1
|
Chen H, Chen H, Fang J, Huang X, Zhu X, Chai T, Chen X, Huang L, Yu P. Clinicopathological features and prognostic significance of TAF1L in gastric cancer. BMC Gastroenterol 2024; 24:445. [PMID: 39623292 PMCID: PMC11613484 DOI: 10.1186/s12876-024-03534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND TAF1L may play an important role in the occurrence and development of gastric cancer (GC), but the correlation between the expression of TAF1L and the clinicopathological factors and prognosis of GC is still unclear. METHODS A total of 1053 GC patients in Zhejiang Cancer Hospital between January 1st, 2018 to December 31th, 2019 were screened. Finally, 120 patients met the inclusion criteria. TAF1L expression was detected by immunohistochemistry, and the correlations of TAF1L in clinicopathological characteristics and prognosis were analyzed. TCGA GC dataset was used to perform further bioinformatics analysis. RESULTS In this study, TAF1L expression was evaluated in 120 clinical samples of GC. TAF1L expression was higher in tumor tissues and was associated with tumor differentiation (p = 0.046), signet-ring cells (p = 0.043), dMMR status (p = 0.011), lympho-vascular invasion (p = 0.038), and neural invasion (p = 0.005) in our cohort. Cases with high expression of TAF1L presented worse mean OS than those with low expression (40.3 months vs. 51.8 months, p = 0.019), and the difference was also significant in HER2-positive cases (20.9 months vs. 51.2 months, p = 0.007) as well as pMMR cases (38.8 months vs. 51.6 months, p = 0.006). Multivariate Cox regression analysis showed that TAF1L (HR = 2.044, 95%CI = 1.007-4.147, p = 0.048) and HER2 status (HR = 2.383, 95%CI = 1.087-5.222, p = 0.030) were independent prognosis factors of these patients. In subgroup analysis, TAF1L was the independent prognostic risk factor in HER2-positive patients (HR = 6.736, 95%CI = 1.373-33.032, p = 0.019). and pMMR patients (HR = 2.291, 95%CI = 1.126-4.660, p = 0.022). Besides, HER2 status was the independent prognostic risk factor in TAF1L-H patients (HR = 4.832, 95%CI = 1.908-12.239, p = 0.001). TCGA dataset also indicated the higher expression of TAF1L in tumors than normal tissues (p < 0.001). High TAF1L expression is linked to worse survival in MSS (11.0 months vs. 35.0 months, p = 0.0046) groups, and is negatively associated with overall survival in HER2-positive cases (24.0 months vs. 57.0 months, p = 0.0039). CONCLUSION TAF1L is closely related to the occurrence and development of GC. Our results suggested that TAF1L is a significant biomarker for predicting prognosis of GC and may play an important role in immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Han Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
| | - Hang Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
| | - Jingquan Fang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xingmao Huang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiu Zhu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Tengjiao Chai
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiangliu Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Ling Huang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Pengfei Yu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
2
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
3
|
Fisher MJ, Luse DS. Defining a chromatin architecture that supports transcription at RNA polymerase II promoters. J Biol Chem 2024; 300:107515. [PMID: 38945447 PMCID: PMC11298586 DOI: 10.1016/j.jbc.2024.107515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
Mammalian RNA polymerase II preinitiation complexes assemble adjacent to a nucleosome whose proximal edge (NPE) is typically 40 to 50 bp downstream of the transcription start site. At active promoters, that +1 nucleosome is universally modified by trimethylation on lysine 4 of histone H3 (H3K4me3). The Pol II preinitiation complex only extends 35 bp beyond the transcription start site, but nucleosomal templates with an NPE at +51 are nearly inactive in vitro with promoters that lack a TATA element and thus depend on TFIID for promoter recognition. Significantly, this inhibition is relieved when the +1 nucleosome contains H3K4me3, which can interact with TFIID subunits. Here, we show that H3K4me3 templates with both TATA and TATA-less promoters are active with +35 NPEs when transcription is driven by TFIID. Templates with +20 NPE are also active but at reduced levels compared to +35 and +51 NPEs, consistent with a general inhibition of promoter function when the proximal nucleosome encroaches on the preinitiation complex. Remarkably, dinucleosome templates support transcription when H3K4me3 is only present in the distal nucleosome, suggesting that TFIID-H3K4me3 interaction does not require modification of the +1 nucleosome. Transcription reactions performed with an alternative protocol retaining most nuclear factors results primarily in early termination, with a minority of complexes successfully traversing the first nucleosome. In such reactions, the +1 nucleosome does not substantially affect the level of termination even with an NPE of +20, indicating that a nucleosome barrier is not a major driver of early termination by Pol II.
Collapse
Affiliation(s)
- Michael J Fisher
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Donal S Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
4
|
Gonzalez-Avalos E, Onodera A, Samaniego-Castruita D, Rao A, Ay F. Predicting gene expression state and prioritizing putative enhancers using 5hmC signal. Genome Biol 2024; 25:142. [PMID: 38825692 PMCID: PMC11145787 DOI: 10.1186/s13059-024-03273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/11/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Like its parent base 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) is a direct epigenetic modification of cytosines in the context of CpG dinucleotides. 5hmC is the most abundant oxidized form of 5mC, generated through the action of TET dioxygenases at gene bodies of actively-transcribed genes and at active or lineage-specific enhancers. Although such enrichments are reported for 5hmC, to date, predictive models of gene expression state or putative regulatory regions for genes using 5hmC have not been developed. RESULTS Here, by using only 5hmC enrichment in genic regions and their vicinity, we develop neural network models that predict gene expression state across 49 cell types. We show that our deep neural network models distinguish high vs low expression state utilizing only 5hmC levels and these predictive models generalize to unseen cell types. Further, in order to leverage 5hmC signal in distal enhancers for expression prediction, we employ an Activity-by-Contact model and also develop a graph convolutional neural network model with both utilizing Hi-C data and 5hmC enrichment to prioritize enhancer-promoter links. These approaches identify known and novel putative enhancers for key genes in multiple immune cell subsets. CONCLUSIONS Our work highlights the importance of 5hmC in gene regulation through proximal and distal mechanisms and provides a framework to link it to genome function. With the recent advances in 6-letter DNA sequencing by short and long-read techniques, profiling of 5mC and 5hmC may be done routinely in the near future, hence, providing a broad range of applications for the methods developed here.
Collapse
Affiliation(s)
- Edahi Gonzalez-Avalos
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Atsushi Onodera
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Daniela Samaniego-Castruita
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anjana Rao
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Ferhat Ay
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Savinkova LK, Sharypova EB, Kolchanov NA. On the Role of TATA Boxes and TATA-Binding Protein in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1000. [PMID: 36903861 PMCID: PMC10005294 DOI: 10.3390/plants12051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
For transcription initiation by RNA polymerase II (Pol II), all eukaryotes require assembly of basal transcription machinery on the core promoter, a region located approximately in the locus spanning a transcription start site (-50; +50 bp). Although Pol II is a complex multi-subunit enzyme conserved among all eukaryotes, it cannot initiate transcription without the participation of many other proteins. Transcription initiation on TATA-containing promoters requires the assembly of the preinitiation complex; this process is triggered by an interaction of TATA-binding protein (TBP, a component of the general transcription factor TFIID (transcription factor II D)) with a TATA box. The interaction of TBP with various TATA boxes in plants, in particular Arabidopsis thaliana, has hardly been investigated, except for a few early studies that addressed the role of a TATA box and substitutions in it in plant transcription systems. This is despite the fact that the interaction of TBP with TATA boxes and their variants can be used to regulate transcription. In this review, we examine the roles of some general transcription factors in the assembly of the basal transcription complex, as well as functions of TATA boxes of the model plant A. thaliana. We review examples showing not only the involvement of TATA boxes in the initiation of transcription machinery assembly but also their indirect participation in plant adaptation to environmental conditions in responses to light and other phenomena. Examples of an influence of the expression levels of A. thaliana TBP1 and TBP2 on morphological traits of the plants are also examined. We summarize available functional data on these two early players that trigger the assembly of transcription machinery. This information will deepen the understanding of the mechanisms underlying transcription by Pol II in plants and will help to utilize the functions of the interaction of TBP with TATA boxes in practice.
