCLUSIONS The oncogenicity of HBV integration was determined, to some extend by the function of HBV integration targeted host genes in HCC.
Collapse
Affiliation(s)
- Xiaojun Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Jiangbo Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Ziwei Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Jingting Kang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Suzhen Jiang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, PR China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Tingting Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Meng Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Quanjun Lv
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Henan, PR China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China.
| | | | - Hui Zhuang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China.
| |
Collapse
|
35
|
Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic β-cell function in diabetes. Proc Natl Acad Sci U S A 2014; 111:3116-21. [PMID: 24516131 DOI: 10.1073/pnas.1318951111] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial compromise is a fundamental contributor to pancreatic β-cell failure in diabetes. Previous studies have demonstrated a broader role for tumor suppressor p53 that extends to the modulation of mitochondrial homeostasis. However, the role of islet p53 in glucose homeostasis has not yet been evaluated. Here we show that p53 deficiency protects against the development of diabetes in streptozotocin (STZ)-induced type 1 and db/db mouse models of type 2 diabetes. Glucolipotoxicity stimulates NADPH oxidase via receptor for advanced-glycation end products and Toll-like receptor 4. This oxidative stress induces the accumulation of p53 in the cytosolic compartment of pancreatic β-cells in concert with endoplasmic reticulum stress. Cytosolic p53 disturbs the process of mitophagy through an inhibitory interaction with Parkin and induces mitochondrial dysfunction. The occurrence of mitophagy is maintained in STZ-treated p53(-/-) mice that exhibit preserved glucose oxidation capacity and subsequent insulin secretion signaling, leading to better glucose tolerance. These protective effects are not observed when Parkin is deleted. Furthermore, pifithrin-α, a specific inhibitor of p53, ameliorates mitochondrial dysfunction and glucose intolerance in both STZ-treated and db/db mice. Thus, an intervention with cytosolic p53 for a mitophagy deficiency may be a therapeutic strategy for the prevention and treatment of diabetes.
Collapse
|
36
|
Koromilas AE, Mounir Z. Control of oncogenesis by eIF2α phosphorylation: implications in PTEN and PI3K-Akt signaling and tumor treatment. Future Oncol 2014; 9:1005-15. [PMID: 23837763 DOI: 10.2217/fon.13.49] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
mRNA translation plays an important role in tumor development and represents a valid target of pharmaceutical intervention in cancer. A key step in mRNA translation involves the regulation of initiation by the eukaryotic initiation factor eIF2. Eukaryotic cells respond to various forms of stress by inducing the phosphorylation of the α-subunit of eIF2 at S51, a modification that leads to protein synthesis inhibition. Phosphorylated eIF2α can act either as a promoter of cell survival or an inducer of cell death in response to distinct stimuli. Increased eIF2α phosphorylation has a cytoprotective function in response to genetic or pharmacological inhibition of the PI3K-Akt pathway but also exhibits a proapoptotic function downstream of the PTEN tumor suppressor, independent of PI3K-Akt signaling inhibition. The functional interplay between the PI3K-Akt and eIF2α phosphorylation pathways may have important implications in the design of anti-tumor therapies that depend on the cell fate decisions of phosphorylated eIF2α.
Collapse
|
37
|
D’Alessandro A, Zolla L. Proteomics and metabolomics in cancer drug development. Expert Rev Proteomics 2014; 10:473-88. [DOI: 10.1586/14789450.2013.840440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Krishnamoorthy J, Rajesh K, Mirzajani F, Kesoglidou P, Papadakis AI, Koromilas AE. Evidence for eIF2α phosphorylation-independent effects of GSK2656157, a novel catalytic inhibitor of PERK with clinical implications. Cell Cycle 2014; 13:801-6. [PMID: 24401334 PMCID: PMC3979916 DOI: 10.4161/cc.27726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The endoplasmic reticulum (ER)-resident protein kinase PERK is a major component of the unfolded protein response (UPR), which promotes the adaptation of cells to various forms of stress. PERK phosphorylates the α subunit of the translation initiation factor eIF2 at serine 51, a modification that plays a key role in the regulation of mRNA translation in stressed cells. Several studies have demonstrated that the PERK-eIF2α phosphorylation pathway maintains insulin biosynthesis and glucose homeostasis, facilitates tumor formation and decreases the efficacy of tumor treatment with chemotherapeutic drugs. Recently, a selective catalytic PERK inhibitor termed GSK2656157 has been developed with anti-tumor properties in mice. Herein, we provide evidence that inhibition of PERK activity by GSK2656157 does not always correlate with inhibition of eIF2α phosphorylation. Also, GSK2656157 does not always mimic the biological effects of the genetic inactivation of PERK. Furthermore, cells treated with GSK2656157 increase eIF2α phosphorylation as a means to compensate for the loss of PERK. Using human tumor cells impaired in eIF2α phosphorylation, we demonstrate that GSK2656157 induces ER stress-mediated death suggesting that the drug acts independent of the inhibition of eIF2α phosphorylation. We conclude that GSK2656157 might be a useful compound to dissect pathways that compensate for the loss of PERK and/or identify PERK pathways that are independent of eIF2α phosphorylation.
