1
|
Zhang Z, Han Z, Guo Y, Liu X, Gao Y, Zhang Y. Establishment of an Efficient Immortalization Strategy Using HMEJ-Based b TERT Insertion for Bovine Cells. Int J Mol Sci 2021; 22:ijms222212540. [PMID: 34830422 PMCID: PMC8622252 DOI: 10.3390/ijms222212540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/09/2022] Open
Abstract
Immortalized cell lines have been used in a wide range of applications in research on immune disorders and cellular metabolic regulation due to the stability and uniformity of their cellular characteristics. At present, the investigation into molecular functions and signaling pathways within bovine cells remains largely limited by the lack of immortalized model cells. Current methods for immortalizing bovine cells are mainly restricted to the ectopic expression of human telomerase reverse transcriptase (hTERT) through transient transfection or virus-mediated delivery, which have defects in efficiency and reliability. In this study, we identified bovine TERT (bTERT) as a novel potent biofactor for immortalizing bovine cells with great advantages over hTERT, and established an efficient and easily manipulated strategy for the immortalization of bovine primary cells. Through the homology-mediated end-joining-based insertion of bTERT at the ROSA26 locus, we successfully generated immortalized bovine fetal fibroblast cell lines with stable characteristics. The observed limitation of this strategy in immortalizing bovine bone marrow-derived macrophages was attributed to the post-translational modification of bTERT, causing inhibited nuclear localization and depressed activity of bTERT in this terminally differentiated cell. In summary, we constructed an innovative method to achieve the high-quality immortalization of bovine primary cells, thereby expanding the prospects for the future application of immortalized bovine model cell lines.
Collapse
Affiliation(s)
- Zihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Z.Z.); (Z.H.); (Y.G.); (X.L.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Zhuo Han
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Z.Z.); (Z.H.); (Y.G.); (X.L.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Ying Guo
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Z.Z.); (Z.H.); (Y.G.); (X.L.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Xin Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Z.Z.); (Z.H.); (Y.G.); (X.L.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
| | - Yuanpeng Gao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Z.Z.); (Z.H.); (Y.G.); (X.L.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
- Correspondence: (Y.G.); (Y.Z.)
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (Z.Z.); (Z.H.); (Y.G.); (X.L.)
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang 712100, China
- Correspondence: (Y.G.); (Y.Z.)
| |
Collapse
|
2
|
Rousseau P, Khondaker S, Zhu S, Lauzon C, Mai S, Autexier C. An intact putative mouse telomerase essential N-terminal domain is necessary for proper telomere maintenance. Biol Cell 2016; 108:96-112. [PMID: 26787169 DOI: 10.1111/boc.201500089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/14/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND INFORMATION Naturally occurring telomerase reverse transcriptase (TERT) isoforms may regulate telomerase activity, and possibly function independently of telomeres to modulate embryonic stem (ES) cell self-renewal and differentiation. RESULTS We report the characterisation of two novel mouse TERT (mTERT) splice variants, Ins-i1[1-102] (Insi1 for short) and Del-e12[1-40] (Dele12 for short) that have not been previously described. Insi1 represents an in-frame insertion of nucleotides 1-102 from intron 1, encoding a 34 amino acid insertion at amino acid 73. Based on known functions of this region in human and Tetrahymena TERTs, the insertion interrupts the RNA interaction domain 1 implicated in low-affinity RNA binding and the telomerase essential N-terminal domain implicated in DNA substrate interactions. Dele12 contains a 40 nucleotide deletion of exon 12 which generates a premature stop codon, and possible protein lacking the C-terminus. We found Insi1 expressed in adult mouse brain and kidney and Dele12 expressed in adult mouse ovary. Dele12 was inactive in vitro and in mTERT(-/-) ES cells and Insi1 retained 26-48% of telomerase activity reconstituted by wild-type mTERT in vitro and in mTERT(-/-) ES cells. The Insi1 variant exhibited reduced DNA substrate binding in vitro and both variants exhibited a reduction in binding the telomerase RNA, mTR, when expressed in mTERT(-/-) ES cells. Stable expression of Dele12 in the mouse fibroblast CB17 cell line inhibited telomerase activity and slowed cell growth, suggesting a potential dominant-negative effect. Levels of signal-free ends, representing short telomeres, and end-to-end fusions were higher in mTERT(-/-) ES cells expressing mTERT-Insi1 and mTERT-Dele12, compared with levels observed in mTERT(-/-) ES cells expressing wild-type mTERT. In addition, in mTERT(-/-) cells expressing mTERT-Insi1, we observed chromosomes that were products of repeated breakage-bridge-fusion cycles and other telomere dysfunction-related aberrations. CONCLUSION AND SIGNIFICANCE An intact mTERT N-terminus which contributes to mTR binding, DNA binding and telomerase activity is necessary for elongation of short telomeres and the maintenance of functional telomeres. It is reasonable to speculate that relative levels of mTERT-Insi1 may regulate telomere function in specific tissues.