Collapse
|
6
|
Genomic analysis of an aggressive case with metastatic intrahepatic mucinous cholangiocarcinoma. Clin J Gastroenterol 2022; 15:809-817. [PMID: 35699889 DOI: 10.1007/s12328-022-01649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/22/2022] [Indexed: 12/09/2022]
|
7
|
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol 2022; 23:603-622. [PMID: 35505252 DOI: 10.1038/s41580-022-00476-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.
Collapse
|
8
|
Genome-Wide Prediction of Transcription Start Sites in Conifers. Int J Mol Sci 2022; 23:ijms23031735. [PMID: 35163661 PMCID: PMC8836283 DOI: 10.3390/ijms23031735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
The identification of promoters is an essential step in the genome annotation process, providing a framework for gene regulatory networks and their role in transcription regulation. Despite considerable advances in the high-throughput determination of transcription start sites (TSSs) and transcription factor binding sites (TFBSs), experimental methods are still time-consuming and expensive. Instead, several computational approaches have been developed to provide fast and reliable means for predicting the location of TSSs and regulatory motifs on a genome-wide scale. Numerous studies have been carried out on the regulatory elements of mammalian genomes, but plant promoters, especially in gymnosperms, have been left out of the limelight and, therefore, have been poorly investigated. The aim of this study was to enhance and expand the existing genome annotations using computational approaches for genome-wide prediction of TSSs in the four conifer species: loblolly pine, white spruce, Norway spruce, and Siberian larch. Our pipeline will be useful for TSS predictions in other genomes, especially for draft assemblies, where reliable TSS predictions are not usually available. We also explored some of the features of the nucleotide composition of the predicted promoters and compared the GC properties of conifer genes with model monocot and dicot plants. Here, we demonstrate that even incomplete genome assemblies and partial annotations can be a reliable starting point for TSS annotation. The results of the TSS prediction in four conifer species have been deposited in the Persephone genome browser, which allows smooth visualization and is optimized for large data sets. This work provides the initial basis for future experimental validation and the study of the regulatory regions to understand gene regulation in gymnosperms.
Collapse
|
9
|
Chekunova AI, Sorokina SY, Sivoplyas EA, Bakhtoyarov GN, Proshakov PA, Fokin AV, Melnikov AI, Kulikov AM. Episodes of Rapid Recovery of the Functional Activity of the ras85D Gene in the Evolutionary History of Phylogenetically Distant Drosophila Species. Front Genet 2022; 12:807234. [PMID: 35096018 PMCID: PMC8790561 DOI: 10.3389/fgene.2021.807234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
As assemblies of genomes of new species with varying degrees of relationship appear, it becomes obvious that structural rearrangements of the genome, such as inversions, translocations, and transposon movements, are an essential and often the main source of evolutionary variation. In this regard, the following questions arise. How conserved are the regulatory regions of genes? Do they have a common evolutionary origin? And how and at what rate is the functional activity of genes restored during structural changes in the promoter region? In this article, we analyze the evolutionary history of the formation of the regulatory region of the ras85D gene in different lineages of the genus Drosophila, as well as the participation of mobile elements in structural rearrangements and in the replacement of specific areas of the promoter region with those of independent evolutionary origin. In the process, we substantiate hypotheses about the selection of promoter elements from a number of frequently repeated motifs with different degrees of degeneracy in the ancestral sequence, as well as about the restoration of the minimum required set of regulatory sequences using a conversion mechanism or similar.
Collapse
Affiliation(s)
- A I Chekunova
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - S Yu Sorokina
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - E A Sivoplyas
- Department of Biochemistry, Molecular Biology and Genetics, Institute of Biology and Chemistry of Moscow Pedagogical State University (MPGU), Moscow, Russia
| | - G N Bakhtoyarov
- Laboratory of Genetics of DNA Containing Viruses, Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», Moscow, Russia
| | - P A Proshakov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A V Fokin
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A I Melnikov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - A M Kulikov
- Evolutionary Genetics of Development, N.K. Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Gajos M, Jasnovidova O, van Bömmel A, Freier S, Vingron M, Mayer A. Conserved DNA sequence features underlie pervasive RNA polymerase pausing. Nucleic Acids Res 2021; 49:4402-4420. [PMID: 33788942 PMCID: PMC8096220 DOI: 10.1093/nar/gkab208] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Pausing of transcribing RNA polymerase is regulated and creates opportunities to control gene expression. Research in metazoans has so far mainly focused on RNA polymerase II (Pol II) promoter-proximal pausing leaving the pervasive nature of pausing and its regulatory potential in mammalian cells unclear. Here, we developed a pause detecting algorithm (PDA) for nucleotide-resolution occupancy data and a new native elongating transcript sequencing approach, termed nested NET-seq, that strongly reduces artifactual peaks commonly misinterpreted as pausing sites. Leveraging PDA and nested NET-seq reveal widespread genome-wide Pol II pausing at single-nucleotide resolution in human cells. Notably, the majority of Pol II pauses occur outside of promoter-proximal gene regions primarily along the gene-body of transcribed genes. Sequence analysis combined with machine learning modeling reveals DNA sequence properties underlying widespread transcriptional pausing including a new pause motif. Interestingly, key sequence determinants of RNA polymerase pausing are conserved between human cells and bacteria. These studies indicate pervasive sequence-induced transcriptional pausing in human cells and the knowledge of exact pause locations implies potential functional roles in gene expression.
Collapse
Affiliation(s)
- Martyna Gajos
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany.,Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| | - Olga Jasnovidova
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Alena van Bömmel
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany.,Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Susanne Freier
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| |
Collapse
|
11
|
The PWWP2A Histone Deacetylase Complex Represses Intragenic Spurious Transcription Initiation in mESCs. iScience 2020; 23:101741. [PMID: 33235983 PMCID: PMC7670215 DOI: 10.1016/j.isci.2020.101741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/22/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022] Open
Abstract
Transcriptional fidelity depends on accurate promoter selection and initiation from the correct sites. In yeast, H3K36me3-mediated recruitment of the Rpd3S HDAC complex to gene bodies suppresses spurious transcription initiation. Here we describe an equivalent pathway in metazoans. PWWP2A/B is an H3K36me3 reader that forms a stable complex with HDAC1/2. We used CAGE-seq to profile all transcription initiation sites in wild-type mESCs and cells lacking PWWP2A/B. Loss of PWWP2A/B enhances spurious initiation from intragenic sites present in wild-type mESCs, and this effect is associated with increased levels of initiating Pol-II and histone acetylation. Spurious initiation events in Pwwp2a/b DKO mESCs do not overlap in genomic location or chromatin features with spurious sites that arise in Dnmt3b KO mESCs, previously reported to function in the suppression of intragenic transcriptional initiation, suggesting these pathways function cooperatively in maintaining the fidelity of transcription initiation in metazoans. Loss of PWWP2A/B leads to increased levels of spurious transcription initiation Spurious TSS sites are predominantly in the gene bodies of highly expressed genes Spurious sites are marked with increased histone acetylation and initiating Pol II PWWP2-spurious TSSs are distinct from those caused by DNMT3B loss
Collapse
|
12
|
Timmers HTM. SAGA and TFIID: Friends of TBP drifting apart. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194604. [PMID: 32673655 DOI: 10.1016/j.bbagrm.2020.194604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
Transcription initiation constitutes a major checkpoint in gene regulation across all living organisms. Control of chromatin function is tightly linked to this checkpoint, which is best illustrated by the SAGA coactivator. This evolutionary conserved complex of 18-20 subunits was first discovered as a Gcn5p-containing histone acetyltransferase, but it also integrates a histone H2B deubiquitinase. The SAGA subunits are organized in a modular fashion around its central core. Strikingly, this central module of SAGA shares a number of proteins with the central core of the basal transcription factor TFIID. In this review I will compare the SAGA and TFIID complexes with respect to their shared subunits, structural organization, enzymatic activities and chromatin binding. I will place a special emphasis on the ancestry of SAGA and TFIID subunits, which suggests that these complexes evolved to control the activity of TBP (TATA-binding protein) in directing the assembly of transcription initiation complexes.
