1
|
Nucleosome Remodeling at the Yeast PHO8 and PHO84 Promoters without the Putatively Essential SWI/SNF Remodeler. Int J Mol Sci 2023; 24:ijms24054949. [PMID: 36902382 PMCID: PMC10003099 DOI: 10.3390/ijms24054949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
Chromatin remodeling by ATP-dependent remodeling enzymes is crucial for all genomic processes, like transcription or replication. Eukaryotes harbor many remodeler types, and it is unclear why a given chromatin transition requires more or less stringently one or several remodelers. As a classical example, removal of budding yeast PHO8 and PHO84 promoter nucleosomes upon physiological gene induction by phosphate starvation essentially requires the SWI/SNF remodeling complex. This dependency on SWI/SNF may indicate specificity in remodeler recruitment, in recognition of nucleosomes as remodeling substrate or in remodeling outcome. By in vivo chromatin analyses of wild type and mutant yeast under various PHO regulon induction conditions, we found that overexpression of the remodeler-recruiting transactivator Pho4 allowed removal of PHO8 promoter nucleosomes without SWI/SNF. For PHO84 promoter nucleosome removal in the absence of SWI/SNF, an intranucleosomal Pho4 site, which likely altered the remodeling outcome via factor binding competition, was required in addition to such overexpression. Therefore, an essential remodeler requirement under physiological conditions need not reflect substrate specificity, but may reflect specific recruitment and/or remodeling outcomes.
Collapse
|
2
|
Isbel L, Grand RS, Schübeler D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat Rev Genet 2022; 23:728-740. [PMID: 35831531 DOI: 10.1038/s41576-022-00512-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/11/2022]
Abstract
Cell type-specific gene expression relies on transcription factors (TFs) binding DNA sequence motifs embedded in chromatin. Understanding how motifs are accessed in chromatin is crucial to comprehend differential transcriptional responses and the phenotypic impact of sequence variation. Chromatin obstacles to TF binding range from DNA methylation to restriction of DNA access by nucleosomes depending on their position, composition and modification. In vivo and in vitro approaches now enable the study of TF binding in chromatin at unprecedented resolution. Emerging insights suggest that TFs vary in their ability to navigate chromatin states. However, it remains challenging to link binding and transcriptional outcomes to molecular characteristics of TFs or the local chromatin substrate. Here, we discuss our current understanding of how TFs access DNA in chromatin and novel techniques and directions towards a better understanding of this critical step in genome regulation.
Collapse
Affiliation(s)
- Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Tripuraneni V, Memisoglu G, MacAlpine HK, Tran TQ, Zhu W, Hartemink AJ, Haber JE, MacAlpine DM. Local nucleosome dynamics and eviction following a double-strand break are reversible by NHEJ-mediated repair in the absence of DNA replication. Genome Res 2021; 31:775-788. [PMID: 33811083 PMCID: PMC8092003 DOI: 10.1101/gr.271155.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/26/2021] [Indexed: 12/27/2022]
Abstract
We interrogated at nucleotide resolution the spatiotemporal order of chromatin changes that occur immediately following a site-specific double-strand break (DSB) upstream of the PHO5 locus and its subsequent repair by nonhomologous end joining (NHEJ). We observed the immediate eviction of a nucleosome flanking the break and the repositioning of adjacent nucleosomes away from the break. These early chromatin events were independent of the end-processing Mre11-Rad50-Xrs2 (MRX) complex and preceded the MRX-dependent broad eviction of histones and DNA end-resectioning that extends up to ∼8 kb away from the break. We also examined the temporal dynamics of NHEJ-mediated repair in a G1-arrested population. Concomitant with DSB repair by NHEJ, we observed the redeposition and precise repositioning of nucleosomes at their originally occupied positions. This re-establishment of the prelesion chromatin landscape suggests that a DNA replication-independent mechanism exists to preserve epigenome organization following DSB repair.
Collapse
Affiliation(s)
- Vinay Tripuraneni
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Gonen Memisoglu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Trung Q Tran
- Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - Wei Zhu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
4
|
Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 2014; 124:131-51. [PMID: 25529773 DOI: 10.1007/s00412-014-0501-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023]
Abstract
Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.
