1
|
Kochetov AV. Evaluation of Eukaryotic mRNA Coding Potential. Methods Mol Biol 2025; 2859:319-331. [PMID: 39436610 DOI: 10.1007/978-1-0716-4152-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
It is widely discussed that eukaryotic mRNAs can encode several functional polypeptides. Recent progress in NGS and proteomics techniques has resulted in a huge volume of information on potential alternative translation initiation sites and open reading frames (altORFs). However, these data are still incomprehensive, and the vast majority of eukaryotic mRNAs annotated in conventional databases (e.g., GenBank) contain a single ORF (CDS) encoding a protein larger than some arbitrary threshold (commonly 100 amino acid residues). Indeed, some gene functions may relate to the polypeptides encoded by unannotated altORFs, and insufficient information in nucleotide sequence databanks may limit the interpretation of genomics and transcriptomics data. However, despite the need for special experiments to predict altORFs accurately, there are some simple methods for their preliminary mapping.
Collapse
Affiliation(s)
- Alex V Kochetov
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia.
- Novosibirsk State Agrarian University, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
2
|
Ryczek N, Łyś A, Makałowska I. The Functional Meaning of 5'UTR in Protein-Coding Genes. Int J Mol Sci 2023; 24:2976. [PMID: 36769304 PMCID: PMC9917990 DOI: 10.3390/ijms24032976] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
As it is well known, messenger RNA has many regulatory regions along its sequence length. One of them is the 5' untranslated region (5'UTR), which itself contains many regulatory elements such as upstream ORFs (uORFs), internal ribosome entry sites (IRESs), microRNA binding sites, and structural components involved in the regulation of mRNA stability, pre-mRNA splicing, and translation initiation. Activation of the alternative, more upstream transcription start site leads to an extension of 5'UTR. One of the consequences of 5'UTRs extension may be head-to-head gene overlap. This review describes elements in 5'UTR of protein-coding transcripts and the functional significance of protein-coding genes 5' overlap with implications for transcription, translation, and disease.
Collapse
Affiliation(s)
| | | | - Izabela Makałowska
- Institute of Human Biology and Evolution, Adam Mickiewicz University in Poznań, Uniwersytetu Ponańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Frydas A, Wauters E, van der Zee J, Van Broeckhoven C. Uncovering the impact of noncoding variants in neurodegenerative brain diseases. Trends Genet 2021; 38:258-272. [PMID: 34535299 DOI: 10.1016/j.tig.2021.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Neurodegenerative brain diseases (NBDs) are characterized by cognitive decline and movement impairments caused by neuronal loss in different brain regions. A large fraction of the genetic heritability of NBDs is not explained by the current known mutations. Genome-wide association studies identified novel disease-risk loci, adding to the genetic basis of NBDs. Many of the associated variants reside in noncoding regions with distinct molecular functions. Genetic variation in these regions can alter functions and contribute to disease pathogenesis. Here, we discuss noncoding variants associated with NBDs. Methods for better functional interpretation of noncoding variation will expand our knowledge of the genetic architecture of NBDs and broaden the routes for therapeutic strategies.
Collapse
Affiliation(s)
- Alexandros Frydas
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Eline Wauters
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Amyloid Beta-Peptide Increases BACE1 Translation through the Phosphorylation of the Eukaryotic Initiation Factor-2 α. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2739459. [PMID: 33014268 PMCID: PMC7525306 DOI: 10.1155/2020/2739459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/02/2022]
Abstract
Alzheimer's disease (AD) is tightly linked to oxidative stress since amyloid beta-peptide (Aβ) aggregates generate free radicals. Moreover, the aggregation of Aβ is increased by oxidative stress, and the neurotoxicity induced by the oligomers and fibrils is in part mediated by free radicals. Interestingly, it has been reported that oxidative stress can also induce BACE1 transcription and expression. BACE1 is the key enzyme in the cleavage of the amyloid precursor protein to produce Aβ, and the expression of this enzyme has been previously shown to be enhanced in the brains of Alzheimer's patients. Here, we have found that BACE1 expression is increased in the hippocampi from AD patients at both the early (Braak stage II) and late (Braak stage VI) stages of the disease as studied by immunohistochemistry and western blot. To address the role of Aβ and oxidative stress in the regulation of BACE1 expression, we have analyzed the effect of subtoxic concentrations of Aβ oligomers (0.25 μM) and H2O2 (10 mM) on a human neuroblastoma cell line. Firstly, our results show that Aβ oligomers and H2O2 induce an increase of BACE1 mRNA as we studied by qPCR. Regarding BACE1 translation, it is dependent on the phosphorylation of the eukaryotic initiation factor 2α (eIF2α), since BACE1 mRNA bears a 5′UTR that avoids its translation under basal conditions. BACE1 5′UTR contains four upstream initiating codons (uAUGs), and its translation is activated when eIF2α is phosphorylated. Consistently, we have obtained that Aβ oligomers and H2O2 increase the levels of BACE1 and p-eIF2α assayed by western blot and confocal microscopy. Our results suggest that Aβ oligomers increase BACE1 translation by phosphorylating eIF2α in a process that involves oxidative stress and conforms a pathophysiological loop, where the Aβ once aggregated favors its own production continuously by the increase in BACE1 expression as observed in AD patients.
Collapse
|
5
|
Ding X, Meng S, Zhou J, Yang J, Li H, Zhou W. Translational Inhibition of α-Neurexin 2. Sci Rep 2020; 10:3403. [PMID: 32099033 PMCID: PMC7042298 DOI: 10.1038/s41598-020-60289-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
Neurexins are extensively investigated presynaptic cell-adhesion molecules which play important roles in transmitting signals and processing information at synapses that connect neurons into a vast network of cellular communications. Synaptic transmission of information is a fast and dynamic process which relies on rapid and tight regulation of synaptic protein expression. However, the mechanism underlying those regulation is still not fully understood. Therefore, we explore how the expression of NRXN2α, one of encoding genes for neurexins, is regulated at the translational level. NRXN2α transcript has a long and conserved 5'-untranslated region (5'UTR) suggestive of the rapid regulation of protein expression at the translational level. We first demonstrate that the 5'UTR has negative effects on the expression of the NRXN2α and find a critical subregion responsible for the major inhibitory function. Then we identify a particular secondary structure of G-quadruplex in the 5'UTR. Moreover, we find that the synergistic roles of G-quadruplex and upstream AUGs are responsible for most of NRXN2α-5'UTR inhibitory effects. In conclusion, we uncovered 5' UTR of neurexin2 potentially inhibits neurexin2 translation by multiple mechanisms. In addition, this study underscores the importance of direct protein quantitation in experiments rather than using mRNA as an indirect estimate of protein expression.
Collapse
Affiliation(s)
- Xiaoting Ding
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, 400014, China
| | - Shasha Meng
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, 400014, China
| | - Jiahong Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, 400014, China
| | - Juan Yang
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, 400014, China
| | - Hongmei Li
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, 400014, China.,Dermatology Department of Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, 400014, China
| | - Weihui Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
6
|
Dvorak P, Leupen S, Soucek P. Functionally Significant Features in the 5' Untranslated Region of the ABCA1 Gene and Their Comparison in Vertebrates. Cells 2019; 8:cells8060623. [PMID: 31234415 PMCID: PMC6627321 DOI: 10.3390/cells8060623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Single nucleotide polymorphisms located in 5′ untranslated regions (5′UTRs) can regulate gene expression and have clinical impact. Recognition of functionally significant sequences within 5′UTRs is crucial in next-generation sequencing applications. Furthermore, information about the behavior of 5′UTRs during gene evolution is scarce. Using the example of the ATP-binding cassette transporter A1 (ABCA1) gene (Tangier disease), we describe our algorithm for functionally significant sequence finding. 5′UTR features (upstream start and stop codons, open reading frames (ORFs), GC content, motifs, and secondary structures) were studied using freely available bioinformatics tools in 55 vertebrate orthologous genes obtained from Ensembl and UCSC. The most conserved sequences were suggested as hot spots. Exon and intron enhancers and silencers (sc35, ighg2 cgamma2, ctnt, gh-1, and fibronectin eda exon), transcription factors (TFIIA, TATA, NFAT1, NFAT4, and HOXA13), some of them cancer related, and microRNA (hsa-miR-4474-3p) were localized to these regions. An upstream ORF, overlapping with the main ORF in primates and possibly coding for a small bioactive peptide, was also detected. Moreover, we showed several features of 5′UTRs, such as GC content variation, hairpin structure conservation or 5′UTR segmentation, which are interesting from a phylogenetic point of view and can stimulate further evolutionary oriented research.
Collapse
Affiliation(s)
- Pavel Dvorak
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
| | - Sarah Leupen
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300 Pilsen, Czech Republic.
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic.
| |
Collapse
|
7
|
Guix FX, Sartório CL, Ill-Raga G. BACE1 Translation: At the Crossroads Between Alzheimer's Disease Neurodegeneration and Memory Consolidation. J Alzheimers Dis Rep 2019; 3:113-148. [PMID: 31259308 PMCID: PMC6597968 DOI: 10.3233/adr-180089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human life unfolds not only in time and space, but also in the recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered under pathological conditions such as Alzheimer’s disease, which affects millions of people worldwide. Unfortunately, no effective cure exists to prevent this disorder, the impact of which will rise alarmingly within the next decades. While Alzheimer’s disease is largely considered to be the outcome of amyloid-β (Aβ) peptide accumulation in the brain, conceiving this complex disorder strictly as the result of Aβ-neurotoxicity is perhaps a too straight-line simplification. Instead, complementary to this view, the tableau of molecular disarrangements in the Alzheimer’s disease brain may be reflecting, at least in part, a loss of function phenotype in memory processing. Here we take BACE1 translation and degradation as a gateway to study molecular mechanisms putatively involved in the transition between memory and neurodegeneration. BACE1 participates in the excision of Aβ-peptide from its precursor holoprotein, but plays a role in synaptic plasticity too. Its translation is governed by eIF2α phosphorylation: a hub integrating cellular responses to stress, but also a critical switch in memory consolidation. Paralleling these dualities, the eIF2α-kinase HRI has been shown to be a nitric oxide-dependent physiological activator of hippocampal BACE1 translation. Finally, beholding BACE1 as a representative protease active in the CNS, we venture a new perspective on the cellular basis of memory, which may incorporate neurodegeneration in itself as a drift in memory consolidating systems.