Collapse
Affiliation(s)
- H Th Marc Timmers
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK) partner site Freiburg, 79106 Freiburg, Germany; Department of Urology, Medical Center-University of Freiburg, Breisacher Straße 66, 79106 Freiburg, Germany.
| |
Collapse
|
13
|
Wang TY, Guo X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems. Appl Microbiol Biotechnol 2020; 104:5673-5688. [PMID: 32372203 DOI: 10.1007/s00253-020-10640-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Human tissue plasminogen activator was the first recombinant therapy protein that successfully produced in Chinese hamster ovary cells in 1986 and approved for clinical use. Since then, more and more therapeutic proteins are being manufactured in mammalian cells, and the technologies for recombinant protein production in this expression system have developed rapidly, with the optimization of both upstream and downstream processes. One of the most promising strategies is expression vector cassette optimization based on the expression vector cassette. In this review paper, these approaches and developments are summarized, and the future strategy on the utilizing of expression cassettes for the production of recombinant therapeutic proteins in mammalian cells is discussed.
Collapse
Affiliation(s)
- Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiao Guo
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Perildicals Publishing House, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
14
|
Wang D, Qi H, Zhang H, Zhou W, Li Y, Li A, Liu Q, Wang Y. TAF1L promotes development of oral squamous cell carcinoma via decreasing autophagy-dependent apoptosis. Int J Biol Sci 2020; 16:1180-1193. [PMID: 32174793 PMCID: PMC7053316 DOI: 10.7150/ijbs.41148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023] Open
Abstract
This study focused on investigating the relationships of TAF1L expression and clinical features or pathological stages of oral squamous cell carcinoma (OSCC), and its potential roles of TAF1L on OSCC development. Western blot and immunohistochemical staining were used to detect TAF1L expression in OSCC tissues and cells. Effects of TAF1L on OSCC cells in vitro were examined by cell proliferation assay, wound healing assay, transwell chamber assay, flow cytometry analysis and siRNA technique. Cellular key proteins related to cell autophagy and apoptosis were evaluated by Western blot and immunofluorescent staining. Moreover, functions of TAF1L on OSCC process were observed in nude mouse model. Testing results showed that expression of TAF1L protein was higher in OSCC tissues than that in normal oral epithelial or paracancerous tissues. Additionally, the level of TAF1L protein expression was upregulated in OSCC cell lines, compared to that in normal oral epithelial cells. Furthermore, cell proliferation, migration, autophagy and apoptosis were modulated post siRNA-TAF1L treatment in vitro. Especially, TAF1L knockdown-induced apoptotic activation on OSCC cells could be rescued by autophagic activator (Rapamycin). Moreover, that overexpression of TAF1L protein could promote the growth of OSCC cell xenografts was confirmed in nude mouse model. Taken together, it suggests that TAF1L may facilitate OSCC cells to escape cell apoptosis via autophagic activation for enhancing OSCC development.
Collapse
Affiliation(s)
- Daiwei Wang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Hong Qi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University. Xi'an, Shanxi, China
| | - Haoxing Zhang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Zhou
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanpeng Li
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University. Xi'an, Shanxi, China
| | - Qiong Liu
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yun Wang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Le SN, Brown CR, Harvey S, Boeger H, Elmlund H, Elmlund D. The TAFs of TFIID Bind and Rearrange the Topology of the TATA-Less RPS5 Promoter. Int J Mol Sci 2019; 20:ijms20133290. [PMID: 31277458 PMCID: PMC6650902 DOI: 10.3390/ijms20133290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023] Open
Abstract
The general transcription factor TFIID is a core promoter selectivity factor that recognizes DNA sequence elements and nucleates the assembly of a pre-initiation complex (PIC). The mechanism by which TFIID recognizes the promoter is poorly understood. The TATA-box binding protein (TBP) is a subunit of the multi-protein TFIID complex believed to be key in this process. We reconstituted transcription from highly purified components on a ribosomal protein gene (RPS5) and discovered that TFIIDΔTBP binds and rearranges the promoter DNA topology independent of TBP. TFIIDΔTBP binds ~200 bp of the promoter and changes the DNA topology to a larger extent than the nucleosome core particle. We show that TBP inhibits the DNA binding activities of TFIIDΔTBP and conclude that the complete TFIID complex may represent an auto-inhibited state. Furthermore, we show that the DNA binding activities of TFIIDΔTBP are required for assembly of a PIC poised to select the correct transcription start site (TSS).
Collapse
Affiliation(s)
- Sarah N Le
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, VIC 3800, Australia
| | - Christopher R Brown
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
- Alnylam Pharmaceuticals, 300 Third St. Cambridge, MA 02142, USA
| | - Stacy Harvey
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
- Two Pore Guys, 2161 Delaware Ave. Suite B, Santa Cruz, CA 95060, USA
| | - Hinrich Boeger
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, VIC 3800, Australia.
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, VIC 3800, Australia.
| |
Collapse
|
16
|
Transcription initiation factor TBP: old friend new questions. Biochem Soc Trans 2019; 47:411-423. [DOI: 10.1042/bst20180623] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
Abstract
In all domains of life, the regulation of transcription by DNA-dependent RNA polymerases (RNAPs) is achieved at the level of initiation to a large extent. Whereas bacterial promoters are recognized by a σ-factor bound to the RNAP, a complex set of transcription factors that recognize specific promoter elements is employed by archaeal and eukaryotic RNAPs. These initiation factors are of particular interest since the regulation of transcription critically relies on initiation rates and thus formation of pre-initiation complexes. The most conserved initiation factor is the TATA-binding protein (TBP), which is of crucial importance for all archaeal-eukaryotic transcription initiation complexes and the only factor required to achieve full rates of initiation in all three eukaryotic and the archaeal transcription systems. Recent structural, biochemical and genome-wide mapping data that focused on the archaeal and specialized RNAP I and III transcription system showed that the involvement and functional importance of TBP is divergent from the canonical role TBP plays in RNAP II transcription. Here, we review the role of TBP in the different transcription systems including a TBP-centric discussion of archaeal and eukaryotic initiation complexes. We furthermore highlight questions concerning the function of TBP that arise from these findings.
Collapse
|
17
|
Zhong S, Yan H, Chen Z, Li Y, Shen Y, Wang Y, Li L, Sheng S, Wang Y. Overexpression of TAF1L Promotes Cell Proliferation, Migration and Invasion in Esophageal Squamous Cell Carcinoma. J Cancer 2019; 10:979-989. [PMID: 30854104 PMCID: PMC6400815 DOI: 10.7150/jca.26504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 12/05/2018] [Indexed: 02/05/2023] Open
Abstract
Currently, it reported that TAF1L gene mutation is found in a number of carcinomas, but its pathophysiological function has not been well studied. We focused on investigating expressive levels of TAF1L gene and protein in esophageal squamous cell carcinoma (ESCC) with two tissue microarrays, forty fresh paired ESCC and paracancer samples using immunohistochemistry, real-time PCR or Western blot in this study. Furthermore, we executed TAF1L silence with siRNA in ESCC cell lines to evaluate effects of TAF1L expression on cell proliferation, migration and invasion of ESCC via CCK-8, wound healing and transwell chamber assays. Moreover, key proteins related to ESCC development were also analyzed by Western blot. Results from this study showed that the expression of TAF1L mRNA and protein in ESCC tissues were significantly higher than that in matched paracancer tissues. However, its abnormal expression was not associated with other clinic features, such as the age, gender and pathological grade, except of TNM-N stage. Furthermore, the proliferation, migration and invasion of ESCC cells were inhibited after TAF1L gene silencing. As a consequence, the expression of c-Myc and phosphorylated Akt in esophageal squamous cell line after TAF1L-siRNA treatment were inversely decreased, while p53 was increased significantly, compared those to control group. Taken together, the results from this study suggest that TAF1L gene might be served as an oncogene, and its overexpression could accelerate to the tumorigenesis of ESCC via promoting the malignant cell proliferation and tumor metastasis.