Collapse
|
5
|
Korber P, Barbaric S. The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res 2014; 42:10888-902. [PMID: 25190457 PMCID: PMC4176169 DOI: 10.1093/nar/gku784] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chromatin dynamics crucially contributes to gene regulation. Studies of the yeast PHO5 promoter were key to establish this nowadays accepted view and continuously provide mechanistic insight in chromatin remodeling and promoter regulation, both on single locus as well as on systems level. The PHO5 promoter is a context independent chromatin switch module where in the repressed state positioned nucleosomes occlude transcription factor sites such that nucleosome remodeling is a prerequisite for and not consequence of induced gene transcription. This massive chromatin transition from positioned nucleosomes to an extensive hypersensitive site, together with respective transitions at the co-regulated PHO8 and PHO84 promoters, became a prime model for dissecting how remodelers, histone modifiers and chaperones co-operate in nucleosome remodeling upon gene induction. This revealed a surprisingly complex cofactor network at the PHO5 promoter, including five remodeler ATPases (SWI/SNF, RSC, INO80, Isw1, Chd1), and demonstrated for the first time histone eviction in trans as remodeling mode in vivo. Recently, the PHO5 promoter and the whole PHO regulon were harnessed for quantitative analyses and computational modeling of remodeling, transcription factor binding and promoter input-output relations such that this rewarding single-locus model becomes a paradigm also for theoretical and systems approaches to gene regulatory networks.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institute, Molecular Biology, University of Munich, Munich 80336, Germany
| | - Slobodan Barbaric
- Faculty of Food Technology and Biotechnology, Laboratory of Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
6
|
Musladin S, Krietenstein N, Korber P, Barbaric S. The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening. Nucleic Acids Res 2014; 42:4270-82. [PMID: 24465003 PMCID: PMC3985623 DOI: 10.1093/nar/gkt1395] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although yeast PHO5 promoter chromatin opening is a founding model for chromatin remodeling, the complete set of involved remodelers remained unknown for a long time. The SWI/SNF and INO80 remodelers cooperate here, but nonessentially, and none of the many tested single or combined remodeler gene mutations could prevent PHO5 promoter opening. RSC, the most abundant and only remodeler essential for viability, was a controversial candidate for the unrecognized remodeling activity but unassessed in vivo. Now we show that remodels the structure of chromatin (RSC) is crucially involved in PHO5 promoter opening. Further, the isw1 chd1 double deletion also delayed chromatin remodeling. Strikingly, combined absence of RSC and Isw1/Chd1 or Snf2 abolished for the first time promoter opening on otherwise sufficient induction in vivo. Together with previous findings, we recognize now a surprisingly complex network of five remodelers (RSC, SWI/SNF, INO80, Isw1 and Chd1) from four subfamilies (SWI/SNF, INO80, ISWI and CHD) as involved in PHO5 promoter chromatin remodeling. This is likely the first described complete remodeler set for a physiological chromatin transition. RSC was hardly involved at the coregulated PHO8 or PHO84 promoters despite cofactor recruitment by the same transactivator and RSC’s presence at all three promoters. Therefore, promoter-specific chromatin rather than transactivators determine remodeler requirements.