Collapse
Affiliation(s)
- Jothilatha Krishnamoorthy
- Lady Davis Institute for Medical Research; McGill University; Sir Mortimer B. Davis-Jewish General Hospital; Montreal, Quebec, Canada
| | - Kamindla Rajesh
- Lady Davis Institute for Medical Research; McGill University; Sir Mortimer B. Davis-Jewish General Hospital; Montreal, Quebec, Canada
| | - Farzaneh Mirzajani
- Lady Davis Institute for Medical Research; McGill University; Sir Mortimer B. Davis-Jewish General Hospital; Montreal, Quebec, Canada
| | - Polixenia Kesoglidou
- Lady Davis Institute for Medical Research; McGill University; Sir Mortimer B. Davis-Jewish General Hospital; Montreal, Quebec, Canada
| | - Andreas I Papadakis
- Lady Davis Institute for Medical Research; McGill University; Sir Mortimer B. Davis-Jewish General Hospital; Montreal, Quebec, Canada
| | - Antonis E Koromilas
- Lady Davis Institute for Medical Research; McGill University; Sir Mortimer B. Davis-Jewish General Hospital; Montreal, Quebec, Canada; Department of Oncology; Faculty of Medicine; McGill University; Montreal, Quebec, Canada
| |
Collapse
|
39
|
Rajesh K, Papadakis AI, Kazimierczak U, Peidis P, Wang S, Ferbeyre G, Kaufman RJ, Koromilas AE. eIF2α phosphorylation bypasses premature senescence caused by oxidative stress and pro-oxidant antitumor therapies. Aging (Albany NY) 2013; 5:884-901. [PMID: 24334569 PMCID: PMC3883705 DOI: 10.18632/aging.100620] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Eukaryotic cells respond to various forms of stress by blocking mRNA translation initiation via the phosphorylation of the alpha (α) subunit of eIF2 at serine 51 (S51) (eIFαP). An important role of eIF2αP is the regulation of redox homeostasis and adaptation of cells to oxidative stress. Herein, we demonstrate that eIF2αP guards cells from intracellular reactive oxygen species (ROS) via the inhibition of senescence. Specifically, genetic inactivation of either eIF2αP or eIF2α kinase PERK in primary mouse or human fibroblasts leads to proliferative defects associated with increased DNA damage, G2/M accumulation and induction of premature senescence. Impaired proliferation of either PERK or eIF2αP-deficient primary cells is caused by increased ROS and restored by anti-oxidant treatment. Contrary to primary cells, impaired eIF2αP in immortalized mouse fibroblasts or human tumor cells provides tolerance to elevated intracellular ROS levels. However, eIF2αP-deficient human tumor cells are highly susceptible to extrinsic ROS generated by the pro-oxidant drug doxorubicin by undergoing premature senescence. Our work demonstrates that eIF2αP determines cell destiny through its capacity to control senescence in response to oxidative stress. Also, inhibition of eIF2αP may be a suitable means to increase the anti-tumor effects of pro-oxidant drugs through the induction of senescence.