Collapse
Affiliation(s)
- Shan Zhong
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Hongfei Yan
- Pathology Laboratory, Shantou University Medical College, Cancer Hospital, Shantou, Guangdong 515041, P. R. China
| | - Zhengshan Chen
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Yanpeng Li
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Yanqin Shen
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Yongyu Wang
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Lan Li
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Sitong Sheng
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
| | - Yun Wang
- Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, P. R. China
- ✉ Corresponding author: Center for Research and Technology of Precision Medicine, College of Life Sciences and Oceanography, Shenzhen University (Xili Campus), No. 1066, Xueyuan Ave, Nanshan Distract, Shenzhen, Guangdong 518055, P.R. China. Email address:
| |
Collapse
|
18
|
Greber BJ, Nogales E. The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications. Subcell Biochem 2019; 93:143-192. [PMID: 31939151 DOI: 10.1007/978-3-030-28151-9_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription is a highly regulated process that supplies living cells with coding and non-coding RNA molecules. Failure to properly regulate transcription is associated with human pathologies, including cancers. RNA polymerase II is the enzyme complex that synthesizes messenger RNAs that are then translated into proteins. In spite of its complexity, RNA polymerase requires a plethora of general transcription factors to be recruited to the transcription start site as part of a large transcription pre-initiation complex, and to help it gain access to the transcribed strand of the DNA. This chapter reviews the structure and function of these eukaryotic transcription pre-initiation complexes, with a particular emphasis on two of its constituents, the multisubunit complexes TFIID and TFIIH. We also compare the overall architecture of the RNA polymerase II pre-initiation complex with those of RNA polymerases I and III, involved in transcription of ribosomal RNA and non-coding RNAs such as tRNAs and snRNAs, and discuss the general, conserved features that are applicable to all eukaryotic RNA polymerase systems.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
19
|
Kolesnikova O, Ben-Shem A, Luo J, Ranish J, Schultz P, Papai G. Molecular structure of promoter-bound yeast TFIID. Nat Commun 2018; 9:4666. [PMID: 30405110 PMCID: PMC6220335 DOI: 10.1038/s41467-018-07096-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023] Open
Abstract
Transcription preinitiation complex assembly on the promoters of protein encoding genes is nucleated in vivo by TFIID composed of the TATA-box Binding Protein (TBP) and 13 TBP-associate factors (Tafs) providing regulatory and chromatin binding functions. Here we present the cryo-electron microscopy structure of promoter-bound yeast TFIID at a resolution better than 5 Å, except for a flexible domain. We position the crystal structures of several subunits and, in combination with cross-linking studies, describe the quaternary organization of TFIID. The compact tri lobed architecture is stabilized by a topologically closed Taf5-Taf6 tetramer. We confirm the unique subunit stoichiometry prevailing in TFIID and uncover a hexameric arrangement of Tafs containing a histone fold domain in the Twin lobe. Transcription preinitiation complex assembly begins with the recognition of the gene promoter by the TATA-box Binding Protein-containing TFIID complex. Here the authors present a Cryo-EM structure of promoter-bound yeast TFIID complex, providing a detailed view of its subunit organization and promoter DNA contacts.
Collapse
Affiliation(s)
- Olga Kolesnikova
- Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.,Université de Strasbourg, Illkirch, 67404, France
| | - Adam Ben-Shem
- Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.,Université de Strasbourg, Illkirch, 67404, France
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Jeff Ranish
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Patrick Schultz
- Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France. .,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France. .,Université de Strasbourg, Illkirch, 67404, France.
| | - Gabor Papai
- Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France. .,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France. .,Université de Strasbourg, Illkirch, 67404, France.
| |
Collapse
|
20
|
Brown AJ, Gibson SJ, Hatton D, Arnall CL, James DC. Whole synthetic pathway engineering of recombinant protein production. Biotechnol Bioeng 2018; 116:375-387. [DOI: 10.1002/bit.26855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/14/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Adam J. Brown
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffield UK
| | | | - Diane Hatton
- Biopharmaceutical Development, MedImmuneCambridge UK
| | - Claire L. Arnall
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffield UK
| | - David C. James
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffield UK
| |
Collapse
|
21
|
Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 2018; 19:621-637. [PMID: 29946135 PMCID: PMC6205604 DOI: 10.1038/s41580-018-0028-8] [Citation(s) in RCA: 415] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA polymerase II (Pol II) core promoters are specialized DNA sequences at transcription start sites of protein-coding and non-coding genes that support the assembly of the transcription machinery and transcription initiation. They enable the highly regulated transcription of genes by selectively integrating regulatory cues from distal enhancers and their associated regulatory proteins. In this Review, we discuss the defining properties of gene core promoters, including their sequence features, chromatin architecture and transcription initiation patterns. We provide an overview of molecular mechanisms underlying the function and regulation of core promoters and their emerging functional diversity, which defines distinct transcription programmes. On the basis of the established properties of gene core promoters, we discuss transcription start sites within enhancers and integrate recent results obtained from dedicated functional assays to propose a functional model of transcription initiation. This model can explain the nature and function of transcription initiation at gene starts and at enhancers and can explain the different roles of core promoters, of Pol II and its associated factors and of the activating cues provided by enhancers and the transcription factors and cofactors they recruit.
Collapse
Affiliation(s)
- Vanja Haberle
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
22
|
Curran EC, Wang H, Hinds TR, Zheng N, Wang EH. Zinc knuckle of TAF1 is a DNA binding module critical for TFIID promoter occupancy. Sci Rep 2018; 8:4630. [PMID: 29545534 PMCID: PMC5854669 DOI: 10.1038/s41598-018-22879-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/01/2018] [Indexed: 11/09/2022] Open
Abstract
The general transcription factor IID (TFIID) is the first component of the preinitiation complex (PIC) to bind the core promoter of RNA polymerase II transcribed genes. Despite its critical role in protein-encoded gene expression, how TFIID engages promoter DNA remains elusive. We have previously revealed a winged-helix DNA-binding domain in the N-terminal region of the largest TFIID subunit, TAF1. Here, we report the identification of a second DNA-binding module in the C-terminal half of human TAF1, which is encoded by a previously uncharacterized conserved zinc knuckle domain. We show that the TAF1 zinc knuckle aids in the recruit of TFIID to endogenous promoters vital for cellular proliferation. Mutation of the TAF1 zinc knuckle with defects in DNA binding compromises promoter occupancy of TFIID, which leads to a decrease in transcription and cell viability. Together, our studies provide a foundation to understand how TAF1 plays a central role in TFIID promoter binding and regulation of transcription initiation.
Collapse
Affiliation(s)
- Elizabeth C Curran
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Hui Wang
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.,Howard Hughes Medical Institute, University of Washington, Box 357280, Seattle, WA, 98195, USA
| | - Thomas R Hinds
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA. .,Howard Hughes Medical Institute, University of Washington, Box 357280, Seattle, WA, 98195, USA.
| | - Edith H Wang
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
23
|
Joo YJ, Ficarro SB, Soares LM, Chun Y, Marto JA, Buratowski S. Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation. Genes Dev 2017; 31:2162-2174. [PMID: 29203645 PMCID: PMC5749164 DOI: 10.1101/gad.306324.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/09/2017] [Indexed: 11/24/2022]
Abstract
TFIID binds promoter DNA to recruit RNA polymerase II and other basal factors for transcription. Although the TATA-binding protein (TBP) subunit of TFIID is necessary and sufficient for in vitro transcription, the TBP-associated factor (TAF) subunits recognize downstream promoter elements, act as coactivators, and interact with nucleosomes. In yeast nuclear extracts, transcription induces stable TAF binding to downstream promoter DNA, promoting subsequent activator-independent transcription reinitiation. In vivo, promoter responses to TAF mutations correlate with the level of downstream, rather than overall, Taf1 cross-linking. We propose a new model in which TAFs function as reinitiation factors, accounting for the differential responses of promoters to various transcription factor mutations.