Collapse
Affiliation(s)
- Sanja Musladin
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia and Molecular Biology, Adolf-Butenandt-Institut, University of Munich, Munich 80336, Germany
| | | | | | | |
Collapse
|
7
|
Active nucleosome positioning beyond intrinsic biophysics is revealed by in vitro reconstitution. Biochem Soc Trans 2012; 40:377-82. [PMID: 22435815 DOI: 10.1042/bst20110730] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genome-wide nucleosome maps revealed well-positioned nucleosomes as a major theme in eukaryotic genome organization. Promoter regions often show a conserved pattern with an NDR (nucleosome-depleted region) from which regular nucleosomal arrays emanate. Three mechanistic contributions to such NDR-array-organization and nucleosome positioning in general are discussed: DNA sequence, DNA binders and DNA-templated processes. Especially, intrinsic biophysics of DNA sequence preferences for nucleosome formation was prominently suggested to explain the majority of nucleosome positions ('genomic code for nucleosome positioning'). Nonetheless, non-histone factors that bind DNA with high or low specificity, such as transcription factors or remodelling enzymes respectively and processes such as replication, transcription and the so-called 'statistical positioning' may be involved too. Recently, these models were tested for yeast by genome-wide reconstitution. DNA sequence preferences as probed by SGD (salt gradient dialysis) reconstitution generated many NDRs, but only few individual nucleosomes, at their proper positions, and no arrays. Addition of a yeast extract and ATP led to dramatically more in vivo-like nucleosome positioning, including regular arrays for the first time. This improvement depended essentially on the extract and ATP but not on transcription or replication. Nucleosome occupancy and close spacing were maintained around promoters, even at lower histone density, arguing for active packing of nucleosomes against the 5' ends of genes rather than statistical positioning. A first extract fractionation identified a direct, specific, necessary, but not sufficient role for the RSC (remodels the structure of chromatin) remodelling enzyme. Collectively, nucleosome positioning in yeast is actively determined by factors beyond intrinsic biophysics, and in steady-state rather than at equilibrium.
Collapse
|
8
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
9
|
Ahmad M, Hamid A, Hussain A, Majeed R, Qurishi Y, Bhat JA, Najar RA, Qazi AK, Zargar MA, Singh SK, Saxena AK. Understanding histone deacetylases in the cancer development and treatment: an epigenetic perspective of cancer chemotherapy. DNA Cell Biol 2012; 31 Suppl 1:S62-71. [PMID: 22462686 DOI: 10.1089/dna.2011.1575] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cancer is a pathologic condition that involves genetic and epigenetic events culminating in neoplastic transformation. Alteration in epigenetic events that regulate the transcriptional activity of genes associated with various signaling pathways can influence multiple stages of tumorigenesis. In cancer cells, an imbalance often exists between histone acetyl transferase and histone deacetylase (HDAC) activities, and current research focuses actively on seeking competitive HDAC inhibitors (HDACi) for chemotherapeutic intervention. HDACi are proving useful for cancer prevention and therapy by virtue of their ability to reactivate the expression of epigenetically silenced genes, including those involved in differentiation, cell cycle regulation, apoptosis, angiogenesis, invasion, and metastasis. Furthermore, epidemiological studies suggest that different diets such as intake of cruciferous vegetables may lower the risk of different cancers, and there is growing interest in identifying the specific chemoprotective constituents and mechanistic insights of their action. Interestingly, it has been observed that cancer cells are more sensitive than nontransformed cells to apoptotic induction by some HDACi. Although the mechanistic basis for this sensitivity is unclear, yet HDACi have emerged as important epigenetic target for single and combinatorial chemotherapy. HDACi derived from diverse sources such as microbial, dietary, and synthetic increase acetylation level of cells and bring about anti-proliferative and apoptotic effects specific to cancer cells by way of their role in cell cycle regulation and expression of epigenetically silenced genes.
Collapse
Affiliation(s)
- Mudassier Ahmad
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research), Jammu, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Krietenstein N, Wippo CJ, Lieleg C, Korber P. Genome-wide in vitro reconstitution of yeast chromatin with in vivo-like nucleosome positioning. Methods Enzymol 2012; 513:205-32. [PMID: 22929771 DOI: 10.1016/b978-0-12-391938-0.00009-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent genome-wide mapping of nucleosome positions revealed that well-positioned nucleosomes are pervasive across eukaryotic genomes, especially in important regulatory regions such as promoters or origins of replication. As nucleosomes impede access to DNA, their positioning is a primary mode of genome regulation. In vivo studies, especially in yeast, shed some light on factors involved in nucleosome positioning, but there is an urgent need for a complementary biochemical approach in order to confirm their direct roles, identify missing factors, and study their mechanisms. Here we describe a method that allows the genome-wide in vitro reconstitution of nucleosomes with very in vivo-like positions by a combination of salt gradient dialysis reconstitution, yeast whole cell extracts, and ATP. This system provides a starting point and positive control for the biochemical dissection of nucleosome positioning mechanisms.