Collapse
Affiliation(s)
- Kamindla Rajesh
- Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Andreas I. Papadakis
- Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Urszula Kazimierczak
- Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poland
| | - Philippos Peidis
- Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Shuo Wang
- Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Gerardo Ferbeyre
- Département de Biochimie, Université de Montréal; Montréal, Québec H3C 3J7, Canada
| | - Randal J. Kaufman
- Center for Neuroscience, Aging and Stem Cell Research, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Antonis E. Koromilas
- Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec H2W 1S6, Canada
| |
Collapse
|
40
|
Huart AS, Saxty B, Merritt A, Nekulova M, Lewis S, Huang Y, Vojtesek B, Kettleborough C, Hupp TR. A Casein kinase 1/Checkpoint kinase 1 pyrazolo-pyridine protein kinase inhibitor as novel activator of the p53 pathway. Bioorg Med Chem Lett 2013; 23:5578-85. [PMID: 24007918 DOI: 10.1016/j.bmcl.2013.08.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
Reactivation of the wild-type p53 pathway is one key goal aimed at developing targeted therapeutics in the cancer research field. Although most p53 protein kinases form 'p53-activating' signals, there are few kinases whose action can contribute to the inhibition of p53, as Casein kinase 1 (CK1) and Checkpoint kinase 1 (CHK1). Here we report on a pyrazolo-pyridine analogue showing activity against both CK1 and CHK1 kinases that lead to p53 pathway stabilisation, thus having pharmacological similarities to the p53-activator Nutlin-3. These data demonstrate the emerging potential utility of multivalent kinase inhibitors.
Collapse
Affiliation(s)
- Anne-Sophie Huart
- p53 Signal Transduction Group, University of Edinburgh Cancer Research Centre in the Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang M, Zhang J, Chen X, Cho SJ, Chen X. Glycogen synthase kinase 3 promotes p53 mRNA translation via phosphorylation of RNPC1. Genes Dev 2013; 27:2246-58. [PMID: 24142875 PMCID: PMC3814645 DOI: 10.1101/gad.221739.113] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/12/2013] [Indexed: 11/25/2022]
Abstract
The RNPC1 RNA-binding protein, also called Rbm38, is a target of p53 and a repressor of p53 mRNA translation. Thus, the p53-RNPC1 loop is critical for modulating p53 tumor suppression, but it is not clear how the loop is regulated. Here, we showed that RNPC1 is phosphorylated at Ser195 by glycogen synthase kinase 3 (GSK3). We also showed that GSK3 promotes p53 mRNA translation through phosphorylation of RNPC1. Interestingly, we found that the phosphor-mimetic mutant S195D and the deletion mutant Δ189-204, which lacks the GSK3 phosphorylation site, are unable to repress p53 mRNA translation due to loss of interaction with eukaryotic translation factor eIF4E on p53 mRNA. Additionally, we found that phosphorylated RNPC1, RNPC1-S195D, and RNPC1(Δ189-204) promote p53 mRNA translation through interaction with eukaryotic translation factor eIF4G, which then facilitates the assembly of the eIF4F complex on p53 mRNA. Furthermore, we showed that upon inhibition of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway, GSK3 is activated, leading to increased RNPC1 phosphorylation and increased p53 expression in a RNPC1-dependent manner. Together, we postulate that the p53-RNPC1 loop can be explored to increase or decrease p53 activity for cancer therapy.
Collapse
Affiliation(s)
- Min Zhang
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616, USA
| | - Jin Zhang
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616, USA
| | - Xiangling Chen
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616, USA
| | - Seong-Jun Cho
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
42
|
Suradej B, Pata S, Kasinrerk W, Cressey R. Glucosidase II exhibits similarity to the p53 tumor suppressor in regards to structure and behavior in response to stress signals: a potential novel cancer biomarker. Oncol Rep 2013; 30:2511-9. [PMID: 24008518 DOI: 10.3892/or.2013.2721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/07/2013] [Indexed: 11/05/2022] Open
Abstract
Early diagnosis of cancer is a key factor for the success of treatment. For this reason, identification of highly sensitive and specific novel tumor markers is urgently needed. In the present study, the CM5 polyclonal antibody (CM5 pAb) raised against p53 of mouse origin was used to identify p53 structurally related protein(s) that may also play an important role in promoting or preventing lung cancer. Western blot analysis was performed on tumor tissues and corresponding normal tissues obtained from lung cancer patients. CM5 pAb reacted with a human protein with an apparent molecular weight of 90 kDa in the lung tumor tissue. The levels of this protein were greatly increased in 35 of the 37 (94.6%) lung tumor samples assessed, with only minimal expression in the normal adjacent tissues. The 90-kDa protein was immunoprecipitated by CM5 pAb and was subsequently identified by LC-MS/MS to be glucosidase II, a key protein involved in the quality control mechanism of glycoprotein folding. An investigation of the response to genotoxic stress and endoplasmic reticulum (ER) stress using A549 human lung adenocarcinoma cells demonstrated that glucosidase II exhibited a similar pattern of response as the p53 tumor suppressor. Protein levels of both p53 and glucosidase II were increased in response to UV irradiation but decreased in response to tunicamycin-induced ER stress. In conclusion, we demonstrated that a polyclonal antibody raised against mouse p53 could cross-react with human glucosidase II, which was found to be frequently overexpressed in human lung tumor tissues and exhibited a stress response similar to p53. The high frequency of glucosidase II overexpression, which to the best of our knowledge has not been previously described, indicates its crucial roles in lung tumorigenesis and is thus a valuable biomarker for facilitating the screening and/or diagnosis of lung cancer. However, further investigations concerning its relationship to p53 and its roles in ER and genotoxic stress are warranted.