Collapse
Affiliation(s)
- Yoo Jin Joo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Blais Proteomics Center, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yujin Chun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Blais Proteomics Center, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Abstract
This review by Vo ngoc et al. expands the view of the RNA polymerase II core promoter, which is comprised of classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. The signals that direct the initiation of transcription ultimately converge at the core promoter, which is the gateway to transcription. Here we provide an overview of the RNA polymerase II core promoter in bilateria (bilaterally symmetric animals). The core promoter is diverse in terms of its composition and function yet is also punctilious, as it acts with strict rules and precision. We additionally describe an expanded view of the core promoter that comprises the classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. This model may eventually lead to a more unified conceptual understanding of the core promoter.
Collapse
Affiliation(s)
- Long Vo Ngoc
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Yuan-Liang Wang
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - George A Kassavetis
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - James T Kadonaga
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
25
|
Nogales E, Patel AB, Louder RK. Towards a mechanistic understanding of core promoter recognition from cryo-EM studies of human TFIID. Curr Opin Struct Biol 2017. [PMID: 28624568 DOI: 10.1016/j.sbi.2017.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
TFIID is a critical component of the eukaryotic transcription pre-initiation complex (PIC) required for the recruitment of RNA Pol II to the start site of protein-coding genes. Within the PIC, TFIID's role is to recognize and bind core promoter sequences and recruit the rest of the PIC components. Due to its size and its conformational complexity, TFIID poses a serious challenge for structural characterization. The small amounts of purified TFIID that can be obtained by present methods of purification from endogenous sources has limited structural studies to cryo-EM visualization, which requires very small amounts of sample. Previous cryo-EM studies have shed light on how the extreme conformational flexibility of TFIID is involved in core promoter DNA binding. Recent progress in cryo-EM methodology has facilitated a parallel progress in the study of human TFIID, leading to an improvement in resolution and the identification of the structural elements in the complex directly involved in DNA interaction. While many questions remain unanswered, the present structural knowledge of human TFIID suggests a mechanism for the sequential engagement with different core promoter sequences and how it could be influenced by regulatory factors.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department and QB3 Institute, UC Berkeley, CA, USA; Howard Hughes Medical Institute, UC Berkeley, CA, USA; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Lab, CA, USA.
| | | | | |
Collapse
|
26
|
Abstract
Eukaryotic gene transcription requires the assembly at the promoter of a large preinitiation complex (PIC) that includes RNA polymerase II (Pol II) and the general transcription factors TFIID, TFIIA, TFIIB, TFIIF, TFIIE, and TFIIH. The size and complexity of Pol II, TFIID, and TFIIH have precluded their reconstitution from heterologous systems, and purification relies on scarce endogenous sources. Together with their conformational flexibility and the transient nature of their interactions, these limitations had precluded structural characterization of the PIC. In the last few years, however, progress in cryo-electron microscopy (cryo-EM) has made possible the visualization, at increasingly better resolution, of large PIC assemblies in different functional states. These structures can now be interpreted in near-atomic detail and provide an exciting structural framework for past and future functional studies, giving us unique mechanistic insight into the complex process of transcription initiation.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department and QB3 Institute, University of California, Berkeley, California 94720-3220
- Howard Hughes Medical Institute, Berkeley, California 94720-3220
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, California 94720-3220;
| | - Robert K Louder
- Biophysics Graduate Group, University of California, Berkeley, California 94720-3220
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208-3500
| |
Collapse
|
27
|
Hantsche M, Cramer P. Strukturelle Grundlage der Transkription: 10 Jahre nach dem Chemie-Nobelpreis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Merle Hantsche
- Abteilung für Molekularbiologie; Max-Planck-Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| | - Patrick Cramer
- Abteilung für Molekularbiologie; Max-Planck-Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| |
Collapse
|
28
|
Abstract
TFIID is a large protein complex required for the recognition and binding of eukaryotic gene core promoter sequences and for the recruitment of the rest of the general transcription factors involved in initiation of eukaryotic protein gene transcription. Cryo-electron microscopy studies have demonstrated the conformational complexity of human TFIID, where one-third of the mass of the complex can shift its position by well over 100 Å. This conformational plasticity appears to be linked to the capacity of TFIID to bind DNA, and suggests how it would allow both the recognition of different core promoter elements and the tuning of its binding affinity by regulatory factors.
Collapse
Affiliation(s)
- Eva Nogales
- a Molecular and Cell Biology Department and QB3 Institute , UC Berkeley , CA , USA.,b Howard Hughes Medical Institute , UC Berkeley , CA , USA.,c Molecular Biophysics and Integrative Bio-Imaging Division , Lawrence Berkeley National Lab , CA , USA
| | - Jie Fang
- b Howard Hughes Medical Institute , UC Berkeley , CA , USA
| | | |
Collapse
|
29
|
Hantsche M, Cramer P. The Structural Basis of Transcription: 10 Years After the Nobel Prize in Chemistry. Angew Chem Int Ed Engl 2016; 55:15972-15981. [DOI: 10.1002/anie.201608066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Merle Hantsche
- Abteilung für Molekularbiologie; Max Planck Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Germany
| | - Patrick Cramer
- Abteilung für Molekularbiologie; Max Planck Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Germany
| |
Collapse
|
30
|
Oh HR, An CH, Yoo NJ, Lee SH. Frameshift Mutations in the Mononucleotide Repeats of TAF1 and TAF1L Genes in Gastric and Colorectal Cancers with Regional Heterogeneity. Pathol Oncol Res 2016; 23:125-130. [DOI: 10.1007/s12253-016-0107-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
|
31
|
Sloutskin A, Danino YM, Orenstein Y, Zehavi Y, Doniger T, Shamir R, Juven-Gershon T. ElemeNT: a computational tool for detecting core promoter elements. Transcription 2016. [PMID: 26226151 PMCID: PMC4581360 DOI: 10.1080/21541264.2015.1067286] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Core promoter elements play a pivotal role in the transcriptional output, yet they are often detected manually within sequences of interest. Here, we present 2 contributions to the detection and curation of core promoter elements within given sequences. First, the Elements Navigation Tool (ElemeNT) is a user-friendly web-based, interactive tool for prediction and display of putative core promoter elements and their biologically-relevant combinations. Second, the CORE database summarizes ElemeNT-predicted core promoter elements near CAGE and RNA-seq-defined Drosophila melanogaster transcription start sites (TSSs). ElemeNT's predictions are based on biologically-functional core promoter elements, and can be used to infer core promoter compositions. ElemeNT does not assume prior knowledge of the actual TSS position, and can therefore assist in annotation of any given sequence. These resources, freely accessible at http://lifefaculty.biu.ac.il/gershon-tamar/index.php/resources, facilitate the identification of core promoter elements as active contributors to gene expression.