Collapse
Affiliation(s)
- Nils Krietenstein
- Adolf-Butenandt-Institut, Molecular Biology Unit, University of Munich, Munich, Germany
| | | | | | | |
Collapse
|
11
|
The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes. EMBO J 2011; 30:1277-88. [PMID: 21343911 DOI: 10.1038/emboj.2011.43] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 01/26/2011] [Indexed: 11/08/2022] Open
Abstract
Nucleosomes impede access to DNA. Therefore, nucleosome positioning is fundamental to genome regulation. Nevertheless, the molecular nucleosome positioning mechanisms are poorly understood. This is partly because in vitro reconstitution of in vivo-like nucleosome positions from purified components is mostly lacking, barring biochemical studies. Using a yeast extract in vitro reconstitution system that generates in vivo-like nucleosome patterns at S. cerevisiae loci, we find that the RSC chromatin remodelling enzyme is necessary for nucleosome positioning. This was previously suggested by genome-wide in vivo studies and is confirmed here in vivo for individual loci. Beyond the limitations of conditional mutants, we show biochemically that RSC functions directly, can be sufficient, but mostly relies on other factors to properly position nucleosomes. Strikingly, RSC could not be replaced by either the closely related SWI/SNF or the Isw2 remodelling enzyme. Thus, we pinpoint that nucleosome positioning specifically depends on the unique properties of the RSC complex.
Collapse
|
12
|
Ertel F, Dirac-Svejstrup AB, Hertel CB, Blaschke D, Svejstrup JQ, Korber P. In vitro reconstitution of PHO5 promoter chromatin remodeling points to a role for activator-nucleosome competition in vivo. Mol Cell Biol 2010; 30:4060-76. [PMID: 20566699 PMCID: PMC2916437 DOI: 10.1128/mcb.01399-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/01/2009] [Accepted: 06/09/2010] [Indexed: 11/20/2022] Open
Abstract
The yeast PHO5 promoter is a classical model for studying the role of chromatin in gene regulation. To enable biochemical dissection of the mechanism leading to PHO5 activation, we reconstituted the process in vitro. Positioned nucleosomes corresponding to the repressed PHO5 promoter state were assembled using a yeast extract-based in vitro system. Addition of the transactivator Pho4 yielded an extensive DNase I-hypersensitive site resembling induced PHO5 promoter chromatin. Importantly, this remodeling was energy dependent. In contrast, little or no chromatin remodeling was detected at the PHO8 or PHO84 promoter in this in vitro system. Only the PHO5 promoter harbors a high-affinity intranucleosomal Pho4 binding site (UASp) where Pho4 binding can compete with nucleosome formation, prompting us to test the importance of such competition for chromatin remodeling by analysis of UASp mutants in vivo. Indeed, the intranucleosomal location of the UASp element was critical, but not essential, for complete remodeling at the PHO5 promoter in vivo. Further, binding of just the Gal4 DNA binding domain to an intranucleosomal site could increase PHO5 promoter opening. These data establish an auxiliary role for DNA binding competition between Pho4 and histones in PHO5 promoter chromatin remodeling in vivo.
Collapse
Affiliation(s)
- Franziska Ertel
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - A. Barbara Dirac-Svejstrup
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Christina Bech Hertel
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Dorothea Blaschke
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Jesper Q. Svejstrup
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Philipp Korber
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| |
Collapse
|
13
|
Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 2010; 17:251-7. [PMID: 20118936 DOI: 10.1038/nsmb.1741] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 11/19/2009] [Indexed: 02/07/2023]
Abstract
Positioned nucleosomes limit the access of proteins to DNA and implement regulatory features encoded in eukaryotic genomes. Here we have generated the first genome-wide nucleosome positioning map for Schizosaccharomyces pombe and annotated transcription start and termination sites genome wide. Using this resource, we found surprising differences from the previously published nucleosome organization of the distantly related yeast Saccharomyces cerevisiae. DNA sequence guides nucleosome positioning differently: for example, poly(dA-dT) elements are not enriched in S. pombe nucleosome-depleted regions. Regular nucleosomal arrays emanate more asymmetrically-mainly codirectionally with transcription-from promoter nucleosome-depleted regions, but promoters harboring the histone variant H2A.Z also show regular arrays upstream of these regions. Regular nucleosome phasing in S. pombe has a very short repeat length of 154 base pairs and requires a remodeler, Mit1, that is conserved in humans but is not found in S. cerevisiae. Nucleosome positioning mechanisms are evidently not universal but evolutionarily plastic.