Collapse
Affiliation(s)
- Francesc X Guix
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa-CSIC, Madrid, Spain
| | - Carmem L Sartório
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gerard Ill-Raga
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
8
|
Morales-Alvarez MC, Ricardo-Silgado ML, Lemus HN, González-Devia D, Mendivil CO. Fructosuria and recurrent hypoglycemia in a patient with a novel c.1693T>A variant in the 3' untranslated region of the aldolase B gene. SAGE Open Med Case Rep 2019; 7:2050313X18823098. [PMID: 30675358 PMCID: PMC6330728 DOI: 10.1177/2050313x18823098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/13/2018] [Indexed: 11/17/2022] Open
Abstract
Hereditary fructose intolerance, caused by mutations in the ALDOB gene, is an unusual cause of hypoglycemia. ALDOB encodes the enzyme aldolase B, responsible for the hydrolysis of fructose 1-phosphate in the liver. Here, we report the case of a 33-year-old female patient who consulted due to repetitive episodes of weakness, dizziness and headache after food ingestion. An ambulatory 72-h continuous glucose monitoring revealed multiple short hypoglycemic episodes over the day. After biochemical exclusion of other endocrine causes of hypoglycemia, hereditary fructose intolerance seemed a plausible diagnosis. Repeated measurements of urinary fructose revealed pathologic fructosuria, but genetic testing for the three most common mutations in ALDOB resulted negative. We decided to perform complete Sanger sequencing of the ALDOB gene and encountered a variant consisting of a T>A substitution in position 1963 of the ALDOB transcript (c.1693T>A). This position is located within the 3′ untranslated region of exon 9, 515 nucleotides downstream the stop codon. After complete withdrawal of dietary fructose and sucrose, the patient presented no new hypoglycemic episodes.
Collapse
Affiliation(s)
| | | | | | - Deyanira González-Devia
- School of Medicine, Universidad de los Andes, Bogotá, Colombia.,Section of Endocrinology, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Carlos O Mendivil
- School of Medicine, Universidad de los Andes, Bogotá, Colombia.,Section of Endocrinology, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| |
Collapse
|
9
|
Lichtenthaler SF, Lemberg MK, Fluhrer R. Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments. EMBO J 2018; 37:e99456. [PMID: 29976761 PMCID: PMC6068445 DOI: 10.15252/embj.201899456] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/05/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Proteolytic removal of membrane protein ectodomains (ectodomain shedding) is a post-translational modification that controls levels and function of hundreds of membrane proteins. The contributing proteases, referred to as sheddases, act as important molecular switches in processes ranging from signaling to cell adhesion. When deregulated, ectodomain shedding is linked to pathologies such as inflammation and Alzheimer's disease. While proteases of the "a disintegrin and metalloprotease" (ADAM) and "beta-site APP cleaving enzyme" (BACE) families are widely considered as sheddases, in recent years a much broader range of proteases, including intramembrane and soluble proteases, were shown to catalyze similar cleavage reactions. This review demonstrates that shedding is a fundamental process in cell biology and discusses the current understanding of sheddases and their substrates, molecular mechanisms and cellular localizations, as well as physiological functions of protein ectodomain shedding. Moreover, we provide an operational definition of shedding and highlight recent conceptual advances in the field. While new developments in proteomics facilitate substrate discovery, we expect that shedding is not a rare exception, but rather the rule for many membrane proteins, and that many more interesting shedding functions await discovery.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, School of Medicine, and Institute for Advanced Study, Technical University Munich, Munich, Germany
- Munich Center for Systems Neurology (SyNergy), Munich, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Regina Fluhrer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Biomedizinisches Centrum (BMC), Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
10
|
Gazon H, Barbeau B, Mesnard JM, Peloponese JM. Hijacking of the AP-1 Signaling Pathway during Development of ATL. Front Microbiol 2018; 8:2686. [PMID: 29379481 PMCID: PMC5775265 DOI: 10.3389/fmicb.2017.02686] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of a fatal malignancy known as adult T-cell leukemia (ATL). One way to address the pathology of the disease lies on conducting research with a molecular approach. In addition to the analysis of ATL-relevant signaling pathways, understanding the regulation of important and relevant transcription factors allows researchers to reach this fundamental objective. HTLV-1 encodes for two oncoproteins, Tax and HTLV-1 basic leucine-zipper factor, which play significant roles in the cellular transformation and the activation of the host's immune responses. Activating protein-1 (AP-1) transcription factor has been linked to cancer and neoplastic transformation ever since the first representative members of the Jun and Fos gene family were cloned and shown to be cellular homologs of viral oncogenes. AP-1 is a dimeric transcription factor composed of proteins belonging to the Jun (c-Jun, JunB, and JunD), Fos (c-Fos, FosB, Fra1, and Fra2), and activating transcription factor protein families. Activation of AP-1 transcription factor family by different stimuli, such as inflammatory cytokines, stress inducers, or pathogens, results in innate and adaptive immunity. AP-1 is also involved in various cellular events including differentiation, proliferation, survival, and apoptosis. Deregulated expression of AP-1 transcription factors is implicated in various lymphomas such as classical Hodgkin lymphomas, anaplastic large cell lymphomas, diffuse large B-cell lymphomas, and adult T-cell leukemia. Here, we review the current thinking behind deregulation of the AP-1 pathway and its contribution to HTLV-induced cellular transformation.
Collapse
Affiliation(s)
- Hélène Gazon
- Belgium Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Benoit Barbeau
- Département des Sciences Biologiques and Centre de Recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Jean-Marie Peloponese
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| |
Collapse
|
11
|
Alzheimer's disease pathology and the unfolded protein response: prospective pathways and therapeutic targets. Behav Pharmacol 2018; 28:161-178. [PMID: 28252521 DOI: 10.1097/fbp.0000000000000299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many vital interdependent cellular functions including proteostasis, lipogenesis and Ca homeostasis are executed by the endoplasmic reticulum (ER). Exogenous insults can impair ER performance: this must be rapidly corrected or cell death will ensue. Protective adaptations can boost the functional capacity of the ER and form the basis of the unfolded protein response (UPR). Activated in response to the accumulation of misfolded proteins, the UPR can halt protein translation while increasing protein-handling chaperones and the degradation of erroneous proteins through a conserved three-tier molecular cascade. However, prolonged activation of the UPR can result in the maladaptation of the system, resulting in the activation of inflammatory and apoptotic effectors. Recently, UPR and its involvement in neurodegenerative disease has attracted much interest and numerous potentially 'drugable' points of crosstalk are now emerging. Here, we summarize the functions of the ER and UPR, and highlight evidence for its potential role in the pathogenesis of Alzheimer's disease, before discussing several key targets with therapeutic potential.
Collapse
|
12
|
Zeng J, Chen L, Wang Z, Chen Q, Fan Z, Jiang H, Wu Y, Ren L, Chen J, Li T, Song W. Marginal vitamin A deficiency facilitates Alzheimer's pathogenesis. Acta Neuropathol 2017; 133:967-982. [PMID: 28130638 DOI: 10.1007/s00401-017-1669-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Deposition of amyloid β protein (Aβ) to form neuritic plaques in the brain is the unique pathological hallmark of Alzheimer's disease (AD). Aβ is derived from amyloid β precursor protein (APP) by β- and γ-secretase cleavages and turned over by glia in the central nervous system (CNS). Vitamin A deficiency (VAD) has been shown to affect cognitive functions. Marginal vitamin A deficiency (MVAD) is a serious and widespread public health problem among pregnant women and children in developing countries. However, the role of MVAD in the pathogenesis of AD remains elusive. Our study showed that MVAD is approximately twofold more prevalent than VAD in the elderly, and increased cognitive decline is positively correlated with lower VA levels. We found that MVAD, mostly prenatal MVAD, promotes beta-site APP cleaving enzyme 1 (BACE1)-mediated Aβ production and neuritic plaque formation, and significantly exacerbates memory deficits in AD model mice. Supplementing a therapeutic dose of VA rescued the MVAD-induced memory deficits. Taken together, our study demonstrates that MVAD facilitates AD pathogenesis and VA supplementation improves cognitive deficits. These results suggest that VA supplementation might be a potential approach for AD prevention and treatment.
Collapse
Affiliation(s)
- Jiaying Zeng
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Li Chen
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Qian Chen
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhen Fan
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Hongpeng Jiang
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yili Wu
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Lan Ren
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jie Chen
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Tingyu Li
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Weihong Song
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
13
|
Shi Z, Hong Y, Zhang K, Wang J, Zheng L, Zhang Z, Hu Z, Han X, Han Y, Chen T, Yao Q, Cui H, Hong W. BAG-1M co-activates BACE1 transcription through NF-κB and accelerates Aβ production and memory deficit in Alzheimer's disease mouse model. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2398-2407. [PMID: 28502705 DOI: 10.1016/j.bbadis.2017.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
Accumulation of amyloid β protein (Aβ)-containing neuritic plaques in the brain is a neuropathological feature of Alzheimer's disease (AD). The β-site APP-cleaving enzyme 1 (BACE1) is essential for Aβ generation and dysregulation of BACE1 expression may lead to AD pathogenesis. Bcl-2-associated athanogen 1M (BAG-1M), initially identified as an anti-apoptotic protein, has also been found to be highly expressed in the same neurons that contain intracellular amyloid in the hippocampus of AD patient. In this report, we found that over-expression of BAG-1M enhances BACE1-mediated cleavage of amyloid precursor protein (APP) and Aβ production by up-regulating BACE1 gene transcription. The regulation of BACE1 transcription by BAG-1M was dependent on NF-κB, as BAG-1M complexes NF-κB at the promoter of BACE1 gene and co-activates NF-κB-facilitated BACE1 transcription. Moreover, expression of BAG-1M by lentiviral vector in the hippocampus of AD transgenic model mice promotes Aβ generation and formation of neuritic plaque, and subsequently accelerates memory deficits of the mice. These results provide evidence for an emerging role of BAG-1M in the regulation of BACE1 expression and AD pathogenesis and that targeting the BAG-1M-NF-κB complex may provide a mechanism for inhibiting Aβ production and plaque formation.