Collapse
Affiliation(s)
- Benjamart Suradej
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | | |
Collapse
|
43
|
Potential for therapeutic manipulation of the UPR in disease. Semin Immunopathol 2013; 35:351-73. [PMID: 23572207 PMCID: PMC3641308 DOI: 10.1007/s00281-013-0370-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/13/2013] [Indexed: 12/16/2022]
Abstract
Increased endoplasmic reticulum (ER) stress and the activated unfolded protein response (UPR) signaling associated with it play key roles in physiological processes as well as under pathological conditions. The UPR normally protects cells and re-establishes cellular homeostasis, but prolonged UPR activation can lead to the development of various pathologies. These features make the UPR signaling pathway an attractive target for the treatment of diseases whose pathogenesis is characterized by chronic activation of this pathway. Here, we focus on the molecular signaling pathways of the UPR and suggest possible ways to target this response for therapeutic purposes.
Collapse
|
44
|
Thomas SE, Malzer E, Ordóñez A, Dalton LE, van T Wout EFA, Liniker E, Crowther DC, Lomas DA, Marciniak SJ. p53 and translation attenuation regulate distinct cell cycle checkpoints during endoplasmic reticulum (ER) stress. J Biol Chem 2013; 288:7606-7617. [PMID: 23341460 PMCID: PMC3597802 DOI: 10.1074/jbc.m112.424655] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/04/2013] [Indexed: 01/25/2023] Open
Abstract
Cell cycle checkpoints ensure that proliferation occurs only under permissive conditions, but their role in linking nutrient availability to cell division is incompletely understood. Protein folding within the endoplasmic reticulum (ER) is exquisitely sensitive to energy supply and amino acid sources because deficiencies impair luminal protein folding and consequently trigger ER stress signaling. Following ER stress, many cell types arrest within the G(1) phase, although recent studies have identified a novel ER stress G(2) checkpoint. Here, we report that ER stress affects cell cycle progression via two classes of signal: an early inhibition of protein synthesis leading to G(2) delay involving CHK1 and a later induction of G(1) arrest associated both with the induction of p53 target genes and loss of cyclin D(1). We show that substitution of p53/47 for p53 impairs the ER stress G(1) checkpoint, attenuates the recovery of protein translation, and impairs induction of NOXA, a mediator of cell death. We propose that cell cycle regulation in response to ER stress comprises redundant pathways invoked sequentially first to impair G(2) progression prior to ultimate G(1) arrest.
Collapse
Affiliation(s)
- Sally E Thomas
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Elke Malzer
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom; Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, United Kingdom
| | - Adriana Ordóñez
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Lucy E Dalton
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Emily F A van T Wout
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Elizabeth Liniker
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Damian C Crowther
- Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, United Kingdom
| | - David A Lomas
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Stefan J Marciniak
- Department of Medicine and Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
45
|
Dioufa N, Chatzistamou I, Farmaki E, Papavassiliou AG, Kiaris H. p53 antagonizes the unfolded protein response and inhibits ground glass hepatocyte development during endoplasmic reticulum stress. Exp Biol Med (Maywood) 2012; 237:1173-1180. [PMID: 23038705 DOI: 10.1258/ebm.2012.012140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
The unfolded protein response (UPR) is triggered during stress of the endoplasmic reticulum (ER) and facilitates tissue homeostasis. Considering the role of p53 tumor suppressor gene in the interpretation of stress-inducing stimuli, in this study, we explored whether p53 modulates UPR. We found that p53 ablation resulted in a profound sensitivity to tunicamycin that was associated with liver dysfunction, ground glass hepatocyte (GGH) development and nuclear atypia/dysplasia. Binding immunoglobulin protein (BiP)/glucose-regulated protein 78 (GRP78) chaperone was readily detected in the cytoplasm of GGHs, confirming ER expansion. Tunicamycin administration induced BiP/GRP78 and GRP94 expression more potently in the p53-deficient mice than in controls and elevated phosphatidylcholine, the major lipid of ER, by a p53-dependent mechanism. Furthermore, alternative splicing of XBP1, the transcription factor that executes the UPR, was more efficient in cells which do not express p53. The cytoprotective effects of p53 were confirmed by cell viability studies, indicating that p53 deficiency conferred sensitivity against tunicamycin. Our findings show that p53 protects from the hepatotoxic effects of chronic ER stress. Stimulation of p53 activity when intense UPR is undesirable may possess therapeutic implications.