Collapse
|
14
|
FoxA1 binding directs chromatin structure and the functional response of a glucocorticoid receptor-regulated promoter. Mol Cell Biol 2009; 29:5413-25. [PMID: 19687299 DOI: 10.1128/mcb.00368-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reconstitution of the glucocorticoid receptor (GR)-regulated mouse mammary tumor virus (MMTV) promoter in Xenopus oocytes was used to monitor the effects of different transcription factor contexts. Three constitutively binding factors, nuclear factor 1 (NF1), octamer transcription factor 1 (Oct1), and the Forkhead box A1 (FoxA1), were shown to act in concert, to direct the chromatin structure, and to enhance the GR response. FoxA1 has a dominant effect in the absence of hormone and induces a cluster of DNase I-hypersensitive sites in the segment comprising bp -400 to +25. This FoxA1-mediated chromatin remodeling does not induce MMTV transcription, as opposed to that of the GR. However, the robust FoxA1-dependent chromatin opening has the following drastic functional consequences on the hormone regulation: (i) GR-DNA binding is facilitated, as revealed by dimethyl sulfate in vivo footprinting, leading to increased hormone-induced transcription, and (ii) the GR antagonist RU486 is converted into a partial agonist in the presence of FoxA1 via ligand-independent GR activation. We conclude that FoxA1 mediates a preset chromatin structure and directs a context-specific response of a nuclear receptor. Furthermore, the alternative nucleosome arrangement induced by GR and FoxA1 implies this to be determined by constitutive binding of transcription factors rather than by the DNA sequence itself.
Collapse
|
15
|
Segal E, Widom J. What controls nucleosome positions? Trends Genet 2009; 25:335-43. [PMID: 19596482 PMCID: PMC2810357 DOI: 10.1016/j.tig.2009.06.002] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
Abstract
The DNA of eukaryotic genomes is wrapped in nucleosomes, which strongly distort and occlude the DNA from access to most DNA-binding proteins. An understanding of the mechanisms that control nucleosome positioning along the DNA is thus essential to understanding the binding and action of proteins that carry out essential genetic functions. New genome-wide data on in vivo and in vitro nucleosome positioning greatly advance our understanding of several factors that can influence nucleosome positioning, including DNA sequence preferences, DNA methylation, histone variants and post-translational modifications, higher order chromatin structure, and the actions of transcription factors, chromatin remodelers and other DNA-binding proteins. We discuss how these factors function and ways in which they might be integrated into a unified framework that accounts for both the preservation of nucleosome positioning and the dynamic nucleosome repositioning that occur across biological conditions, cell types, developmental processes and disease.
Collapse
Affiliation(s)
- Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | |
Collapse
|
16
|
Abstract
Activated transcription in eukaryotes requires the aid of numerous co-factors to overcome the physical barriers chromatin poses to activation, bridge the gap between activators and polymerase, and ensure appropriate regulation. S. cerevisiae has long been a model organism for studying the role of co-activators in the steps leading up to gene activation. Detailed studies on the recruitment of these co-activators have been carried out for more than a dozen promoters. Taking a step back to survey these results, however, suggests that there are few generalizations that could be used to guide future studies of uncharacterized promoters.