Collapse
Affiliation(s)
- Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuheng Hong
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jingzhao Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lina Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhimei Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaohui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yawei Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ting Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qingbin Yao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hongmei Cui
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
14
|
Xiang Y, Meng S, Wang J, Li S, Liu J, Li H, Li T, Song W, Zhou W. Two novel DNA motifs are essential for BACE1 gene transcription. Sci Rep 2014; 4:6864. [PMID: 25359283 PMCID: PMC4215305 DOI: 10.1038/srep06864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/10/2014] [Indexed: 12/11/2022] Open
Abstract
BACE1 gene encodes for β-Site amyloid β precursor protein (APP)-cleaving enzyme1, which is required for generating amyloid β protein(Aβ). Deposition of Aβ in brain plays an essential role in Alzheimer's Disease (AD) pathogenesis. BACE1 gene has a tissue-specific expression pattern and its expression is tightly regulated at transcriptional level. Core promoter is a minimal DNA sequence to direct transcription initiation and serves as a converging platform for the vast network of regulatory events. Here we identified the core promoter of human BACE1 gene, which is a 71 nucleotides region absent of typical known core promoter elements and is sufficient to initiate a basal transcription. Two novel DNA motifs, designated TCE1 and TCE2, were found to be involved in activating the transcription of human BACE1 gene in a synergistic way. Two single nucleotide mutations in these motifs completely abolished the promoter activity. In conclusion, our studies have demonstrated that novel DNA motif TCE1 and TCE2 in human BACE1 gene promoter are two essential cis-acting elements for BACE1 gene transcription. Studies on how these two motifs being regulated by different stimuli could provide insights into the molecular mechanisms underlying AD pathogenesis and pharmaceutical potentials of targeting these motifs for AD treatment.
Collapse
Affiliation(s)
- Yan Xiang
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing 400014, China
| | - Shasha Meng
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing 400014, China
| | - Jinfeng Wang
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing 400014, China
| | - Songyang Li
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing 400014, China
| | - Jingru Liu
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing 400014, China
| | - Hongmei Li
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing 400014, China
| | - Tingyu Li
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing 400014, China
| | - Weihong Song
- 1] Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing 400014, China [2] Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada
| | - Weihui Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing 400014, China
| |
Collapse
|
15
|
Tsotakos N, Silveyra P, Lin Z, Thomas N, Vaid M, Floros J. Regulation of translation by upstream translation initiation codons of surfactant protein A1 splice variants. Am J Physiol Lung Cell Mol Physiol 2014; 308:L58-75. [PMID: 25326576 DOI: 10.1152/ajplung.00058.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Surfactant protein A (SP-A), a molecule with roles in lung innate immunity and surfactant-related functions, is encoded by two genes in humans: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The mRNAs from these genes differ in their 5'-untranslated regions (5'-UTR) due to differential splicing. The 5'-UTR variant ACD' is exclusively found in transcripts of SP-A1, but not in those of SP-A2. Its unique exon C contains two upstream AUG codons (uAUGs) that may affect SP-A1 translation efficiency. The first uAUG (u1) is in frame with the primary start codon (p), but the second one (u2) is not. The purpose of this study was to assess the impact of uAUGs on SP-A1 expression. We employed RT-qPCR to determine the presence of exon C-containing SP-A1 transcripts in human RNA samples. We also used in vitro techniques including mutagenesis, reporter assays, and toeprinting analysis, as well as in silico analyses to determine the role of uAUGs. Exon C-containing mRNA is present in most human lung tissue samples and its expression can, under certain conditions, be regulated by factors such as dexamethasone or endotoxin. Mutating uAUGs resulted in increased luciferase activity. The mature protein size was not affected by the uAUGs, as shown by a combination of toeprint and in silico analysis for Kozak sequence, secondary structure, and signal peptide and in vitro translation in the presence of microsomes. In conclusion, alternative splicing may introduce uAUGs in SP-A1 transcripts, which in turn negatively affect SP-A1 translation, possibly affecting SP-A1/SP-A2 ratio, with potential for clinical implication.
Collapse
Affiliation(s)
- Nikolaos Tsotakos
- Center for Host Defense, Inflammation and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Patricia Silveyra
- Center for Host Defense, Inflammation and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Zhenwu Lin
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Neal Thomas
- Center for Host Defense, Inflammation and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - Mudit Vaid
- Center for Host Defense, Inflammation and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Joanna Floros
- Center for Host Defense, Inflammation and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
16
|
Zhang S, Zis O, Ly PTT, Wu Y, Zhang S, Zhang M, Cai F, Bucala R, Shyu WC, Song W. Down-regulation of MIF by NFκB under hypoxia accelerated neuronal loss during stroke. FASEB J 2014; 28:4394-407. [PMID: 24970391 DOI: 10.1096/fj.14-253625] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuronal apoptosis is one of the major causes of poststroke neurological deficits. Inflammation during the acute phase of stroke results in nuclear translocation of NFκB in affected cells in the infarct area. Macrophage migration inhibitory factor (MIF) promotes cardiomyocyte survival in mice following heart ischemia. However, the role of MIF during stroke remains limited. In this study, we showed that MIF expression is down-regulated by 0.75 ± 0.10-fold of the control in the infarct area in the mouse brains. Two functional cis-acing NFκB response elements were identified in the human MIF promoter. Dual activation of hypoxia and NFκB signaling resulted in significant reduction of MIF promoter activity to 0.86 ± 0.01-fold of the control. Furthermore, MIF reduced caspase-3 activation and protected neurons from oxidative stress- and in vitro ischemia/reperfusion-induced apoptosis. H2O2 significantly induced cell death with 12.81 ± 0.58-fold increase of TUNEL-positive cells, and overexpression of MIF blocked the H2O2-induced cell death. Disruption of the MIF gene in MIF-knockout mice resulted in caspase-3 activation, neuronal loss, and increased infarct development during stroke in vivo. The infarct volume was increased from 6.51 ± 0.74% in the wild-type mice to 9.07 ± 0.66% in the MIF-knockout mice. Our study demonstrates that MIF exerts a neuronal protective effect and that down-regulation of MIF by NFκB-mediated signaling under hypoxia accelerates neuronal loss during stroke. Our results suggest that MIF is an important molecule for preserving a longer time window for stroke treatment, and strategies to maintain MIF expression at physiological level could have beneficial effects for stroke patients.
Collapse
Affiliation(s)
- Si Zhang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Odysseus Zis
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip T T Ly
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yili Wu
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shuting Zhang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mingming Zhang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard Bucala
- Department of Medicine and Department of Pathology, Yale University, New Haven, Connecticut, USA; and
| | - Woei-Cherng Shyu
- Department of Neurology, Center for Neuropsychiatry, and Graduate Institute of Immunology, China Medical University and Hospital, Taichung, Taiwan
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
17
|
Deng Y, Wang Z, Wang R, Zhang X, Zhang S, Wu Y, Staufenbiel M, Cai F, Song W. Amyloid-β protein (Aβ) Glu11 is the major β-secretase site of β-site amyloid-β precursor protein-cleaving enzyme 1(BACE1), and shifting the cleavage site to Aβ Asp1 contributes to Alzheimer pathogenesis. Eur J Neurosci 2013; 37:1962-9. [PMID: 23773065 DOI: 10.1111/ejn.12235] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 12/22/2022]
Abstract
Cleavage of amyloid-β precursor protein (APP) at the Asp1 β-secretase site of the amyloid-β protein (Aβ) domain by β-site Aβ precursor protein-cleaving enzyme 1 (BACE1) is required for the generation of Aβ, a central component of neuritic plaques in the Alzheimer's disease (AD) brain. In this study, we found that Aβ Glu11 is the major β-secretase site for cleavage of APP by BACE1 to generate soluble secreted APP (sAPPβ)(606) and the C-terminal membrane-bound fragment (CTF)β product C89. Cleavage of C89 by γ-secretase resulted in truncated Aβ generation in a non-amyloidogenic pathway. A familial AD-associated Swedish APP mutation adjacent to Aβ Asp1 shifted the major APP β-secretase cleavage site from Aβ Glu11 to Asp1, resulting in significant increases in sAPPβ596 and CTFβ C99 generation and the C99/89 ratio, in turn leading to increased Aβ production in cultured cells in vitro and transgenic AD model mouse brains in vivo. Furthermore, increased BACE1 expression facilitated APP being processed by the β-secretase processing pathway rather than the α-secretase pathway, leading to more Aβ production. Our results suggest that potentiating BACE1 cleavage of APP at both the Asp1 and Glu11 sites, or shifting the cleavage from the Glu11 site to the Asp1 site, could result in increased Aβ production and facilitate neuritic plaque formation. Our study provides new insights into how alteration of BACE1 expression and β-secretase cleavage site selection could contribute to Alzheimer pathogenesis and the pharmaceutical potential of modulating BACE1 expression and its cleavage site selection.