Collapse
Affiliation(s)
- Nikolina Dioufa
- Department of Biological Chemistry, University of Athens Medical School, M. Asias 75, Athens, Greece
| | | | | | | | | |
Collapse
|
46
|
Lin WC, Chuang YC, Chang YS, Lai MD, Teng YN, Su IJ, Wang CCC, Lee KH, Hung JH. Endoplasmic reticulum stress stimulates p53 expression through NF-κB activation. PLoS One 2012; 7:e39120. [PMID: 22859938 PMCID: PMC3408479 DOI: 10.1371/journal.pone.0039120] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 05/18/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Induction of apoptosis by endoplasmic reticulum (ER) stress is implicated as the major factor in the development of multiple diseases. ER stress also appears to be a potentially useful major response to many chemotherapeutic drugs and environmental chemical compounds. A previous study has indicated that one major apoptotic regulator, p53, is significantly increased in response to ER stress, and participates in ER stress-induced apoptosis. However, the regulators of p53 expression during ER stress are still not fully understood. PRINCIPAL FINDINGS In this report, we demonstrate that induction of p53 expression is mediated through NF-κB signaling pathways during ER stress in MCF-7 cells. Tunicamycin or brefeldin A, two ER stress inducers, increased p53 expression in MCF-7 and Hela cells. We found p53 nuclear localization, activity, and phosphorylation at serine 15 on p53 increased during ER stress. Nuclear translocation of NF-κB and activity of NF-κB were also observed during ER stress. ER stress-induced p53 expression was significantly inhibited by coincubation with the NF-κB inhibitor, Bay 11-7082 and downregulation of NF-κB p65 expression. The role of p53 in mediating Brefeldin A-induced apoptosis was also investigated. Induction of p53 expression by Brefeldin A was correlated to Brefeldin A-induced apoptosis. Furthermore, downregulation of p53 expression by p53 siRNA significantly reduced Brefeldin A-induced apoptosis in MCF-7 cells. SIGNIFICANCE Taken together, NF-κB activation and induction of p53 expression is essential for ER stress-induced cell death which is important for therapeutic effects of clinical cancer drugs. Our results may provide insight into the mechanism of cancer chemotherapy efficacy that is associated with induction of ER stress.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Yu-Chi Chuang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Sheng Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infectious Diseases and Signaling Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Kuan-Han Lee
- Institute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
47
|
The oncogenic role of NS5A of hepatitis C virus is mediated by up-regulation of survivin gene expression in the hepatocellular cell through p53 and NF-κB pathways. Cell Biol Int 2012; 35:1225-32. [PMID: 21612579 DOI: 10.1042/cbi20110102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Approx. 4% of patients experiencing chronic infection of human HCV (hepatitis C virus) ultimately develop HCC (hepatocellular carcinoma). The NS5A (non-structural protein 5A) encoded by HCV has been reported to have an oncogenic role during HCV infection, but the precise mechanism remains largely unclear. The aim of this study is to investigate the signal transduction pathways that mediate the role of NS5A in hepatocarcinogenesis. HepG2 cells were transfected with a plasmid expressing HCV NS5A protein. Subsequently, cell proliferation was analysed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and cell counting, apoptosis was analysed by Hoechst 33342 staining, and the gene expression profile was identified by microarray and subsequently validated by RT-PCR (reverse transcription-PCR). The protein levels of survivin, p53, NOS2A (nitric oxide synthase 2A), cyclin D1 and NF-κB (nuclear factor κB) were monitored by Western blotting. Our results showed that transfection of HCV NS5A expression plasmid significantly down-regulated the expression of nine genes and up-regulated the expression of ten genes among the 104 genes detectable by the microarray associated with signalling transduction. The increased expression of survivin mRNA and protein, down-regulated p53 protein levels and increased NOS2A, cyclin D1 and NF-κB protein levels were further identified. Our results suggested that HCV NS5A protein can enhance survivin transcription by increasing p53 degradation and stimulating NOS2A expression as well as NF-κB relocation to the nucleus. The functions of survivin in anti-apoptosis and regulation of cell division might mediate the role of NS5A in HCV-induced HCC.