Collapse
Affiliation(s)
- Rhiannon Biddick
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | | |
Collapse
|
17
|
Differential cofactor requirements for histone eviction from two nucleosomes at the yeast PHO84 promoter are determined by intrinsic nucleosome stability. Mol Cell Biol 2009; 29:2960-81. [PMID: 19307305 DOI: 10.1128/mcb.01054-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We showed previously that the strong PHO5 promoter is less dependent on chromatin cofactors than the weaker coregulated PHO8 promoter. In this study we asked if chromatin remodeling at the even stronger PHO84 promoter was correspondingly less cofactor dependent. The repressed PHO84 promoter showed a short hypersensitive region that was flanked upstream and downstream by a positioned nucleosome and contained two transactivator Pho4 sites. Promoter induction generated an extensive hypersensitive and histone-depleted region, yielding two more Pho4 sites accessible. This remodeling was strictly Pho4 dependent, strongly dependent on the remodelers Snf2 and Ino80 and on the histone acetyltransferase Gcn5, and more weakly on the acetyltransferase Rtt109. Importantly, remodeling of each of the two positioned nucleosomes required Snf2 and Ino80 to different degrees. Only remodeling of the upstream nucleosome was strictly dependent on Snf2. Further, remodeling of the upstream nucleosome was more dependent on Ino80 than remodeling of the downstream nucleosome. Both nucleosomes differed in their intrinsic stabilities as predicted in silico and measured in vitro. The causal relationship between the different nucleosome stabilities and the different cofactor requirements was shown by introducing destabilizing mutations in vivo. Therefore, chromatin cofactor requirements were determined by intrinsic nucleosome stabilities rather than correlated to promoter strength.
Collapse
|
18
|
Abstract
In eukaryotes, transcription factors, including both gene-specific activators and general transcription factors (GTFs), operate in a chromatin milieu. Here, we review evidence from gene-specific and genome-wide studies indicating that chromatin presents an environment that is typically permissive for activator binding, conditional for pre-initiation complex (PIC) formation, and inhibitory for productive PIC assembly within coding sequences. We also discuss the role of nucleosome dynamics in facilitating access to transcription factors (TFs) in vivo and indicate some of the principal questions raised by recent findings.
Collapse
Affiliation(s)
- Randall H Morse
- Wadsworth Center, New York State Department of Health, Albany, New York 12201-2002, USA.
| |
Collapse
|
19
|
He Q, Battistella L, Morse RH. Mediator requirement downstream of chromatin remodeling during transcriptional activation of CHA1 in yeast. J Biol Chem 2007; 283:5276-86. [PMID: 18093974 DOI: 10.1074/jbc.m708266200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mediator complex is essential for transcription by RNA polymerase II in eukaryotes. Although chromatin remodeling is an integral part of transcriptional activation at many promoters, whether Mediator is required for this function has not been determined. Here we have used the yeast CHA1 gene to study the role of Mediator in chromatin remodeling and recruitment of the transcription machinery. We show by chromatin immunoprecipitation that Mediator subunits are recruited to the induced CHA1 promoter. Inactivation of Mediator at 37 degrees C in yeast harboring the srb4-138 (med17) ts mutation severely reduces CHA1 activation and prevents recruitment to the induced CHA1 promoter of Med18/Srb5, from the head module of Mediator, and Med14/Rgr1, which bridges the middle and tail modules. In contrast, recruitment of Med15/Gal11 from the tail module is unaffected in med17 ts yeast at 37 degrees C. Recruitment of TATA-binding protein (TBP) is severely compromised in the absence of functional Mediator, whereas Kin28 and polymerase II recruitment are reduced but to a lesser extent. Induced levels of histone H3K4me3 at the CHA1 promoter are not diminished by inactivation of Mediator, whereas recruitment of Paf1 and of Ser2- and Ser5-phosphorylated forms of Rbp1 are reduced but not eliminated. Loss of histone H3 from the induced CHA1 promoter is seen in wild type yeast but is greatly reduced by loss of intact Mediator. In contrast, Swi/Snf recruitment and nucleosome remodeling are unaffected by loss of Mediator function. Thus, Mediator is required for recruitment of the transcription machinery subsequent to chromatin remodeling during CHA1 induction.