Collapse
Affiliation(s)
- Yu Deng
- Department of Psychiatry, Townsend Family Laboratories, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu X, Wang Z, Wu Y, Wang J, Song W. BACE2 degradation mediated by the macroautophagy-lysosome pathway. Eur J Neurosci 2013; 37:1970-7. [PMID: 23773066 DOI: 10.1111/ejn.12204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/14/2013] [Accepted: 02/28/2013] [Indexed: 12/25/2022]
Abstract
Neuritic plaque is the pathological hallmark in Alzheimer's disease (AD). Amyloid-β protein (Aβ), the central component of neuritic plaques, is generated from amyloid-β precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. β-site APP cleaving enzyme 2 (BACE2), a homolog of BACE1, functions differently from BACE1 in APP processing. BACE1 is the β-secretase essential for Aβ production, and BACE2, a θ-secretase, cleaves APP within the Aβ domain, preventing Aβ production. Elucidation of the mechanism underlying BACE2 degradation is important for defining its biological features and its potential role in Alzheimer's disease drug development. In this report we first showed that the half-life of BACE2 is approximately 20 h. Lysosomal inhibition increased BACE2 protein levels whereas proteasomal inhibition had no effect on BACE2 protein expression. Furthermore, we identified that macroautophagy mediated BACE2 degradation. Finally, we showed that lysosomal inhibition increased BACE2 cleavage of APP. Taken together, our in vitro study showed that BACE2 is degraded through the macrophagy-lysosome pathway and that lysosomal inhibition affects BACE2 processing of APP. Modulation of BACE2 degradation via the lysosomal pathway could be a new target for AD drug development.
Collapse
Affiliation(s)
- Xi Liu
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
19
|
Long JM, Ray B, Lahiri DK. MicroRNA-339-5p down-regulates protein expression of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) in human primary brain cultures and is reduced in brain tissue specimens of Alzheimer disease subjects. J Biol Chem 2013; 289:5184-98. [PMID: 24352696 DOI: 10.1074/jbc.m113.518241] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alzheimer disease (AD) results, in part, from the excess accumulation of the amyloid-β (Aβ) peptide as neuritic plaques in the brain. The short Aβ peptide is derived from the large transmembrane Aβ precursor protein (APP). The rate-limiting step in the production of Aβ from APP is mediated by the β-site APP-cleaving enzyme 1 (BACE1). Dysregulation of BACE1 levels leading to excess Aβ deposition is implicated in sporadic AD. Thus, elucidating the full complement of regulatory pathways that control BACE1 expression is key to identifying novel drug targets central to the Aβ-generating process. MicroRNAs (miRNAs) are expected to participate in this molecular network. Here, we identified a known miRNA, miR-339-5p, as a key contributor to this regulatory network. Two distinct miR-339-5p target sites were predicted in the BACE1 3'-UTR by in silico analyses. Co-transfection of miR-339-5p with a BACE1 3'-UTR reporter construct resulted in significant reduction in reporter expression. Mutation of both target sites eliminated this effect. Delivery of the miR-339-5p mimic also significantly inhibited expression of BACE1 protein in human glioblastoma cells and human primary brain cultures. Delivery of target protectors designed against the miR-339-5p BACE1 3'-UTR target sites in primary human brain cultures significantly elevated BACE1 expression. Finally, miR-339-5p levels were found to be significantly reduced in brain specimens isolated from AD patients as compared with age-matched controls. Therefore, miR-339-5p regulates BACE1 expression in human brain cells and is most likely dysregulated in at least a subset of AD patients making this miRNA a novel drug target.
Collapse
Affiliation(s)
- Justin M Long
- From the Laboratory of Molecular Neurogenetics, Institute of Psychiatric Research, Departments of Psychiatry and
| | | | | |
Collapse
|
20
|
Wang K, Liu S, Wang J, Wu Y, Cai F, Song W. Transcriptional regulation of human USP24 gene expression by NF-kappa B. J Neurochem 2013; 128:818-28. [PMID: 24286619 DOI: 10.1111/jnc.12626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 01/10/2023]
Abstract
Impairment of the ubiquitin proteasome pathway is believed to play an important role in the pathogenesis of Parkinson's disease. This process is carried out under tight regulation by deubiquitinating enzymes. Genetic linkage studies indicated that the region of the human ubiquitin-specific protease 24 (USP24) gene is significantly correlated with Parkinson's disease. In this study, we cloned a 1648 bp 5' flanking region of the human USP24 gene coding sequence and a series of nested deletions into the pGL3-Basic vector. We analyzed promoter activities of these regions with a luciferase-based reporter assay system. A 64-bp region was identified to contain the transcription initiation site and a minimum promoter sequence for transcriptional activation of the USP24 gene expression. Expression of USP24 is controlled by a TATA-box-less promoter with several putative cis-acting elements. Transcriptional activation and gel-shift assay demonstrated that the USP24 gene promoter contains a functional NFκB-binding site. Over-expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and tumor-necrosis factor alpha (TNFα) treatment significantly increased the USP24 promoter activity, mRNA expression and protein level in human HEK293 cells, mouse N2a cells and human neuroblastoma SH-SY5Y cells. Deletion and mutation of the binding site abolished the regulatory effect of NFκB on human USP24 gene transcription. These results suggested that USP24 expression is tightly regulated at its transcription level and NFκB plays an important role in this process.
Collapse
Affiliation(s)
- Ke Wang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Wethmar K, Barbosa-Silva A, Andrade-Navarro MA, Leutz A. uORFdb--a comprehensive literature database on eukaryotic uORF biology. Nucleic Acids Res 2013; 42:D60-7. [PMID: 24163100 PMCID: PMC3964959 DOI: 10.1093/nar/gkt952] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Approximately half of all human transcripts contain at least one upstream translational initiation site that precedes the main coding sequence (CDS) and gives rise to an upstream open reading frame (uORF). We generated uORFdb, publicly available at http://cbdm.mdc-berlin.de/tools/uorfdb, to serve as a comprehensive literature database on eukaryotic uORF biology. Upstream ORFs affect downstream translation by interfering with the unrestrained progression of ribosomes across the transcript leader sequence. Although the first uORF-related translational activity was observed >30 years ago, and an increasing number of studies link defective uORF-mediated translational control to the development of human diseases, the features that determine uORF-mediated regulation of downstream translation are not well understood. The uORFdb was manually curated from all uORF-related literature listed at the PubMed database. It categorizes individual publications by a variety of denominators including taxon, gene and type of study. Furthermore, the database can be filtered for multiple structural and functional uORF-related properties to allow convenient and targeted access to the complex field of eukaryotic uORF biology.
Collapse
Affiliation(s)
- Klaus Wethmar
- Max Delbrück Center for Molecular Medicine (MDC), Cell Differentiation and Tumorigenesis, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany, Hematology, Oncology and Tumor Immunology, Helios Klinikum Berlin-Buch, Schwanebecker Chaussee 50, D-13125 Berlin, Germany, Max Delbrück Center for Molecular Medicine (MDC), Computational Biology and Data Mining, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany and Humoldt-University, Department of Biology, Invalidenstrasse 43, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
22
|
Medina M, Avila J. New insights into the role of glycogen synthase kinase-3 in Alzheimer's disease. Expert Opin Ther Targets 2013; 18:69-77. [DOI: 10.1517/14728222.2013.843670] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Abstract
Upstream open reading frames (uORFs) are major gene expression regulatory elements. In many eukaryotic mRNAs, one or more uORFs precede the initiation codon of the main coding region. Indeed, several studies have revealed that almost half of human transcripts present uORFs. Very interesting examples have shown that these uORFs can impact gene expression of the downstream main ORF by triggering mRNA decay or by regulating translation. Also, evidence from recent genetic and bioinformatic studies implicates disturbed uORF-mediated translational control in the etiology of many human diseases, including malignancies, metabolic or neurologic disorders, and inherited syndromes. In this review, we will briefly present the mechanisms through which uORFs regulate gene expression and how they can impact on the organism's response to different cell stress conditions. Then, we will emphasize the importance of these structures by illustrating, with specific examples, how disturbed uORF-mediated translational control can be involved in the etiology of human diseases, giving special importance to genotype-phenotype correlations. Identifying and studying more cases of uORF-altering mutations will help us to understand and establish genotype-phenotype associations, leading to advancements in diagnosis, prognosis, and treatment of many human disorders.
Collapse
Affiliation(s)
- Cristina Barbosa
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel Peixeiro
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
24
|
Occhi G, Regazzo D, Trivellin G, Boaretto F, Ciato D, Bobisse S, Ferasin S, Cetani F, Pardi E, Korbonits M, Pellegata NS, Sidarovich V, Quattrone A, Opocher G, Mantero F, Scaroni C. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype. PLoS Genet 2013; 9:e1003350. [PMID: 23555276 PMCID: PMC3605397 DOI: 10.1371/journal.pgen.1003350] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022] Open
Abstract
The CDKN1B gene encodes the cyclin-dependent kinase inhibitor p27KIP1, an atypical tumor suppressor playing a key role in cell cycle regulation, cell proliferation, and differentiation. Impaired p27KIP1 expression and/or localization are often observed in tumor cells, further confirming its central role in regulating the cell cycle. Recently, germline mutations in CDKN1B have been associated with the inherited multiple endocrine neoplasia syndrome type 4, an autosomal dominant syndrome characterized by varying combinations of tumors affecting at least two endocrine organs. In this study we identified a 4-bp deletion in a highly conserved regulatory upstream ORF (uORF) in the 5′UTR of the CDKN1B gene in a patient with a pituitary adenoma and a well-differentiated pancreatic neoplasm. This deletion causes the shift of the uORF termination codon with the consequent lengthening of the uORF–encoded peptide and the drastic shortening of the intercistronic space. Our data on the immunohistochemical analysis of the patient's pancreatic lesion, functional studies based on dual-luciferase assays, site-directed mutagenesis, and on polysome profiling show a negative influence of this deletion on the translation reinitiation at the CDKN1B starting site, with a consequent reduction in p27KIP1 expression. Our findings demonstrate that, in addition to the previously described mechanisms leading to reduced p27KIP1 activity, such as degradation via the ubiquitin/proteasome pathway or non-covalent sequestration, p27KIP1 activity can also be modulated by an uORF and mutations affecting uORF could change p27KIP1 expression. This study adds the CDKN1B gene to the short list of genes for which mutations that either create, delete, or severely modify their regulatory uORFs have been associated with human diseases. Gene expression can be modulated at different steps on the way from DNA to protein including control of transcription, translation, and post-translational modifications. An abnormality in the regulation of mRNA and protein expression is a hallmark of many human diseases, including cancer. In some eukaryotic genes translation can be influenced by small DNA sequences termed upstream open reading frames (uORFs). These elements located upstream to the gene start codon may either negatively influence the ability of the translational machinery to reinitiate translation of the main protein or, much less frequently, stimulate protein translation by enabling the ribosomes to bypass cis-acting inhibitory elements. CDKN1B, which encodes the cell cycle inhibitor p27KIP1, includes an uORF in its 5′UTR sequence. p27KIP1 expression is often reduced in cancer, and germline mutations have been identified in CDKN1B in patients affected with a syndrome (MEN4) characterized by varying combinations of tumors in endocrine glands. Here we show that a small deletion in the uORF upstream to CDKN1B reduces translation reinitiation efficiency, leading to underexpression of p27KIP1 and coinciding with tumorigenesis. This study describes a novel mechanism by which p27KIP1 could be underexpressed in human tumors. In addition, our data provide a new insight to the unique pathogenic potential of uORFs in human diseases.