Collapse
Affiliation(s)
- Anna Sloutskin
- a The Mina and Everard Goodman Faculty of Life Sciences ; Bar-Ilan University ; Ramat Gan , Israel
| | | | | | | | | | | | | |
Collapse
|
32
|
Sdelci S, Lardeau CH, Tallant C, Klepsch F, Klaiber B, Bennett J, Rathert P, Schuster M, Penz T, Fedorov O, Superti-Furga G, Bock C, Zuber J, Huber KVM, Knapp S, Müller S, Kubicek S. Mapping the chemical chromatin reactivation landscape identifies BRD4-TAF1 cross-talk. Nat Chem Biol 2016; 12:504-10. [PMID: 27159579 DOI: 10.1038/nchembio.2080] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/18/2016] [Indexed: 12/14/2022]
Abstract
Bromodomain-containing proteins of the BET family recognize histone lysine acetylation and mediate transcriptional activation of target genes such as the MYC oncogene. Pharmacological inhibitors of BET domains promise therapeutic benefits in a variety of cancers. We performed a high-diversity chemical compound screen for agents capable of modulating BRD4-dependent heterochromatization of a generic reporter in human cells. In addition to known and new compounds targeting BRD4, we identified small molecules that mimic BRD4 inhibition without direct engagement. One such compound was a potent inhibitor of the second bromodomain of TAF1. Using this inhibitor, we discovered that TAF1 synergizes with BRD4 to control proliferation of cancer cells, making TAF1 an attractive epigenetic target in cancers driven by MYC.
Collapse
Affiliation(s)
- Sara Sdelci
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Charles-Hugues Lardeau
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cynthia Tallant
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Freya Klepsch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Björn Klaiber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - James Bennett
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Philipp Rathert
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Oleg Fedorov
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Kilian V M Huber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stefan Knapp
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Johann Wolfgang Goethe-University, Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Frankfurt am Main, Germany
| | - Susanne Müller
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
33
|
Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Nature 2016; 531:604-9. [PMID: 27007846 PMCID: PMC4856295 DOI: 10.1038/nature17394] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
The general transcription factor IID (TFIID) plays a central role in the initiation of RNA polymerase II (Pol II)-dependent transcription by nucleating pre-initiation complex (PIC) assembly at the core promoter. TFIID comprises the TATA-binding protein (TBP) and 13 TBP-associated factors (TAF1-13), which specifically interact with a variety of core promoter DNA sequences. Here we present the structure of human TFIID in complex with TFIIA and core promoter DNA, determined by single-particle cryo-electron microscopy at sub-nanometre resolution. All core promoter elements are contacted by subunits of TFIID, with TAF1 and TAF2 mediating major interactions with the downstream promoter. TFIIA bridges the TBP-TATA complex with lobe B of TFIID. We also present the cryo-electron microscopy reconstruction of a fully assembled human TAF-less PIC. Superposition of common elements between the two structures provides novel insights into the general role of TFIID in promoter recognition, PIC assembly, and transcription initiation.
Collapse
|
34
|
Fernandez-Valverde SL, Degnan BM. Bilaterian-like promoters in the highly compact Amphimedon queenslandica genome. Sci Rep 2016; 6:22496. [PMID: 26931148 PMCID: PMC4773876 DOI: 10.1038/srep22496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
The regulatory systems underlying animal development must have evolved prior to the emergence of eumetazoans (cnidarians and bilaterians). Although representatives of earlier-branching animals - sponges ctenophores and placozoans - possess most of the developmental transcription factor families present in eumetazoans, the DNA regulatory elements that these transcription factors target remain uncharted. Here we characterise the core promoter sequences, U1 snRNP-binding sites (5' splice sites; 5'SSs) and polyadenylation sites (PASs) in the sponge Amphimedon queenslandica. Similar to unicellular opisthokonts, Amphimedon's genes are tightly packed in the genome and have small introns. In contrast, its genes possess metazoan-like core promoters populated with binding motifs previously deemed to be specific to vertebrates, including Nrf-1 and Krüppel-like elements. Also as in vertebrates, Amphimedon's PASs and 5'SSs are depleted downstream and upstream of transcription start sites, respectively, consistent with non-elongating transcripts being short-lived; PASs and 5'SSs are more evenly distributed in bidirectional promoters in Amphimedon. The presence of bilaterian-like regulatory DNAs in sponges is consistent with these being early and essential innovations of the metazoan gene regulatory repertoire.
Collapse
Affiliation(s)
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
35
|
Even DY, Kedmi A, Basch-Barzilay S, Ideses D, Tikotzki R, Shir-Shapira H, Shefi O, Juven-Gershon T. Engineered Promoters for Potent Transient Overexpression. PLoS One 2016; 11:e0148918. [PMID: 26872062 PMCID: PMC4752495 DOI: 10.1371/journal.pone.0148918] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
The core promoter, which is generally defined as the region to which RNA Polymerase II is recruited to initiate transcription, plays a pivotal role in the regulation of gene expression. The core promoter consists of different combinations of several short DNA sequences, termed core promoter elements or motifs, which confer specific functional properties to each promoter. Earlier studies that examined the ability to modulate gene expression levels via the core promoter, led to the design of strong synthetic core promoters, which combine different core elements into a single core promoter. Here, we designed a new core promoter, termed super core promoter 3 (SCP3), which combines four core promoter elements (the TATA box, Inr, MTE and DPE) into a single promoter that drives prolonged and potent gene expression. We analyzed the effect of core promoter architecture on the temporal dynamics of reporter gene expression by engineering EGFP expression vectors that are driven by distinct core promoters. We used live cell imaging and flow cytometric analyses in different human cell lines to demonstrate that SCPs, particularly the novel SCP3, drive unusually strong long-term EGFP expression. Importantly, this is the first demonstration of long-term expression in transiently transfected mammalian cells, indicating that engineered core promoters can provide a novel non-viral strategy for biotechnological as well as gene-therapy-related applications that require potent expression for extended time periods.
Collapse
Affiliation(s)
- Dan Y. Even
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Adi Kedmi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shani Basch-Barzilay
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ravid Tikotzki
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Hila Shir-Shapira
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orit Shefi
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- * E-mail:
| |
Collapse
|
36
|
Megraw M, Cumbie JS, Ivanchenko MG, Filichkin SA. Small Genetic Circuits and MicroRNAs: Big Players in Polymerase II Transcriptional Control in Plants. THE PLANT CELL 2016; 28:286-303. [PMID: 26869700 PMCID: PMC4790873 DOI: 10.1105/tpc.15.00852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/10/2016] [Indexed: 05/11/2023]
Abstract
RNA Polymerase II (Pol II) regulatory cascades involving transcription factors (TFs) and their targets orchestrate the genetic circuitry of every eukaryotic organism. In order to understand how these cascades function, they can be dissected into small genetic networks, each containing just a few Pol II transcribed genes, that generate specific signal-processing outcomes. Small RNA regulatory circuits involve direct regulation of a small RNA by a TF and/or direct regulation of a TF by a small RNA and have been shown to play unique roles in many organisms. Here, we will focus on small RNA regulatory circuits containing Pol II transcribed microRNAs (miRNAs). While the role of miRNA-containing regulatory circuits as modular building blocks for the function of complex networks has long been on the forefront of studies in the animal kingdom, plant studies are poised to take a lead role in this area because of their advantages in probing transcriptional and posttranscriptional control of Pol II genes. The relative simplicity of tissue- and cell-type organization, miRNA targeting, and genomic structure make the Arabidopsis thaliana plant model uniquely amenable for small RNA regulatory circuit studies in a multicellular organism. In this Review, we cover analysis, tools, and validation methods for probing the component interactions in miRNA-containing regulatory circuits. We then review the important roles that plant miRNAs are playing in these circuits and summarize methods for the identification of small genetic circuits that strongly influence plant function. We conclude by noting areas of opportunity where new plant studies are imminently needed.