Collapse
Affiliation(s)
- Philippe Rousseau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | - Shanjadia Khondaker
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada.,Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Shusen Zhu
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | - Catherine Lauzon
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada
| | - Sabine Mai
- Manitoba Institute of Cell Biology, University of Manitoba, Manitoba, R3E 0V9, Canada
| | - Chantal Autexier
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, H3T 1E2, Canada.,Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Sarek G, Marzec P, Margalef P, Boulton SJ. Molecular basis of telomere dysfunction in human genetic diseases. Nat Struct Mol Biol 2015; 22:867-74. [PMID: 26581521 DOI: 10.1038/nsmb.3093] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/23/2015] [Indexed: 01/28/2023]
Abstract
Mutations in genes encoding proteins required for telomere structure, replication, repair and length maintenance are associated with several debilitating human genetic disorders. These complex telomere biology disorders (TBDs) give rise to critically short telomeres that affect the homeostasis of multiple organs. Furthermore, genome instability is often a hallmark of telomere syndromes, which are associated with increased cancer risk. Here, we summarize the molecular causes and cellular consequences of disease-causing mutations associated with telomere dysfunction.
Collapse
Affiliation(s)
- Grzegorz Sarek
- DNA Damage Response Laboratory, Francis Crick Institute, South Mimms, UK
| | - Paulina Marzec
- DNA Damage Response Laboratory, Francis Crick Institute, South Mimms, UK
| | - Pol Margalef
- DNA Damage Response Laboratory, Francis Crick Institute, South Mimms, UK
| | - Simon J Boulton
- DNA Damage Response Laboratory, Francis Crick Institute, South Mimms, UK
| |
Collapse
|
4
|
Inactive C-terminal telomerase reverse transcriptase insertion splicing variants are dominant-negative inhibitors of telomerase. Biochimie 2014; 101:93-103. [DOI: 10.1016/j.biochi.2013.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/30/2013] [Indexed: 12/12/2022]
|
5
|
The human telomerase catalytic subunit and viral telomerase RNA reconstitute a functional telomerase complex in a cell-free system, but not in human cells. Cell Mol Biol Lett 2012; 17:598-615. [PMID: 22941205 PMCID: PMC6275662 DOI: 10.2478/s11658-012-0031-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 08/28/2012] [Indexed: 01/20/2023] Open
Abstract
The minimal vertebrate telomerase enzyme is composed of a protein component (telomerase reverse transcriptase, TERT) and an RNA component (telomerase RNA, TR). Expression of these two subunits is sufficient to reconstitute telomerase activity in vitro, while the formation of a holoenzyme comprising telomerase-associated proteins is necessary for proper telomere length maintenance. Previous reports demonstrated the high processivity of the human telomerase complex and the interspecies compatibility of human TERT (hTERT). In this study, we tested the function of the only known viral telomerase RNA subunit (vTR) in association with human telomerase, both in a cell-free system and in human cells. When vTR is assembled with hTERT in a cell-free environment, it is able to interact with hTERT and to reconstitute telomerase activity. However, in human cells, vTR does not reconstitute telomerase activity and could not be detected in the human telomerase complex, suggesting that vTR is not able to interact properly with the proteins constituting the human telomerase holoenzyme.