Collapse
Affiliation(s)
- Qiye He
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York 12201-2002, USA
| | | | | |
Collapse
|
20
|
Abstract
Histone acetylation regulates many cellular processes, and specific acetylation marks, either singly or in combination, produce distinct outcomes. For example, the acetylation pattern on newly synthesized histones is important for their assembly into nucleosomes by histone chaperones. Additionally, the degree of chromatin compaction and folding may be regulated by acetylation of histone H4 at lysine 16. Histone acetylation also regulates the formation of heterochromatin; deacetylation of H4 lysine 16 is important for spreading of heterochromatin components, whereas acetylation of this site serves as a barrier to this spreading. Finally, histone acetylation is critical for gene transcription, but recent results suggest that deacetylation of certain sites also plays an important role. There are many histone acetyltransferases (HATs) and deacetylases, with differing preferences for the various histone proteins and for specific sites on individual histones. Determining how these enzymes create distinct acetylation patterns and regulate the functional outcome is an important challenge.
Collapse
Affiliation(s)
- Mona D Shahbazian
- Department of Biological Chemistry, Geffen School of Medicine and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
21
|
Barbaric S, Luckenbach T, Schmid A, Blaschke D, Hörz W, Korber P. Redundancy of chromatin remodeling pathways for the induction of the yeast PHO5 promoter in vivo. J Biol Chem 2007; 282:27610-21. [PMID: 17631505 DOI: 10.1074/jbc.m700623200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of the yeast PHO5 and PHO8 genes leads to a prominent chromatin transition at their promoter regions as a prerequisite for transcription activation. Although induction of PHO8 is strictly dependent on Snf2 and Gcn5, there is no chromatin remodeler identified so far that would be essential for the opening of PHO5 promoter chromatin. Nonetheless, the nonessential but significant involvement of cofactors can be identified if the chromatin opening kinetics are delayed in the respective mutants. Using this approach, we have tested individually all 15 viable Snf2 type ATPase deletion mutants for their effect on PHO5 promoter induction and opening. Only the absence of Snf2 and Ino80 showed a strong delay in chromatin remodeling kinetics. The snf2 ino80 double mutation had a synthetic kinetic effect but eventually still allowed strong PHO5 induction. The same was true for the snf2 gcn5 and ino80 gcn5 double mutants. This strongly suggests a complex network of redundant and mutually independent parallel pathways that lead to the remodeling of the PHO5 promoter. Further, chromatin remodeling kinetics at a transcriptionally inactive TATA box-mutated PHO5 promoter were affected neither under wild type conditions nor in the absence of Snf2 or Gcn5. This demonstrates the complete independence of promoter chromatin opening from downstream PHO5 transcription processes. Finally, the histone variant Htz1 has no prominent role for the kinetics of PHO5 promoter chromatin remodeling.
Collapse
|
22
|
Kwon CS, Wagner D. Unwinding chromatin for development and growth: a few genes at a time. Trends Genet 2007; 23:403-12. [PMID: 17566593 DOI: 10.1016/j.tig.2007.05.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 05/01/2007] [Accepted: 05/30/2007] [Indexed: 01/11/2023]
Abstract
SWI/SNF chromatin remodeling ATPases control accessibility of the information stored in the genome. However, the in vivo role of these remodelers has remained poorly understood because null mutations in these result in embryonic lethality in most organisms. Recently, the study of conditional mutants in mammals and viable null mutants in plants, combined with genome wide expression studies in mammals, flies and plants, have implicated chromatin remodeling ATPases in the regulation of many developmental pathways in multicellular eukaryotes. In addition, these studies reveal striking functional specificity for chromatin remodeling in individual developmental processes.