Collapse
Affiliation(s)
- Molly Megraw
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - Jason S Cumbie
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Maria G Ivanchenko
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Sergei A Filichkin
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
37
|
O’Rawe J, Wu Y, Dörfel M, Rope A, Au P, Parboosingh J, Moon S, Kousi M, Kosma K, Smith C, Tzetis M, Schuette J, Hufnagel R, Prada C, Martinez F, Orellana C, Crain J, Caro-Llopis A, Oltra S, Monfort S, Jiménez-Barrón L, Swensen J, Ellingwood S, Smith R, Fang H, Ospina S, Stegmann S, Den Hollander N, Mittelman D, Highnam G, Robison R, Yang E, Faivre L, Roubertie A, Rivière JB, Monaghan K, Wang K, Davis E, Katsanis N, Kalscheuer V, Wang E, Metcalfe K, Kleefstra T, Innes A, Kitsiou-Tzeli S, Rosello M, Keegan C, Lyon G. TAF1 Variants Are Associated with Dysmorphic Features, Intellectual Disability, and Neurological Manifestations. Am J Hum Genet 2015; 97:922-32. [PMID: 26637982 PMCID: PMC4678794 DOI: 10.1016/j.ajhg.2015.11.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/05/2015] [Indexed: 11/30/2022] Open
Abstract
We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome.
Collapse
|
38
|
Marbach-Bar N, Bahat A, Ashkenazi S, Golan-Mashiach M, Haimov O, Wu SY, Chiang CM, Puzio-Kuter A, Hirshfield KM, Levine AJ, Dikstein R. DTIE, a novel core promoter element that directs start site selection in TATA-less genes. Nucleic Acids Res 2015; 44:1080-94. [PMID: 26464433 PMCID: PMC4756809 DOI: 10.1093/nar/gkv1032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/26/2015] [Indexed: 12/16/2022] Open
Abstract
The transcription start site (TSS) determines the length and composition of the 5′ UTR and therefore can have a profound effect on translation. Yet, little is known about the mechanism underlying start site selection, particularly from promoters lacking conventional core elements such as TATA-box and Initiator. Here we report a novel mechanism of start site selection in the TATA- and Initiator-less promoter of miR-22, through a strictly localized downstream element termed DTIE and an upstream distal element. Changing the distance between them reduced promoter strength, altered TSS selection and diminished Pol II recruitment. Biochemical assays suggest that DTIE does not serve as a docking site for TFIID, the major core promoter-binding factor. TFIID is recruited to the promoter through DTIE but is dispensable for TSS selection. We determined DTIE consensus and found it to be remarkably prevalent, present at the same TSS downstream location in ≈20.8% of human promoters, the vast majority of which are TATA-less. Analysis of DTIE in the tumor suppressor p53 confirmed a similar function. Our findings reveal a novel mechanism of transcription initiation from TATA-less promoters.
Collapse
Affiliation(s)
- Nadav Marbach-Bar
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anat Bahat
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shaked Ashkenazi
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Golan-Mashiach
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ora Haimov
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anna Puzio-Kuter
- Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Kim M Hirshfield
- Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Arnold J Levine
- Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Rivka Dikstein
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
39
|
Danino YM, Even D, Ideses D, Juven-Gershon T. The core promoter: At the heart of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1116-31. [PMID: 25934543 DOI: 10.1016/j.bbagrm.2015.04.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/19/2015] [Accepted: 04/23/2015] [Indexed: 12/17/2022]
Abstract
The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.
Collapse
Affiliation(s)
- Yehuda M Danino
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dan Even
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
40
|
Abstract
Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.
Collapse
|
41
|
Wang H, Curran EC, Hinds TR, Wang EH, Zheng N. Crystal structure of a TAF1-TAF7 complex in human transcription factor IID reveals a promoter binding module. Cell Res 2014; 24:1433-44. [PMID: 25412659 PMCID: PMC4260347 DOI: 10.1038/cr.2014.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/07/2023] Open
Abstract
The general transcription factor IID (TFIID) initiates RNA polymerase II-mediated eukaryotic transcription by nucleating pre-initiation complex formation at the core promoter of protein-encoding genes. TAF1, the largest integral subunit of TFIID, contains an evolutionarily conserved yet poorly characterized central core domain, whose specific mutation disrupts cell proliferation in the temperature-sensitive mutant hamster cell line ts13. Although the impaired TAF1 function in the ts13 mutant has been associated with defective transcriptional regulation of cell cycle genes, the mechanism by which TAF1 mediates transcription as part of TFIID remains unclear. Here, we present the crystal structure of the human TAF1 central core domain in complex with another conserved TFIID subunit, TAF7, which biochemically solubilizes TAF1. The TAF1-TAF7 complex displays an inter-digitated compact architecture, featuring an unexpected TAF1 winged helix (WH) domain mounted on top of a heterodimeric triple barrel. The single TAF1 residue altered in the ts13 mutant is buried at the junction of these two structural domains. We show that the TAF1 WH domain has intrinsic DNA-binding activity, which depends on characteristic residues that are commonly used by WH fold proteins for interacting with DNA. Importantly, mutations of these residues not only compromise DNA binding by TAF1, but also abrogate its ability to rescue the ts13 mutant phenotype. Together, our results resolve the structural organization of the TAF1-TAF7 module in TFIID and unveil a critical promoter-binding function of TAF1 in transcription regulation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth C Curran
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Thomas R Hinds
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA
| | - Edith H Wang
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,E-mail:
| | - Ning Zheng
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA,Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, WA 98195, USA,E-mail:
| |
Collapse
|
42
|
Narlikar L. Multiple novel promoter-architectures revealed by decoding the hidden heterogeneity within the genome. Nucleic Acids Res 2014; 42:12388-403. [PMID: 25326324 PMCID: PMC4227772 DOI: 10.1093/nar/gku924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/02/2014] [Accepted: 09/22/2014] [Indexed: 12/03/2022] Open
Abstract
An important question in biology is how different promoter-architectures contribute to the diversity in regulation of transcription initiation. A step forward has been the production of genome-wide maps of transcription start sites (TSSs) using high-throughput sequencing. However, the subsequent step of characterizing promoters and their functions is still largely done on the basis of previously established promoter-elements like the TATA-box in eukaryotes or the -10 box in bacteria. Unfortunately, a majority of promoters and their activities cannot be explained by these few elements. Traditional motif discovery methods that identify novel elements also fail here, because TSS neighborhoods are often highly heterogeneous containing no overrepresented motif. We present a new, organism-independent method that explicitly models this heterogeneity while unraveling different promoter-architectures. For example, in five bacteria, we detect the presence of a pyrimidine preceding the TSS under very specific circumstances. In tuberculosis, we show for the first time that the spacing between the bacterial 10-motif and TSS is utilized by the pathogen for dynamic gene-regulation. In eukaryotes, we identify several new elements that are important for development. Identified promoter-architectures show differential patterns of evolution, chromatin structure and TSS spread, suggesting distinct regulatory functions. This work highlights the importance of characterizing heterogeneity within high-throughput genomic data rather than analyzing average patterns of nucleotide composition.
Collapse
Affiliation(s)
- Leelavati Narlikar
- Chemical Engineering Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
43
|
Müller F, Tora L. Chromatin and DNA sequences in defining promoters for transcription initiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:118-28. [PMID: 24275614 DOI: 10.1016/j.bbagrm.2013.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 01/29/2023]
Abstract
One of the key events in eukaryotic gene regulation and consequent transcription is the assembly of general transcription factors and RNA polymerase II into a functional pre-initiation complex at core promoters. An emerging view of complexity arising from a variety of promoter associated DNA motifs, their binding factors and recent discoveries in characterising promoter associated chromatin properties brings an old question back into the limelight: how is a promoter defined? In addition to position-dependent DNA sequence motifs, accumulating evidence suggests that several parallel acting mechanisms are involved in orchestrating a pattern marked by the state of chromatin and general transcription factor binding in preparation for defining transcription start sites. In this review we attempt to summarise these promoter features and discuss the available evidence pointing at their interactions in defining transcription initiation in developmental contexts. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Ferenc Müller
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Edgbaston, Birmingham, UK.