Collapse
|
48
|
GSK-3β: A Bifunctional Role in Cell Death Pathways. Int J Cell Biol 2012; 2012:930710. [PMID: 22675363 PMCID: PMC3364548 DOI: 10.1155/2012/930710] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 02/06/2023] Open
Abstract
Although glycogen synthase kinase-3 beta (GSK-3β) was originally named for its ability to phosphorylate glycogen synthase and regulate glucose metabolism, this multifunctional kinase is presently known to be a key regulator of a wide range of cellular functions. GSK-3β is involved in modulating a variety of functions including cell signaling, growth metabolism, and various transcription factors that determine the survival or death of the organism. Secondary to the role of GSK-3β in various diseases including Alzheimer's disease, inflammation, diabetes, and cancer, small molecule inhibitors of GSK-3β are gaining significant attention. This paper is primarily focused on addressing the bifunctional or conflicting roles of GSK-3β in both the promotion of cell survival and of apoptosis. GSK-3β has emerged as an important molecular target for drug development.
Collapse
|
49
|
Chloropicrin induces endoplasmic reticulum stress in human retinal pigment epithelial cells. Toxicol Lett 2012; 211:239-45. [PMID: 22516760 DOI: 10.1016/j.toxlet.2012.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 11/21/2022]
Abstract
Chloropicrin is an aliphatic volatile nitrate compound that is mainly used as a pesticide. It has several toxic effects in animals and can cause irritating and other health problems in exposed humans. Since the mode of chloropicrin action is poorly understood, the aim of this study was to investigate molecular responses underlying chloropicrin toxicity. We used human retinal pigment epithelial cells (ARPE-19) as a model cell type because the eyes are one of the main target organs affected by chloropicrin exposure. Transmission electron microscopy images revealed that exposure to a chloropicrin concentration that decreased cell viability by 50%, evoked the formation of numerous electron-lucent, non-autophagy vacuoles in the cytoplasm with dilatation of the endoplasmic reticulum (ER). Lower concentrations led to the appearance of more electron-dense vacuoles, which contained cytoplasmic material and were surrounded by a membrane resembling autophagy vacuoles. According to immunoblotting analyses chloropicrin increased the amount of the ER-stress related proteins, Bip (about 3-fold compared to the controls), IRE1α (2.5-fold) and Gadd 153/Chop (2.5-fold), evidence for accumulation of misfolded proteins in the ER. This property was further confirmed by the increase of reactive oxygen species (ROS) production (2-2.5-fold), induction of heme oxygenase-1 (about 6-fold), and increase in the level of the tumour suppressor protein p53 (2-fold). Thus, the cytotoxicity of chloropicrin in the retinal pigment epithelium is postulated to be associated with oxidative stress and perturbation of the ER functions, which are possibly among the mechanisms involved in oculotoxicity of chloropicrin.
Collapse
|
50
|
Liu CM, Hur EM, Zhou FQ. Coordinating Gene Expression and Axon Assembly to Control Axon Growth: Potential Role of GSK3 Signaling. Front Mol Neurosci 2012; 5:3. [PMID: 22347166 PMCID: PMC3272657 DOI: 10.3389/fnmol.2012.00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/09/2012] [Indexed: 12/23/2022] Open
Abstract
Axon growth requires the coordinated regulation of gene expression in the neuronal soma, local protein translation in the axon, anterograde transport of synthesized raw materials along the axon, and assembly of cytoskeleton and membranes in the nerve growth cone. Glycogen synthase kinase 3 (GSK3) signaling has recently been shown to play key roles in the regulation of axonal transport and cytoskeletal assembly during axon growth. GSK3 signaling is also known to regulate gene expression via controlling the functions of many transcription factors, suggesting that GSK3 may be an important regulator of gene transcription supporting axon growth. We review signaling pathways that control local axon assembly at the growth cone and gene expression in the soma during developmental or regenerative axon growth and discuss the potential involvement of GSK3 signaling in these processes, with a particular focus on how GSK3 signaling modulates the function of axon growth-associated transcription factors.
Collapse
Affiliation(s)
- Chang-Mei Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| | | | | |
Collapse
|