Collapse
Affiliation(s)
- Gianluca Occhi
- Department of Medicine, Endocrinology Unit, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ly PTT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, Zhang M, Yang Y, Cai F, Woodgett J, Song W. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest 2012. [PMID: 23202730 DOI: 10.1172/jci64516] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Deposition of amyloid β protein (Aβ) to form neuritic plaques in the brain is the pathological hallmark of Alzheimer's disease (AD). Aβ is generated from sequential cleavages of the β-amyloid precursor protein (APP) by the β- and γ-secretases, and β-site APP-cleaving enzyme 1 (BACE1) is the β-secretase essential for Aβ generation. Previous studies have indicated that glycogen synthase kinase 3 (GSK3) may play a role in APP processing by modulating γ-secretase activity, thereby facilitating Aβ production. There are two highly conserved isoforms of GSK3: GSK3α and GSK3β. We now report that specific inhibition of GSK3β, but not GSK3α, reduced BACE1-mediated cleavage of APP and Aβ production by decreasing BACE1 gene transcription and expression. The regulation of BACE1 gene expression by GSK3β was dependent on NF-κB signaling. Inhibition of GSK3 signaling markedly reduced Aβ deposition and neuritic plaque formation, and rescued memory deficits in the double transgenic AD model mice. These data provide evidence for regulation of BACE1 expression and AD pathogenesis by GSK3β and that inhibition of GSK3 signaling can reduce Aβ neuropathology and alleviate memory deficits in AD model mice. Our study suggests that interventions that specifically target the β-isoform of GSK3 may be a safe and effective approach for treating AD.
Collapse
Affiliation(s)
- Philip T T Ly
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Traumatic brain injury (TBI) is one of the most robust environmental risk factors for Alzheimer's disease (AD). Compelling evidence is accumulating that a single event of TBI is associated with increased levels of Aβ. However, the underlying molecular mechanisms remain unknown. We report here that the BACE1 interacting protein, GGA3, is depleted while BACE1 levels increase in the acute phase after injury (48 h) in a mouse model of TBI. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3-null mice. We next found that head trauma potentiates BACE1 elevation in GGA3-null mice in the acute phase after TBI, and discovered that GGA1, a GGA3 homolog, is a novel caspase-3 substrate depleted at 48 h after TBI. Moreover, GGA1 silencing potentiates BACE1 elevation induced by GGA3 deletion in neurons in vitro, indicating that GGA1 and GGA3 synergistically regulate BACE1. Accordingly, we found that levels of both GGA1 and GGA3 are depleted while BACE1 levels are increased in a series of postmortem AD brains. Finally, we show that GGA3 haploinsufficiency results in sustained elevation of BACE1 and Aβ levels while GGA1 levels are restored in the subacute phase (7 d) after injury. In conclusion, our data indicate that depletion of GGA1 and GGA3 engender a rapid and robust elevation of BACE1 in the acute phase after injury. However, the efficient disposal of the acutely accumulated BACE1 solely depends on GGA3 levels in the subacute phase of injury.
Collapse
|
27
|
Wu Y, Song W. Regulation of RCAN1 translation and its role in oxidative stress-induced apoptosis. FASEB J 2012; 27:208-21. [PMID: 23038757 DOI: 10.1096/fj.12-213124] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abnormal expression of regulator of calcineurin 1 (RCAN1) has been implicated in Alzheimer's disease (AD) and Down's syndrome (DS). There are two major isoforms of RCAN1, isoforms 1 and 4. RCAN1 isoform 1 is predominantly expressed in the brain, particularly in neurons. In this report, we showed that there are two translation start codons in RCAN1 exon 1 serving as a functional translation initiation site to generate a longer 41-kDa isoform 1 (RCAN1.1L) and a shorter 31-kDa isoform 1 (RCAN1.1S). The first translation initiation site has higher translation efficiency than the downstream second one, and the translation initiation of two AUG sites is by a Cap-dependent mechanism. Short-term expression of RCAN1.1L protected SH-SY5Y cells from oxidative stress-induced apoptosis by inhibiting caspase-3 activation. However, long-term accumulation of RCAN1.1L in SH-SY5Y cells promoted oxidative stress-induced apoptosis via caspase-3 activation, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that the apoptosis ratio was increased to 499.03 ± 47.56% in SH-1.1L cells compared with 283.93 ± 28.66% in control cells. Furthermore, we found that RCAN1.1L is significantly elevated in the AD brains and patients with DS. RCAN1.1S is expressed at a low level in both human cells and brain tissues. Our results defined the regulatory mechanism underlying RCAN1 expression and the roles of RCAN1.1 in oxidative stress-induced neurodegeneration in AD and DS pathogenesis.
Collapse
Affiliation(s)
- Yili Wu
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
28
|
Kochetov AV, Merkulova TI, Merkulov VM. Possible link between the synthesis of GR alpha isoforms and eIF2 alpha phosphorylation state. Med Hypotheses 2012; 79:709-12. [PMID: 22981593 DOI: 10.1016/j.mehy.2012.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/23/2012] [Indexed: 01/30/2023]
Abstract
Glucocorticoid hormones regulate numerous physiological processes and are widely used in the treatment of inflammation, autoimmune disease and cancer. Glucocorticoid receptor (GR) - a transcription factor, derived from a single gene, is responsible for the diverse actions of glucocorticoids. It was shown that GR gene gives rise a variety of mRNA species that produces several protein isoforms, among them GRα is the most abundant. In addition, GRα N-end-truncated protein isoforms (A, B, C, D) are generated by translational mechanisms. As it was found that the ratio between the translational isoforms amounts varied in different tissues and cell lines and distinct isoforms could control transcription of different sets of genes, molecular mechanisms underlining the synthesis of translational GRα isoforms are of great interest. It was considered that GRα isoform A is translated by a conventional linear scanning, isoform B is translated by leaky scanning, isoform C is translated by leaky scanning and ribosomal shunt whereas translation of isoform D occurs through ribosomal shunt only. Since the sequence organization of GRα mRNA strongly resembles the cases of ATF4 or ATF5, the well-known examples of reinitiation-dependent synthesis of functional isoforms, we hypothesize that translation of isoform C could be controlled by reinitiation mechanism also. If this assumption is correct, the ratio between GRα N-end isoforms could depend on the eIF2α phosphorylation state that could provide an additional connection between the GR and cellular stresses. We believe that this hypothesis could be of interest to plan more robust experiments or for better interpretation of available data.
Collapse
|
29
|
WANG T, SUN XL. Molecular Regulaion of BACE1 and Its Function at The Early Onset of Alzheimer′s Disease. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2012.00217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Dislich B, Lichtenthaler SF. The Membrane-Bound Aspartyl Protease BACE1: Molecular and Functional Properties in Alzheimer's Disease and Beyond. Front Physiol 2012; 3:8. [PMID: 22363289 PMCID: PMC3281277 DOI: 10.3389/fphys.2012.00008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 12/31/2022] Open
Abstract
The β-site APP cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease involved in Alzheimer’s disease (AD) pathogenesis and in myelination. BACE1 initiates the generation of the pathogenic amyloid β-peptide, which makes BACE1 a major drug target for AD. BACE1 also cleaves and activates neuregulin 1, thereby contributing to postnatal myelination, in particular in the peripheral nervous system. Additional proteins are also cleaved by BACE1, but less is known about the physiological consequences of their cleavage. Recently, new phenotypes were described in BACE1-deficient mice. Although it remains unclear through which BACE1 substrates they are mediated, the phenotypes suggest a versatile role of this protease for diverse physiological processes. This review summarizes the enzymatic and cellular properties of BACE1 as well as its regulation by lipids, by transcriptional, and by translational mechanisms. The main focus will be on the recent progress in understanding BACE1 function and its implication for potential mechanism-based side effects upon therapeutic inhibition.
Collapse
Affiliation(s)
- Bastian Dislich
- German Center for Neurodegenerative Diseases (DZNE) Munich, Germany
| | | |
Collapse
|
31
|
Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer's disease. Int J Neuropsychopharmacol 2012; 15:77-90. [PMID: 21329555 DOI: 10.1017/s1461145711000149] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Elevated levels of β-site APP cleaving enzyme 1 (BACE1) were found in the brain of some sporadic Alzheimer's disease (AD) patients; however, the underlying mechanism is unknown. BACE1 cleaves β-amyloid precursor protein (APP) to generate amyloid β protein (Aβ), a central component of neuritic plaques in AD brains. Nuclear factor-kappa B (NF-κB) signalling plays an important role in gene regulation and is implicated in inflammation, oxidative stress and apoptosis. In this report we found that both BACE1 and NF-κB p65 levels were significantly increased in the brains of AD patients. Two functional NF-κB-binding elements were identified in the human BACE1 promoter region. We found that NF-κB p65 expression resulted in increased BACE1 promoter activity and BACE1 transcription, while disruption of NF-κB p65 decreased BACE1 gene expression in p65 knockout (RelA-knockout) cells. In addition, NF-κB p65 expression leads to up-regulated β-secretase cleavage and Aβ production, while non-steroidal anti-inflammatory drugs (NSAIDs) inhibited BACE1 transcriptional activation induced by strong NF-κB activator tumour necrosis factor-alpha (TNF-α). Taken together, our results clearly demonstrate that NF-κB signalling facilitates BACE1 gene expression and APP processing, and increased BACE1 expression mediated by NF-κB signalling in the brain could be one of the novel molecular mechanisms underlying the development of AD in some sporadic cases. Furthermore, NSAIDs could block the inflammation-induced BACE1 transcription and Aβ production. Our study suggests that inhibition of NF-κB-mediated BACE1 expression may be a valuable drug target for AD therapy.