| | - Làszlò Tora
- Cellular Signaling and Nuclear Dynamics Program, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| |
Collapse
|
44
|
Kumari S, Ware D. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. PLoS One 2013; 8:e79011. [PMID: 24205361 PMCID: PMC3812177 DOI: 10.1371/journal.pone.0079011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 09/18/2013] [Indexed: 01/22/2023] Open
Abstract
Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the computational prediction of CPEs across eight plant genomes to help better understand the transcription initiation complex assembly. The distribution of thirteen known CPEs across four monocots (Brachypodium distachyon, Oryza sativa ssp. japonica, Sorghum bicolor, Zea mays) and four dicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max) reveals the structural organization of the core promoter in relation to the TATA-box as well as with respect to other CPEs. The distribution of known CPE motifs with respect to transcription start site (TSS) exhibited positional conservation within monocots and dicots with slight differences across all eight genomes. Further, a more refined subset of annotated genes based on orthologs of the model monocot (O. sativa ssp. japonica) and dicot (A. thaliana) genomes supported the positional distribution of these thirteen known CPEs. DNA free energy profiles provided evidence that the structural properties of promoter regions are distinctly different from that of the non-regulatory genome sequence. It also showed that monocot core promoters have lower DNA free energy than dicot core promoters. The comparison of monocot and dicot promoter sequences highlights both the similarities and differences in the core promoter architecture irrespective of the species-specific nucleotide bias. This study will be useful for future work related to genome annotation projects and can inspire research efforts aimed to better understand regulatory mechanisms of transcription.
Collapse
Affiliation(s)
- Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
- United States Department of Agriculture-Agriculture Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| |
Collapse
|
45
|
Major histocompatibility complex class I core promoter elements are not essential for transcription in vivo. Mol Cell Biol 2013; 33:4395-407. [PMID: 24019072 DOI: 10.1128/mcb.00553-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of core promoter elements in regulating transcription initiation is largely unknown for genes subject to complex regulation. Major histocompatibility complex class I genes are ubiquitously expressed and governed by tissue-specific and hormonal signals. Transcription initiates at multiple sites within the core promoter, which contains elements homologous to the canonical elements CCAAT, TATAA, Sp1 binding site (Sp1BS), and Initiator (Inr). To determine their functions, expression of class I transgenes with individually mutated elements was assessed. Surprisingly, all mutant promoters supported transcription. However, each mutated core promoter element had a distinct effect on expression: CAAT box mutations modulated constitutive expression in nonlymphoid tissues, whereas TATAA-like element mutations dysregulated transcription in lymphoid tissues. Inr mutations aberrantly elevated expression. Sp1BS element mutations resulted in variegated transgene expression. RNA polymerase II binding and histone H3K4me3 patterns correlated with transgene expression; H3K9me3 marks partially correlated. Whereas the wild-type, TATAA-like, and CAAT mutant promoters were activated by gamma interferon, the Sp1 and Inr mutants were repressed, implicating these elements in regulation of hormonal responses. These results lead to the surprising conclusion that no single element is required for promoter activity. Rather, each plays a distinct role in promoter activity, chromatin structure, tissue-specific expression, and extracellular signaling.
Collapse
|
46
|
Cianfrocco MA, Nogales E. Regulatory interplay between TFIID's conformational transitions and its modular interaction with core promoter DNA. Transcription 2013; 4:120-6. [PMID: 23863784 PMCID: PMC4042585 DOI: 10.4161/trns.25291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent structural and biochemical studies of human TFIID have significantly increased our understanding of the mechanisms underlying the recruitment of TFIID to promoter DNA and its role in transcription initiation. Structural studies using cryo-EM revealed that modular interactions underlie TFIID’s ability to bind simultaneously multiple promoter motifs and to define a DNA state that will facilitate transcription initiation. Here we propose a general model of promoter binding by TFIID, where co-activators, activators, and histone modifications promote and/or stabilize a conformational state of TFIID that results in core promoter engagement. Within this high affinity conformation, we propose that TFIID’s extensive interaction with promoter DNA leads to topological changes in the DNA that facilitate the eventual loading of RNAP II. While more work is required to dissect the individual contributions of activators and repressors to TFIID’s DNA binding, the recent cryo-EM studies provide a physical framework to guide future structural, biophysical, and biochemical experiments.
Collapse
|
47
|
Martinez-Lopez A, Chinchilla B, Encinas P, Gomez-Casado E, Estepa A, Coll JM. Replacement of the human cytomegalovirus promoter with fish enhancer and core elements to control the expression of the G gene of viral haemorrhagic septicemia virus (VHSV). J Biotechnol 2012; 164:171-8. [PMID: 22954890 DOI: 10.1016/j.jbiotec.2012.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 11/16/2022]
Abstract
This work explores some of the possibilities to replace human cytomegalovirus (CMV) core and/or enhancer promoter control elements to create new expression vectors for use with fish. The work is relevant to fish vaccination, since DNA vaccines use eukaryotic expression plasmids controlled by the human cytomegalovirus (CMV) promoter to be effective against novirhabdoviruses, such as viral haemorrhagic septicemia virus (VHSV), one of the most devastating fish viral European diseases. To reduce possible homologous recombination with fish genome, core and enhancer sequences from fish origin, such as trout interferon-inducible myxovirus protein (Mx), zebrafish retrovirus long terminal repeat (LTR) and carp β-actin (AE6), were combined with those of CMV to design alternative hybrid promoters. The substitution of CMV core and/or enhancer with the corresponding elements of Mx or the LTR core maintained a similar in vitro protein G expression level than that obtained by using the CMV promoter. Vectors using the dsRNA-inducible Mx enhancer followed either by the LTR or the AE6 cores showed the highest in vitro protein G expression levels. Furthermore, synthetic constructs using the Mx enhancer maintained their polyI:C induction capabilities despite the core used. Some of these hybrid promoters might contribute to the development of all-fish-vectors for DNA vaccines while others might be useful for more basic studies.
Collapse
|
48
|
Abstract
The core promoter of eukaryotic coding and non-coding genes that are transcribed by RNA polymerase II (RNAP II) is composed of DNA elements surrounding the transcription start site. These elements serve as the docking site of the basal transcription machinery and have an important role in determining the position and directing the rate of transcription initiation. This review summarizes the current knowledge about core promoter elements and focuses on several unexpected links between core promoter structure and certain gene features. These include the association between the presence or absence of a TATA-box and gene length, gene structure, gene function, evolution rate and transcription elongation.
Collapse
Affiliation(s)
- Rivka Dikstein
- Department of Biological Chemistry, The Weizmann Institute of Science; Rehovot, Israel.
| |
Collapse
|
49
|
Ranuncolo SM, Ghosh S, Hanover JA, Hart GW, Lewis BA. Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo. J Biol Chem 2012; 287:23549-61. [PMID: 22605332 DOI: 10.1074/jbc.m111.330910] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA polymerase II C-terminal domain (CTD), which serves as a scaffold to recruit machinery involved in transcription, is modified post-translationally. Although the O-GlcNAc modification of RNA polymerase II CTD was documented in 1993, its functional significance remained obscure. We show that O-GlcNAc transferase (OGT) modified CTD serine residues 5 and 7. Drug inhibition of OGT and OGA (N-acetylglucosaminidase) blocked transcription during preinitiation complex assembly. Polymerase II and OGT co-immunoprecipitated, and OGT is a component of the preinitiation complex. OGT shRNA experiments showed that reduction of OGT causes a reduction in transcription and RNA polymerase II occupancy at several B-cell promoters. These data suggest that the cycling of O-GlcNAc on and off of polymerase II occurs during assembly of the preinitiation complex. Our results define unexpected roles for both the CTD and O-GlcNAc in the regulation of transcription initiation in higher eukaryotes.
Collapse
Affiliation(s)
- Stella M Ranuncolo
- Metabolism Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
50
|
Zaborowska J, Taylor A, Roeder RG, Murphy S. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes. Transcription 2012; 3:92-104. [PMID: 22441827 PMCID: PMC3337830 DOI: 10.4161/trns.19783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.
Collapse
Affiliation(s)
| | - Alice Taylor
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology; The Rockefeller University; New York, NY USA
| | - Shona Murphy
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| |
Collapse
|