Collapse
|
6
|
Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 2011; 474:399-402. [PMID: 21602826 PMCID: PMC3155806 DOI: 10.1038/nature10084] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/30/2011] [Indexed: 01/13/2023]
Abstract
The differentiation of patient-derived induced pluripotent stem cells (iPSCs) to committed fates such as neurons, muscle and liver is a powerful approach for understanding key parameters of human development and disease. Whether undifferentiated iPSCs themselves can be used to probe disease mechanisms is uncertain. Dyskeratosis congenita is characterized by defective maintenance of blood, pulmonary tissue and epidermal tissues and is caused by mutations in genes controlling telomere homeostasis. Short telomeres, a hallmark of dyskeratosis congenita, impair tissue stem cell function in mouse models, indicating that a tissue stem cell defect may underlie the pathophysiology of dyskeratosis congenita. Here we show that even in the undifferentiated state, iPSCs from dyskeratosis congenita patients harbour the precise biochemical defects characteristic of each form of the disease and that the magnitude of the telomere maintenance defect in iPSCs correlates with clinical severity. In iPSCs from patients with heterozygous mutations in TERT, the telomerase reverse transcriptase, a 50% reduction in telomerase levels blunts the natural telomere elongation that accompanies reprogramming. In contrast, mutation of dyskerin (DKC1) in X-linked dyskeratosis congenita severely impairs telomerase activity by blocking telomerase assembly and disrupts telomere elongation during reprogramming. In iPSCs from a form of dyskeratosis congenita caused by mutations in TCAB1 (also known as WRAP53), telomerase catalytic activity is unperturbed, yet the ability of telomerase to lengthen telomeres is abrogated, because telomerase mislocalizes from Cajal bodies to nucleoli within the iPSCs. Extended culture of DKC1-mutant iPSCs leads to progressive telomere shortening and eventual loss of self-renewal, indicating that a similar process occurs in tissue stem cells in dyskeratosis congenita patients. These findings in iPSCs from dyskeratosis congenita patients reveal that undifferentiated iPSCs accurately recapitulate features of a human stem cell disease and may serve as a cell-culture-based system for the development of targeted therapeutics.
Collapse
|
7
|
Madonna R, De Caterina R, Willerson JT, Geng YJ. Biologic function and clinical potential of telomerase and associated proteins in cardiovascular tissue repair and regeneration. Eur Heart J 2010; 32:1190-6. [PMID: 21148539 DOI: 10.1093/eurheartj/ehq450] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Telomeres comprise long tracts of double-stranded TTAGGG repeats that extend for 9-15 kb in humans. Telomere length is maintained by telomerase, a specialized ribonucleoprotein that prevents the natural ends of linear chromosomes from undergoing inappropriate repair, which could otherwise lead to deleterious chromosomal fusions. During the development of cardiovascular tissues, telomerase activity is strong but diminishes with age in adult hearts. Dysfunction of telomerase is associated with the impairment of tissue repair or regeneration in several pathologic conditions, including heart failure and infarction. Under both physiologic and pathophysiologic conditions, telomerase interacts with promyogenic nuclear transcription factors (e.g. myocardin, serum response factor) to augment the potency of cardiovascular cells during growth, survival, and differentiation. We review recent findings on the biologic function of telomerase and its potential for clinical application in cardiovascular development and repair. Understanding the roles of telomerase and its associated proteins in the functional regulation of cardiovascular cells and their progenitors may lead to new strategies for cardiovascular tissue repair and regeneration.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX, USA
| | | | | | | |
Collapse
|
8
|
El-Chemaly S, Ziegler SG, Calado RT, Wilson KA, Wu HP, Haughey M, Peterson NR, Young NS, Gahl WA, Moss J, Gochuico BR. Natural history of pulmonary fibrosis in two subjects with the same telomerase mutation. Chest 2010; 139:1203-1209. [PMID: 20966039 DOI: 10.1378/chest.10-2048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