Collapse
|
32
|
Stucki M, Coelho D, Suormala T, Burda P, Fowler B, Baumgartner MR. Molecular mechanisms leading to three different phenotypes in the cblD defect of intracellular cobalamin metabolism. Hum Mol Genet 2011; 21:1410-8. [DOI: 10.1093/hmg/ddr579] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
33
|
Sun X, Bromley-Brits K, Song W. Regulation of β-site APP-cleaving enzyme 1 gene expression and its role in Alzheimer's disease. J Neurochem 2011; 120 Suppl 1:62-70. [PMID: 22122349 DOI: 10.1111/j.1471-4159.2011.07515.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder leading to dementia. Neuritic plaques are the hallmark neuropathology in AD brains. Proteolytic processing of amyloid-β precursor protein at the β site by beta-site amyloid-β precursor protein-cleaving enzyme 1 (BACE1) is essential to generate Aβ, a central component of the neuritic plaques. BACE1 is increased in some sporadic AD brains, and dysregulation of BACE1 gene expression plays an important role in AD pathogenesis. This review will focus on the regulation of BACE1 gene expression at the transcriptional, post-transcriptional, translation initiation, translational and post-translational levels, and its role in AD pathogenesis. Further studies on BACE1 gene expression regulation will greatly contribute to our understanding of AD pathogenesis and reveal potential novel approaches for AD prevention and drug development.
Collapse
Affiliation(s)
- Xiulian Sun
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada.,Qilu Hospital of Shandong University, Jinan, China
| | - Kelley Bromley-Brits
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Pisani F, Rossi A, Nicchia GP, Svelto M, Frigeri A. Translational regulation mechanisms of aquaporin-4 supramolecular organization in astrocytes. Glia 2011; 59:1923-32. [PMID: 21850708 DOI: 10.1002/glia.21234] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/27/2011] [Indexed: 12/21/2022]
Abstract
The two predominant isoforms of Aquaporin-4 (AQP4), AQP4-M23 and AQP4-M1, assemble in the plasma membrane to form supramolecular structures called Orthogonal Array of Particles (OAPs) whose dimension is tightly associated to the M1/M23 ratio. Here, we explore translational regulation contribution to M1/M23 expression in primary cultures of rat astrocytes, and analyze the role of M1 mRNA 5'untranslated region (5'UTR) in this mechanism. Using isoform-specific RNAi we found that in rat astrocytes primary cultures a large proportion of M23 protein derives from M1 mRNA translation. Furthermore, site-specific mutagenesis of the 5'UTR sequence of AQP4-M1 mRNA indicates that a multiple-site leaky scanning mechanism, an out-of-frame upstream ORF (uORF), and a reinitiation mechanism are able to modulate the M1/M23 ratio and consequently, OAPs formation. These mechanisms are likely to be shared by different species, including human, and they can also be assumed to play a role in those pathophysiological situations where the organization of AQP4 in supramolecular structures (OAPs) is involved. Finally, we report that, when transfected in Hela cells, the longer rat AQP4 isoform, called Mz, which is not present in human impairs OAPs formation.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of General and Environmental Physiology and Centre of Excellence in Comparative Genomics (CEGBA), University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
35
|
Cole SL, Vassar R. The Basic Biology of BACE1: A Key Therapeutic Target for Alzheimer's Disease. Curr Genomics 2011; 8:509-30. [PMID: 19415126 PMCID: PMC2647160 DOI: 10.2174/138920207783769512] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/27/2007] [Accepted: 12/27/2007] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD) is an intractable, neurodegenerative disease that appears to be brought about by both genetic and non-genetic factors. The neuropathology associated with AD is complex, although amyloid plaques composed of the β-amyloid peptide (Aβ) are hallmark neuropathological lesions of AD brain. Indeed, Aβ plays an early and central role in this disease. β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the initiating enzyme in Aβ genesis and BACE1 levels are elevated under a variety of conditions. Given the strong correlation between Aβ and AD, and the elevation of BACE1 in this disease, this enzyme is a prime drug target for inhibiting Aβ production in AD. However, nine years on from the initial identification of BACE1, and despite intense research, a number of key questions regarding BACE1 remain unanswered. Indeed, drug discovery and development for AD continues to be challenging. While current AD therapies temporarily slow cognitive decline, treatments that address the underlying pathologic mechanisms of AD are completely lacking. Here we review the basic biology of BACE1. We pay special attention to recent research that has provided some answers to questions such as those involving the identification of novel BACE1 substrates, the potential causes of BACE1 elevation and the putative function of BACE1 in health and disease. Our increasing understanding of BACE1 biology should aid the development of compounds that interfere with BACE1 expression and activity and may lead to the generation of novel therapeutics for AD.
Collapse
Affiliation(s)
- S L Cole
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
36
|
Translation reinitiation relies on the interaction between eIF3a/TIF32 and progressively folded cis-acting mRNA elements preceding short uORFs. PLoS Genet 2011; 7:e1002137. [PMID: 21750682 PMCID: PMC3131280 DOI: 10.1371/journal.pgen.1002137] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/03/2011] [Indexed: 11/19/2022] Open
Abstract
Reinitiation is a gene-specific translational control mechanism characterized by the ability of some short upstream uORFs to retain post-termination 40S subunits on mRNA. Its efficiency depends on surrounding cis-acting sequences, uORF elongation rates, various initiation factors, and the intercistronic distance. To unravel effects of cis-acting sequences, we investigated previously unconsidered structural properties of one such a cis-enhancer in the mRNA leader of GCN4 using yeast genetics and biochemistry. This leader contains four uORFs but only uORF1, flanked by two transferrable 5' and 3' cis-acting sequences, and allows efficient reinitiation. Recently we showed that the 5' cis-acting sequences stimulate reinitiation by interacting with the N-terminal domain (NTD) of the eIF3a/TIF32 subunit of the initiation factor eIF3 to stabilize post-termination 40S subunits on uORF1 to resume scanning downstream. Here we identify four discernible reinitiation-promoting elements (RPEs) within the 5' sequences making up the 5' enhancer. Genetic epistasis experiments revealed that two of these RPEs operate in the eIF3a/TIF32-dependent manner. Likewise, two separate regions in the eIF3a/TIF32-NTD were identified that stimulate reinitiation in concert with the 5' enhancer. Computational modeling supported by experimental data suggests that, in order to act, the 5' enhancer must progressively fold into a specific secondary structure while the ribosome scans through it prior uORF1 translation. Finally, we demonstrate that the 5' enhancer's stimulatory activity is strictly dependent on and thus follows the 3' enhancer's activity. These findings allow us to propose for the first time a model of events required for efficient post-termination resumption of scanning. Strikingly, structurally similar RPE was predicted and identified also in the 5' leader of reinitiation-permissive uORF of yeast YAP1. The fact that it likewise operates in the eIF3a/TIF32-dependent manner strongly suggests that at least in yeasts the underlying mechanism of reinitiation on short uORFs is conserved.
Collapse
|
37
|
Ill-Raga G, Palomer E, Wozniak MA, Ramos-Fernández E, Bosch-Morató M, Tajes M, Guix FX, Galán JJ, Clarimón J, Antúnez C, Real LM, Boada M, Itzhaki RF, Fandos C, Muñoz FJ. Activation of PKR causes amyloid ß-peptide accumulation via de-repression of BACE1 expression. PLoS One 2011; 6:e21456. [PMID: 21738672 PMCID: PMC3125189 DOI: 10.1371/journal.pone.0021456] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 06/02/2011] [Indexed: 12/13/2022] Open
Abstract
BACE1 is a key enzyme involved in the production of amyloid ß-peptide (Aß) in Alzheimer's disease (AD) brains. Normally, its expression is constitutively inhibited due to the presence of the 5′untranslated region (5′UTR) in the BACE1 promoter. BACE1 expression is activated by phosphorylation of the eukaryotic initiation factor (eIF)2-alpha, which reverses the inhibitory effect exerted by BACE1 5′UTR. There are four kinases associated with different types of stress that could phosphorylate eIF2-alpha. Here we focus on the double-stranded (ds) RNA-activated protein kinase (PKR). PKR is activated during viral infection, including that of herpes simplex virus type 1 (HSV1), a virus suggested to be implicated in the development of AD, acting when present in brains of carriers of the type 4 allele of the apolipoprotein E gene. HSV1 is a dsDNA virus but it has genes on both strands of the genome, and from these genes complementary RNA molecules are transcribed. These could activate BACE1 expression by the PKR pathway. Here we demonstrate in HSV1-infected neuroblastoma cells, and in peripheral nervous tissue from HSV1-infected mice, that HSV1 activates PKR. Cloning BACE1 5′UTR upstream of a luciferase (luc) gene confirmed its inhibitory effect, which can be prevented by salubrinal, an inhibitor of the eIF2-alpha phosphatase PP1c. Treatment with the dsRNA analog poly (I∶C) mimicked the stimulatory effect exerted by salubrinal over BACE1 translation in the 5′UTR-luc construct and increased Aß production in HEK-APPsw cells. Summarizing, our data suggest that PKR activated in brain by HSV1 could play an important role in the development of AD.