Collapse
Affiliation(s)
- Chang Seob Kwon
- Department of Biology, University of Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
23
|
Johnsson A, Xue-Franzén Y, Lundin M, Wright APH. Stress-specific role of fission yeast Gcn5 histone acetyltransferase in programming a subset of stress response genes. EUKARYOTIC CELL 2007; 5:1337-46. [PMID: 16896217 PMCID: PMC1539148 DOI: 10.1128/ec.00101-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gcn5 is a coactivator protein that contributes to gene activation by acetylating specific lysine residues within the N termini of histone proteins. Gcn5 has been intensively studied in the budding yeast, Saccharomyces cerevisiae, but the features of genes that determine whether they require Gcn5 during activation have not been conclusively clarified. To allow comparison with S. cerevisiae, we have studied the genome-wide role of Gcn5 in the distantly related fission yeast, Schizosaccharomyces pombe. We show that Gcn5 is specifically required for adaptation to KCl- and CaCl(2)-mediated stress in S. pombe. We have characterized the genome-wide gene expression responses to KCl stress and show that Gcn5 is involved in the regulation of a subset of stress response genes. Gcn5 is most clearly associated with KCl-induced genes, but there is no correlation between Gcn5 dependence and the extent of their induction. Instead, Gcn5-dependent KCl-induced genes are specifically enriched in four different DNA motifs. The Gcn5-dependent KCl-induced genes are also associated with biological process gene ontology terms such as carbohydrate metabolism, glycolysis, and nicotinamide metabolism that together constitute a subset of the ontology parameters associated with KCl-induced genes.
Collapse
Affiliation(s)
- Anna Johnsson
- School of Life Sciences, Södertörns Högskola, SE-141 89 Huddinge, Sweden.
| | | | | | | |
Collapse
|
24
|
Hogan GJ, Lee CK, Lieb JD. Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet 2006; 2:e158. [PMID: 17002501 PMCID: PMC1570381 DOI: 10.1371/journal.pgen.0020158] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 08/08/2006] [Indexed: 01/10/2023] Open
Abstract
The packaging of DNA into nucleosomes influences the accessibility of underlying regulatory information. Nucleosome occupancy and positioning are best characterized in the budding yeast Saccharomyces cerevisiae, albeit in asynchronous cell populations or on individual promoters such as PHO5 and GAL1–10. Using FAIRE (formaldehyde-assisted isolation of regulatory elements) and whole-genome microarrays, we examined changes in nucleosome occupancy throughout the mitotic cell cycle in synchronized populations of S. cerevisiae. Perhaps surprisingly, nucleosome occupancy did not exhibit large, global variation between cell cycle phases. However, nucleosome occupancy at the promoters of cell cycle–regulated genes was reduced specifically at the cell cycle phase in which that gene exhibited peak expression, with the notable exception of S-phase genes. We present data that establish FAIRE as a high-throughput method for assaying nucleosome occupancy. For the first time in any system, nucleosome occupancy was mapped genome-wide throughout the cell cycle. Fluctuation of nucleosome occupancy at promoters of most cell cycle–regulated genes provides independent evidence that periodic expression of these genes is controlled mainly at the level of transcription. The promoters of G2/M genes are distinguished from other cell cycle promoters by an unusually low baseline nucleosome occupancy throughout the cell cycle. This observation, coupled with the maintenance throughout the cell cycle of the stereotypic nucleosome occupancy states between coding and non-coding loci, suggests that the largest component of variation in nucleosome occupancy is “hard wired,” perhaps at the level of DNA sequence. Every cell contains a complete copy of the genome, which is comprised of DNA. To fit the genome into the cell nucleus, DNA strands are wound around spools made of proteins called histones. By packing DNA, histones also control access to DNA, which influences when genes can be turned on and off. The authors present two main findings. First, they demonstrate a new, simple method to determine how tightly genes are wrapped around histones. Second, they use the new method to determine what happens to DNA packaging at every gene through one cycle of cell growth and division. They find that as genes get turned on throughout the cell cycle, the packaging of DNA that controls those genes becomes loose, and as genes get turned off, it becomes tight again. However, some cell cycle–regulated genes do not fit this pattern, suggesting another means of regulation for these genes. Interestingly, cell cycle–related differences in packaging at single genes are smaller than differences in packaging that are always apparent between different groups of genes. This suggests that most differences in how DNA is packaged may be controlled by the sequence of DNA itself, with smaller contributions from other factors.
Collapse
Affiliation(s)
- Gregory J Hogan
- Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Cheol-Koo Lee
- Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason D Lieb
- Department of Biology and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|