UNLABELLED Previous studies have identified subclinical lung disease in family members of probands with familial pulmonary fibrosis, but the natural history of preclinical pulmonary fibrosis is uncertain. The purpose of this study was to determine whether individuals with preclinical lung disease will develop pulmonary fibrosis. After a 27-year interval, two subjects with manifestations of preclinical familial pulmonary fibrosis, including asymptomatic alveolar inflammation and alveolar macrophage activation, were reevaluated for lung disease. CT scans of the chest, pulmonary function tests, and BAL were performed, and genomic DNA was analyzed for mutations in candidate genes associated with familial pulmonary fibrosis. One subject developed symptomatic familial pulmonary fibrosis and was treated with oxygen; her sister remained asymptomatic but had findings of pulmonary fibrosis on high-resolution CT scan of the chest. High concentrations of lymphocytes were found in BAL fluid from both subjects. Genetic sequencing and analyses identified a novel heterozygous mutation in telomerase reverse transcriptase (TERT, R1084P), resulting in telomerase dysfunction and short telomeres in both subjects. In familial pulmonary fibrosis, asymptomatic preclinical alveolar inflammation associated with mutation in TERT and telomerase insufficiency can progress to fibrotic lung disease over 2 to 3 decades. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT00071045; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Souheil El-Chemaly
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Shira G Ziegler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Rodrigo T Calado
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Kirkland A Wilson
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Hai Ping Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Mary Haughey
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Nathan R Peterson
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
9
|
Tomlinson RL, Li J, Culp BR, Terns RM, Terns MP. A Cajal body-independent pathway for telomerase trafficking in mice. Exp Cell Res 2010; 316:2797-809. [PMID: 20633556 DOI: 10.1016/j.yexcr.2010.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 07/01/2010] [Accepted: 07/03/2010] [Indexed: 01/03/2023]
Abstract
The intranuclear trafficking of human telomerase involves a dynamic interplay between multiple nuclear sites, most notably Cajal bodies and telomeres. Cajal bodies are proposed to serve as sites of telomerase maturation, storage, and assembly, as well as to function in the cell cycle-regulated delivery of telomerase to telomeres in human cells. Here, we find that telomerase RNA does not localize to Cajal bodies in mouse cells, and instead resides in separate nuclear foci throughout much of the cell cycle. However, as in humans, mouse telomerase RNA (mTR) localizes to subsets of telomeres specifically during S phase. The localization of mTR to telomeres in mouse cells does not require coilin-containing Cajal bodies, as mTR is found at telomeres at similar frequencies in cells from wild-type and coilin knockout mice. At the same time, we find that human TR localizes to Cajal bodies (as well as telomeres) in mouse cells, indicating that the distinct trafficking of mTR is attributable to an intrinsic property of the RNA (rather than a difference in the mouse cell environment such as the properties of mouse Cajal bodies). We also find that during S phase, mTR foci coalesce into short chains, with at least one of the conjoined mTR foci co-localizing with a telomere. These findings point to a novel, Cajal body-independent pathway for telomerase biogenesis and trafficking in mice.
Collapse
Affiliation(s)
- Rebecca L Tomlinson
- Departments of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
10
|
Fakhoury J, Marie-Egyptienne DT, Londoño-Vallejo JA, Autexier C. Telomeric function of mammalian telomerases at short telomeres. J Cell Sci 2010; 123:1693-704. [PMID: 20427319 DOI: 10.1242/jcs.063636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Telomerase synthesizes telomeric sequences and is minimally composed of a reverse transcriptase (RT) known as TERT and an RNA known as TR. We reconstituted heterologous mouse (m) and human (h) TERT-TR complexes and chimeric mTERT-hTERT-hTR complexes in vitro and in immortalized human alternative lengthening of telomere (ALT) cells. Our data suggest that species-specific determinants of activity, processivity and telomere function map not only to the TR but also to the TERT component. The presence of hTERT-hTR, but not heterologous TERT-TR complexes or chimeric mTERT-hTERT-hTR complexes, significantly reduced the percentage of chromosomes without telomeric signals in ALT cells. Moreover, heterologous and chimeric complexes were defective in recruitment to telomeres. Our results suggest a requirement for several hTERT domains and interaction with multiple proteins for proper recruitment of telomerase to the shortest telomeres in human ALT cells. Late-passage mTERT(-/-) mouse embryonic stem (ES) cells ectopically expressing hTERT or mTERT harboured fewer chromosome ends without telomeric signals and end-to-end fusions than typically observed in late-passage mTERT(-/-) ES cells. The ability of hTERT to function at mouse telomeres and the inability of mTERT to function at human telomeres suggest that mechanisms regulating the recruitment and activity of hTERT at mouse telomeres might be less stringent than the mechanisms regulating mTERT at human telomeres.