Collapse
Affiliation(s)
- Gerard Ill-Raga
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu S, Zhang S, Bromley-Brits K, Cai F, Zhou W, Xia K, Mittelholtz J, Song W. Transcriptional Regulation of TMP21 by NFAT. Mol Neurodegener 2011; 6:21. [PMID: 21375783 PMCID: PMC3063815 DOI: 10.1186/1750-1326-6-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 03/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TMP21 is a member of the p24 cargo protein family, which is involved in protein transport between the Golgi apparatus and ER. Alzheimer's Disease (AD) is the most common neurodegenerative disorder leading to dementia and deposition of amyloid β protein (Aβ) is the pathological feature of AD pathogenesis. Knockdown of TMP21 expression by siRNA causes a sharp increase in Aβ production; however the underlying mechanism by which TMP21 regulates Aβ generation is unknown, and human TMP21 gene expression regulation has not yet been studied. RESULTS In this report we have cloned a 3.3-kb fragment upstream of the human TMP21 gene. The transcription start site (TSS) of the human TMP21 gene was identified. A series of nested deletions of the 5' flanking region of the human TMP21 gene were subcloned into the pGL3-basic luciferase reporter plasmid. We identified the -120 to +2 region as containing the minimal sequence necessary for TMP21 gene promoter activity. Gel shift assays revealed that the human TMP21 gene promoter contains NFAT response elements. Expression of NFAT increased TMP21 gene expression and inhibition of NFAT by siRNA reduced TMP21 gene expression. CONCLUSION NFAT plays a very important role in the regulation of human TMP21 gene expression. This study demonstrates that the human TMP21 gene expression is transcriptionally regulated by NFAT signaling.
Collapse
Affiliation(s)
- Shengchun Liu
- Department of Surgery, The First Affiliated Hospital, Chongqing University of Medical Sciences, Chongqing 410006, China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jeon S, Kim J. Upstream open reading frames regulate the cell cycle-dependent expression of the RNA helicase Rok1 in Saccharomyces cerevisiae. FEBS Lett 2010; 584:4593-8. [PMID: 20969870 DOI: 10.1016/j.febslet.2010.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/09/2010] [Accepted: 10/12/2010] [Indexed: 12/13/2022]
Abstract
The RNA helicase Rok1 plays a role in rRNA processing and in control of cell cycle progression in Saccharomyces cerevisiae. We identified two upstream open reading frames (uORFs) within the ROK1 5' untranslated region, which inhibited Rok1 translation. Mutating uATG to uAAG or generation of a premature stop codon in the uORFs resulted in increased Rok1p levels. Rok1 protein levels oscillated during the cell cycle, declining at G1/S and increasing at G2. The uAAG1 mutation caused a constitutive level of Rok1 proteins throughout the cell cycle, resulting in significant delays in mitotic bud emergence and recovery from pheromone arrest. Our study reveals that the Rok1 protein level is regulated by uORFs, which is critical in cell cycle progression.
Collapse
Affiliation(s)
- Soonmee Jeon
- Department of Microbiology and Molecular Biology, College of Biosciences and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | |
Collapse
|
40
|
Abstract
Conserved upstream open reading frames (uORFs) are found within many eukaryotic transcripts and are known to regulate protein translation. Evidence from genetic and bioinformatic studies implicates disturbed uORF-mediated translational control in the etiology of human diseases. A genetic mouse model has recently provided proof-of-principle support for the physiological relevance of uORF-mediated translational control in mammals. The targeted disruption of the uORF initiation codon within the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) gene resulted in deregulated C/EBPβ protein isoform expression, associated with defective liver regeneration and impaired osteoclast differentiation. The high prevalence of uORFs in the human transcriptome suggests that intensified search for mutations within 5' RNA leader regions may reveal a multitude of alterations affecting uORFs, causing pathogenic deregulation of protein expression.
Collapse
Affiliation(s)
- Klaus Wethmar
- Max Delbrueck Center for Molecular MedicineBerlin, Germany
- Charité, University Medicine BerlinGermany
| | - Jeske J Smink
- Max Delbrueck Center for Molecular MedicineBerlin, Germany
| | - Achim Leutz
- Max Delbrueck Center for Molecular MedicineBerlin, Germany
| |
Collapse
|
41
|
BACE1 gene promoter single-nucleotide polymorphisms in Alzheimer's disease. J Mol Neurosci 2010; 42:127-33. [PMID: 20455082 DOI: 10.1007/s12031-010-9381-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is the most neurodegenerative disorder leading to dementia. Neuritic plaque formation in brains is a hallmark of AD pathogenesis. Amyloid beta protein (Abeta) is the central component of neuritic plaques. Processing beta-amyloid precursor protein (APP) at the beta-secretase site by the beta-site APP cleaving enzyme 1 (BACE1) is essential for generation of Abeta. Elevation of BACE1 activity and expression has been reported in AD brains. However, no mutation in the BACE1 coding sequence has been identified in AD cases. Human BACE1 expression is tightly regulated at the transcription and translation level. To determine whether there is any single-nucleotide polymorphisms in the BACE1 gene promoter region affecting BACE1 expression in AD pathogenesis, in this study, we screened 2.6 kb of the human BACE1 gene promoter region from late-onset AD patients and found that there was no significant association between single-nucleotide polymorphisms and AD cases.
Collapse
|
42
|
Veiga-da-Cunha M, Tyteca D, Stroobant V, Courtoy PJ, Opperdoes FR, Van Schaftingen E. Molecular identification of NAT8 as the enzyme that acetylates cysteine S-conjugates to mercapturic acids. J Biol Chem 2010; 285:18888-98. [PMID: 20392701 DOI: 10.1074/jbc.m110.110924] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Our goal was to identify the reaction catalyzed by NAT8 (N-acetyltransferase 8), a putative N-acetyltransferase homologous to the enzyme (NAT8L) that produces N-acetylaspartate in brain. The almost exclusive expression of NAT8 in kidney and liver and its predicted association with the endoplasmic reticulum suggested that it was cysteinyl-S-conjugate N-acetyltransferase, the microsomal enzyme that catalyzes the last step of mercapturic acid formation. In agreement, HEK293T extracts of cells overexpressing NAT8 catalyzed the N-acetylation of S-benzyl-L-cysteine and leukotriene E(4), two cysteine conjugates, but were inactive on other physiological amines or amino acids. Confocal microscopy indicated that NAT8 was associated with the endoplasmic reticulum. Neither of the two frequent single nucleotide polymorphisms found in NAT8, E104K nor F143S, changed the enzymatic activity or the expression of the protein by >or=2-fold, whereas a mutation (R149K) replacing an extremely conserved arginine suppressed the activity. Sequencing of genomic DNA and EST clones corresponding to the NAT8B gene, which resulted from duplication of the NAT8 gene in the primate lineage, disclosed the systematic presence of a premature stop codon at codon 16. Furthermore, truncated NAT8B and NAT8 proteins starting from the following methionine (Met-25) showed no cysteinyl-S-conjugate N-acetyltransferase activity when transfected in HEK293T cells. Taken together, these findings indicate that NAT8 is involved in mercapturic acid formation and confirm that NAT8B is an inactive gene in humans. NAT8 homologues are found in all vertebrate genomes, where they are often encoded by multiple, tandemly repeated genes as many other genes encoding xenobiotic metabolism enzymes.
Collapse
Affiliation(s)
- Maria Veiga-da-Cunha
- Laboratory of Physiological Chemistry, de Duve Institute and Université Catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
43
|
De Strooper B. Proteases and Proteolysis in Alzheimer Disease: A Multifactorial View on the Disease Process. Physiol Rev 2010; 90:465-94. [DOI: 10.1152/physrev.00023.2009] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alzheimer disease is characterized by the accumulation of abnormally folded protein fragments, i.e., amyloid beta peptide (Aβ) and tau that precipitate in amyloid plaques and neuronal tangles, respectively. In this review we discuss the complicated proteolytic pathways that are responsible for the generation and clearance of these fragments, and how disturbances in these pathways interact and provide a background for a novel understanding of Alzheimer disease as a multifactorial disorder. Recent insights evolve from the static view that the morphologically defined plaques and tangles are disease driving towards a more dynamic, biochemical view in which the intermediary soluble Aβ oligomers and soluble tau fragments are considered as the main mediators of neurotoxicity. The relevance of proteolytic pathways, centered on the generation and clearance of toxic Aβ, on the cleavage and nucleation of tau, and on the general proteostasis of the neurons, then becomes obvious. Blocking or stimulating these pathways provide, or have the potential to provide, interesting drug targets, which raises the hope that we will be able to provide a cure for this dreadful disorder.
Collapse
Affiliation(s)
- Bart De Strooper
- Center for Human Genetics, K.U.Leuven and Department for Molecular and Developmental Genetics, VIB, Leuven, Belgium
| |
Collapse
|
44
|
Lammich S, Buell D, Zilow S, Ludwig AK, Nuscher B, Lichtenthaler SF, Prinzen C, Fahrenholz F, Haass C. Expression of the anti-amyloidogenic secretase ADAM10 is suppressed by its 5'-untranslated region. J Biol Chem 2010; 285:15753-60. [PMID: 20348102 DOI: 10.1074/jbc.m110.110742] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteolytic processing of the amyloid precursor protein by alpha-secretase prevents formation of the amyloid beta-peptide (Abeta), which is the main constituent of amyloid plaques in brains of Alzheimer disease (AD) patients. alpha-Secretase activity is decreased in AD, and overexpression of the alpha-secretase ADAM10 (a disintegrin and metalloprotease 10) in an AD animal model prevents amyloid pathology. ADAM10 has a 444-nucleotide-long, very GC-rich 5'-untranslated region (5'-UTR) with two upstream open reading frames. Because similar properties of 5'-UTRs are found in transcripts of many genes, which are regulated by translational control mechanisms, we asked whether ADAM10 expression is translationally controlled by its 5'-UTR. We demonstrate that the 5'-UTR of ADAM10 represses the rate of ADAM10 translation. In the absence of the 5'-UTR, we observed a significant increase of ADAM10 protein levels in HEK293 cells, whereas mRNA levels were not changed. Moreover, the 5'-UTR of ADAM10 inhibits translation of a luciferase reporter in an in vitro transcription/translation assay. Successive deletion of the first half of the ADAM10 5'-UTR revealed a striking increase in ADAM10 protein expression in HEK293 cells, suggesting that this part of the 5'-UTR contains inhibitory elements for translation. Moreover, we detect an enhanced alpha-secretase activity and consequently reduced Abeta levels in the conditioned medium of HEK293 cells expressing both amyloid precursor protein and a 5'-UTR-ADAM10 deletion construct lacking the first half of the 5'-UTR. Thus, we provide evidence that the 5'-UTR of ADAM10 may have an important role for post-transcriptional regulation of ADAM10 expression and consequently Abeta production.