Collapse
Affiliation(s)
- Johans Fakhoury
- Bloomfield Center for Research in Aging, Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montreal QC, Canada H3T 1E2
| | | | | | | |
Collapse
|
11
|
Kovalenko OA, Caron MJ, Ulema P, Medrano C, Thomas AP, Kimura M, Bonini MG, Herbig U, Santos JH. A mutant telomerase defective in nuclear-cytoplasmic shuttling fails to immortalize cells and is associated with mitochondrial dysfunction. Aging Cell 2010; 9:203-19. [PMID: 20089117 DOI: 10.1111/j.1474-9726.2010.00551.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Telomerase is a reverse transcriptase specialized in telomere synthesis. The enzyme is primarily nuclear where it elongates telomeres, but many reports show that the catalytic component of telomerase (in humans called hTERT) also localizes outside of the nucleus, including in mitochondria. Shuttling of hTERT between nucleus and cytoplasm and vice versa has been reported, and different proteins shown to regulate such translocation. Exactly why telomerase moves between subcellular compartments is still unclear. In this study we report that mutations that disrupt the nuclear export signal (NES) of hTERT render it nuclear but unable to immortalize cells despite retention of catalytic activity in vitro. Overexpression of the mutant protein in primary fibroblasts is associated with telomere-based cellular senescence, multinucleated cells and the activation of the DNA damage response genes ATM, Chk2 and p53. Mitochondria function is also impaired in the cells. We find that cells expressing the mutant hTERT produce high levels of mitochondrial reactive oxygen species and have damage in telomeric and extratelomeric DNA. Dysfunctional mitochondria are also observed in an ALT (alternative lengthening of telomeres) cell line that is insensitive to growth arrest induced by the mutant hTERT showing that mitochondrial impairment is not a consequence of the growth arrest. Our data indicate that mutations involving the NES of hTERT are associated with defects in telomere maintenance, mitochondrial function and cellular growth, and suggest targeting this region of hTERT as a potential new strategy for cancer treatment.
Collapse
Affiliation(s)
- Olga A Kovalenko
- Department of Pharmacology and Physiology, National Institute of Environmental and Health Sciences, 111 TW Alexander dr, MD F0-02, Durham, NC 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Leukocyte telomere length is preserved with aging in endurance exercise-trained adults and related to maximal aerobic capacity. Mech Ageing Dev 2010; 131:165-7. [PMID: 20064545 DOI: 10.1016/j.mad.2009.12.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 12/27/2022]
Abstract
Telomere length (TL), a measure of replicative senescence, decreases with aging, but the factors involved are incompletely understood. To determine if age-associated reductions in TL are related to habitual endurance exercise and maximal aerobic exercise capacity (maximal oxygen consumption, VO(2)max), we studied groups of young (18-32 years; n=15, 7 male) and older (55-72 years; n=15, 9 male) sedentary and young (n=10, 7 male) and older (n=17, 11 male) endurance exercise-trained healthy adults. Leukocyte TL (LTL) was shorter in the older (7059+/-141 bp) vs. young (8407+/-218) sedentary adults (P<0.01). LTL of the older endurance-trained adults (7992+/-169 bp) was approximately 900 bp greater than their sedentary peers (P<0.01) and was not significantly different (P=0.12) from young exercise-trained adults (8579+/-413). LTL was positively related to VO(2)max as a result of a significant association in older adults (r=0.44, P<0.01). Stepwise multiple regression analysis revealed that VO(2)max was the only independent predictor of LTL in the overall group. Our results indicate that LTL is preserved in healthy older adults who perform vigorous aerobic exercise and is positively related to maximal aerobic exercise capacity. This may represent a novel molecular mechanism underlying the "anti-aging" effects of maintaining high aerobic fitness.