Collapse
Affiliation(s)
- Sven Lammich
- German Center for Neurodegenerative Diseases (DZNE) and Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, 80336 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Morel M, Couturier J, Lafay-Chebassier C, Paccalin M, Page G. PKR, the double stranded RNA-dependent protein kinase as a critical target in Alzheimer's disease. J Cell Mol Med 2009; 13:1476-88. [PMID: 19602051 PMCID: PMC3828860 DOI: 10.1111/j.1582-4934.2009.00849.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Amyloid β-peptide (Aβ) deposits and neurofibrillary tangles are key hallmarks in Alzheimer's disease (AD). Aβ stimulates many signal transducers involved in the neuronal death. However, many mechanisms remain to be elucidated because no definitive therapy of AD exists. Some studies have focused on the control of translation which involves eIF2 and eIF4E, main eukaryotic factors of initiation. The availability of these factors depends on the activation of the double-stranded RNA-dependent protein kinase (PKR) and the mammalian target of rapamycin (mTOR), respectively. mTOR positively regulates the translation while PKR results in a protein synthesis shutdown. Many studies demonstrated that the PKR signalling pathway is up-regulated in cellular and animal models of AD and in the brain of AD patients. Interestingly, our results showed that phosphorylated PKR and eIF2α levels were significantly increased in lymphocytes of AD patients. These modifications were significantly correlated with cognitive and memory test scores performed in AD patients. On the contrary, the mTOR signalling pathway is down-regulated in cellular and animal models of AD. Recently, we showed that p53, regulated protein in development and DNA damage response 1 and tuberous sclerosis complex 2 could represent molecular links between PKR and mTOR signalling pathways. PKR could be an early biomarker of the neuronal death and a critical target for a therapeutic programme in AD.
Collapse
Affiliation(s)
- Milena Morel
- Research Group on Brain Aging (EA 3808) University of Poitiers, Poitiers Cedex, France
| | | | | | | | | |
Collapse
|
46
|
Liu H, Wang P, Song W, Sun X. Degradation of regulator of calcineurin 1 (RCAN1) is mediated by both chaperone-mediated autophagy and ubiquitin proteasome pathways. FASEB J 2009; 23:3383-92. [PMID: 19509306 DOI: 10.1096/fj.09-134296] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regulator of calcineurin 1 (RCAN1), a gene identified from the critical region of Down syndrome, has been implied in pathogenesis of Alzheimer's disease (AD). RCAN1 expression was shown to be increased in AD brains; however, the mechanism of RCAN1 gene regulation is not well defined. The present study was designed to investigate the molecular mechanism of RCAN1 protein degradation. In addition to being degraded through the ubiquitin proteasome pathway, we found that lysosomal inhibition markedly increased RCAN1 protein expression in a time- and dosage-dependent manner. Inhibition of macroautophagy reduced RCAN1 expression, indicating that RCAN1 degradation is not through a macroautophagy pathway. However, disruption of chaperone-mediated autophagy (CMA) increased RCAN1 expression. Two CMA recognition motifs were identified in RCAN1 protein to mediate its degradation through a CMA-lysosome pathway. A promoter assay further demonstrated that inhibition of RCAN1 degradation in cells reduced calcineurin-NFAT activity. Dysfunctions of ubiquitin-proteasome and autophagy-lysosome pathways have been implicated in neurodegenerative diseases. Therefore, elucidation of RCAN1 degradation by a ubiquitin proteasome pathway and CMA-lysosome pathway in the present study may greatly advance our understanding of AD pathogenesis.
Collapse
Affiliation(s)
- Heng Liu
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| | | | | | | |
Collapse
|
47
|
Abstract
Protein synthesis is often regulated at the level of initiation of translation, making it a critical step. This regulation occurs by both the cis-regulatory elements, which are located in the 5'- and 3'-UTRs (untranslated regions), and trans-acting factors. A breakdown in this regulation machinery can perturb cellular metabolism, leading to various physiological abnormalities. The highly structured UTRs, along with features such as GC-richness, upstream open reading frames and internal ribosome entry sites, significantly influence the rate of translation of mRNAs. In this review, we discuss how changes in the cis-regulatory sequences of the UTRs, for example, point mutations and truncations, influence expression of specific genes at the level of translation. Such modifications may tilt the physiological balance from healthy to diseased states, resulting in conditions such as hereditary thrombocythaemia, breast cancer, fragile X syndrome, bipolar affective disorder and Alzheimer's disease. This information tends to establish the crucial role of UTRs, perhaps as much as that of coding sequences, in health and disease.
Collapse
|
48
|
O'Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, Lichtenthaler SF, Hébert SS, De Strooper B, Haass C, Bennett DA, Vassar R. Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron 2009; 60:988-1009. [PMID: 19109907 DOI: 10.1016/j.neuron.2008.10.047] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 09/16/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
beta-site APP cleaving enzyme-1 (BACE1), the rate-limiting enzyme for beta-amyloid (Abeta) production, is elevated in Alzheimer's disease (AD). Here, we show that energy deprivation induces phosphorylation of the translation initiation factor eIF2alpha (eIF2alpha-P), which increases the translation of BACE1. Salubrinal, an inhibitor of eIF2alpha-P phosphatase PP1c, directly increases BACE1 and elevates Abeta production in primary neurons. Preventing eIF2alpha phosphorylation by transfection with constitutively active PP1c regulatory subunit, dominant-negative eIF2alpha kinase PERK, or PERK inhibitor P58(IPK) blocks the energy-deprivation-induced BACE1 increase. Furthermore, chronic treatment of aged Tg2576 mice with energy inhibitors increases levels of eIF2alpha-P, BACE1, Abeta, and amyloid plaques. Importantly, eIF2alpha-P and BACE1 are elevated in aggressive plaque-forming 5XFAD transgenic mice, and BACE1, eIF2alpha-P, and amyloid load are correlated in humans with AD. These results strongly suggest that eIF2alpha phosphorylation increases BACE1 levels and causes Abeta overproduction, which could be an early, initiating molecular mechanism in sporadic AD.
Collapse
Affiliation(s)
- Tracy O'Connor
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rajah M, Bastianetto S, Bromley-Brits K, Cools R, D’Esposito M, Grady C, Poirier J, Quirion R, Raz N, Rogaeva E, Song W, Pruessner J. Biological changes associated with healthy versus pathological aging: a symposium review. Ageing Res Rev 2009; 8:140-6. [PMID: 19274854 DOI: 10.1016/j.arr.2009.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Douglas Mental Health University Institute, in collaboration with the McGill Centre for Studies in Aging, organized a 2-day symposium entitled "Biological Changes Associated with Healthy Versus Pathological Aging" that was held in 13 and 14 December 2007 on the Douglas campus. The symposium involved presentations on current trends in aging and dementia research across several sub-disciplines: genetics, neurochemistry, structural and functional neuroimaging and clinical treatment and rehabilitation. The goal of this symposium was to provide a forum for knowledge-transfer between scientists and clinicians with different specializations in order to promote cross-fertilization of research ideas that would lead to future collaborative neuroscience research in aging and dementia. In this review article, we summarize the presentations made by the 13 international scientists at the symposium and highlight: (i) past research, and future research trends in neuroscience of aging and dementia and (ii) links across levels of analysis that can lead to fruitful transdisciplinary research programs that will advance knowledge about the neurobiological changes associated with healthy aging and dementia.
Collapse
|
50
|
Liu S, Bromley-Brits K, Xia K, Mittelholtz J, Wang R, Song W. TMP21 degradation is mediated by the ubiquitin-proteasome pathway. Eur J Neurosci 2009; 28:1980-8. [PMID: 19046380 DOI: 10.1111/j.1460-9568.2008.06497.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presenilin-associated complex regulates two independent intramembranous cleavage activities, i.e. gamma-secretase and epsilon-secretase activity. The gamma-secretase complex requires four critical components for its activity: presenilin 1, anterior pharynx-defective 1, nicastrin 1 and presenilin enhancer 2, all of which are degraded through the ubiquitin-proteasome pathway. Recently, TMP21, a type I transmembrane protein involved in endoplasmic reticulum/Golgi transport, was identified as a member of the presenilin complex. Knockdown of TMP21 selectively regulated pathogenic gamma-secretase activity, resulting in increased amyloid beta protein 40 and 42, without affecting the epsilon-cleavage of Notch. A further understanding of TMP21 degradation is required to examine the biological consequences of TMP21 protein level aberrations and their potential role in the pathogenesis of Alzheimer's disease and drug development. Here we show that human TMP21 has a short half-life of approximately 3 h. Treatment with proteasomal inhibitors can increase TMP21 protein levels in both a time- and dose-dependent manner, and both co-immunoprecipitation and immunofluorescent staining show that TMP21 is ubiquitinated. Inhibition of the lysosomal pathway failed to show a dose-dependent increase in TMP21 protein levels. Taken together, these results indicate that the degradation of TMP21, as with the other presenilin-associated gamma-secretase complex members, is mediated by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Shengchun Liu
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|