Collapse
|
13
|
Kushner EJ, Van Guilder GP, Maceneaney OJ, Cech JN, Stauffer BL, DeSouza CA. Aging and endothelial progenitor cell telomere length in healthy men. Clin Chem Lab Med 2009; 47:47-50. [PMID: 19055473 DOI: 10.1515/cclm.2009.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Telomere length declines with age in mature endothelial cells and is thought to contribute to endothelial dysfunction and atherogenesis. Bone marrow-derived circulating endothelial progenitor cells (EPCs) are critical to vascular health as they contribute to both reendothelialization and neovascularization. We tested the hypothesis that EPC telomere length decreases with age in healthy adult humans. METHODS Peripheral blood samples were collected from 40 healthy, non-obese, sedentary men: 12 young (age 21-34 years), 12 middle-aged (43-55 years) and 16 older (57-68 years). Putative EPCs were isolated from peripheral blood mononuclear cells and telomere length was determined using genomic DNA preparation and Southern hybridization techniques. RESULTS EPC telomere length (base pairs) was approximately 20% (p=0.01) lower in the older (8492+523 bp) compared to the middle-aged (10,565+572 bp) and young (10,205+501 bp) men. Of note, there was no difference in EPC telomere length between the middle-aged and young men. CONCLUSIONS These results demonstrate that EPC telomere length declines with age in healthy, sedentary men. Interestingly, telomere length was well preserved in the middle-aged compared to young men, suggesting that EPC telomere shortening occurs after the age of 55 years.
Collapse
Affiliation(s)
- Erich J Kushner
- Department of Integrative Physiology, Integrative Vascular Biology Laboratory, University of Colorado, Boulder, CO, USA
| | | | | | | | | | | |
Collapse
|
14
|
Marie-Egyptienne DT, Brault ME, Zhu S, Autexier C. Telomerase inhibition in a mouse cell line with long telomeres leads to rapid telomerase reactivation. Exp Cell Res 2008; 314:668-75. [DOI: 10.1016/j.yexcr.2007.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 09/16/2007] [Accepted: 10/26/2007] [Indexed: 11/16/2022]
|
15
|
Abstract
The expression level of the telomerase catalytic subunit (telomerase reverse transcriptase, TERT) positively correlates with cell survival after exposure to several lethal stresses. However, whether the protective role of TERT is independent of telomerase activity has not yet been clearly explored. Here, we genetically evaluated the protective roles of both TERT and telomerase activity against cell death induced by staurosporine (STS) and N-methyl-D-aspartic acid (NMDA). First generation (G1) TERT-deficient mouse embryonic fibroblasts (MEFs) displayed an increased sensitivity to STS, while TERT transgenic MEFs were more resistant to STS-induced apoptosis than wild-type. Deletion of the telomerase RNA component (TERC) failed to alter the sensitivity of TERT transgenic MEFs to STS treatment. Similarly, NMDA-induced excitotoxic cell death of primary neurons was suppressed by TERT, but not by TERC both in vitro and in vivo. Specifically, NMDA accelerated death of TERT-deficient mice, while TERT transgenic mice showed enhanced survival when compared with wild-type littermates after administration of NMDA. In addition, the transgenic expression of TERT protected motor neurons from apoptosis induced by sciatic nerve axotomy. These results indicate that telomerase activity is not essential for the protective function of TERT. This telomerase activity-independent TERT function may contribute to cancer development and aging independently of telomere lengthening.
Collapse
|