1
|
Wang Y, Hu B, Du S, Gao S, Chen X, Chen D. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli. PLoS One 2016; 11:e0153640. [PMID: 27135411 PMCID: PMC4852897 DOI: 10.1371/journal.pone.0153640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/02/2016] [Indexed: 11/18/2022] Open
Abstract
We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli), Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification) approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology) and KEGG (Kyoto encyclopedia of genes and genomes) enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species) scavenging, membrane proteins and ABC (ATP binding cassette) transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame) of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli.
Collapse
Affiliation(s)
- Yanlong Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bin Hu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shipeng Du
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shan Gao
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiwen Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Defu Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Construction of a chimeric secretory IgA and its neutralization activity against avian influenza virus H5N1. J Immunol Res 2014; 2014:394127. [PMID: 24741594 PMCID: PMC3987799 DOI: 10.1155/2014/394127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 01/07/2014] [Indexed: 01/06/2023] Open
Abstract
Secretory immunoglobulin A (SIgA) acts as the first line of defense against respiratory pathogens. In this assay, the variable regions of heavy chain (VH) and Light chain (VL) genes from a mouse monoclonal antibody against H5N1 were cloned and fused with human IgA constant regions. The full-length chimeric light and heavy chains were inserted into a eukaryotic expressing vector and then transfected into CHO/dhfr-cells. The chimeric monomeric IgA antibody expression was confirmed by using ELISA, SDS-PAGE, and Western blot. In order to obtain a dimeric secretory IgA, another two expressing plasmids, namely, pcDNA4/His A-IgJ and pcDNA4/His A-SC, were cotransfected into the CHO/dhfr-cells. The expression of dimeric SIgA was confirmed by using ELISA assay and native gel electrophoresis. In microneutralization assay on 96-well immunoplate, the chimeric SIgA showed neutralization activity against H5N1 virus on MDCK cells and the titer was determined to be 1 : 64. On preadministrating intranasally, the chimeric SIgA could prevent mice from lethal attack by using A/Vietnam/1194/04 H5N1 with a survival rate of 80%. So we concluded that the constructed recombinant chimeric SIgA has a neutralization capability targeting avian influenza virus H5N1 infection in vitro and in vivo.
Collapse
|
3
|
Neilson JR, Sandberg R. Heterogeneity in mammalian RNA 3' end formation. Exp Cell Res 2010; 316:1357-64. [PMID: 20211174 DOI: 10.1016/j.yexcr.2010.02.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/28/2010] [Indexed: 11/19/2022]
Abstract
Precisely directed cleavage and polyadenylation of mRNA is a fundamental part of eukaryotic gene expression. Yet, 3' end heterogeneity has been documented for thousands of mammalian genes, and usage of one cleavage and polyadenylation signal over another has been shown to impact gene expression in many cases. Building upon the rich biochemical and genetic understanding of the 3' end formation, recent genomic studies have begun to suggest that widespread changes in mRNA cleavage and polyadenylation may be a part of large, dynamic gene regulatory programs. In this review, we begin with a modest overview of the studies that defined the mechanisms of mammalian 3' end formation, and then discuss how recent genomic studies intersect with these more traditional approaches, showing that both will be crucial for expanding our understanding of this facet of gene regulation.
Collapse
Affiliation(s)
- Joel R Neilson
- Department of Molecular Physiology and Biophysics and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
4
|
Edwalds-Gilbert G, Veraldi KL, Milcarek C. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res 1997; 25:2547-61. [PMID: 9185563 PMCID: PMC146782 DOI: 10.1093/nar/25.13.2547] [Citation(s) in RCA: 410] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many genes have been described and characterized which result in alternative polyadenylation site use at the 3'-end of their mRNAs based on the cellular environment. In this survey and summary article 95 genes are discussed in which alternative polyadenylation is a consequence of tandem arrays of poly(A) signals within a single 3'-untranslated region. An additional 31 genes are described in which polyadenylation at a promoter-proximal site competes with a splicing reaction to influence expression of multiple mRNAs. Some have a composite internal/terminal exon which can be differentially processed. Others contain alternative 3'-terminal exons, the first of which can be skipped in some cells. In some cases the mRNAs formed from these three classes of genes are differentially processed from the primary transcript during the cell cycle or in a tissue-specific or developmentally specific pattern. Immunoglobulin heavy chain genes have composite exons; regulated production of two different Ig mRNAs has been shown to involve B cell stage-specific changes in trans -acting factors involved in formation of the active polyadenylation complex. Changes in the activity of some of these same factors occur during viral infection and take-over of the cellular machinery, suggesting the potential applicability of at least some aspects of the Ig model. The differential expression of a number of genes that undergo alternative poly(A) site choice or polyadenylation/splicing competition could be regulated at the level of amounts and activities of either generic or tissue-specific polyadenylation factors and/or splicing factors.
Collapse
Affiliation(s)
- G Edwalds-Gilbert
- Department of Molecular Genetics and Biochemistry and the Graduate Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261-2072, USA
| | | | | |
Collapse
|
5
|
Changes in dihydrofolate reductase (DHFR) mRNA levels can account fully for changes in DHFR synthesis rates during terminal differentiation in a highly amplified myogenic cell line. Mol Cell Biol 1991. [PMID: 2046674 DOI: 10.1128/mcb.11.7.3726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dihydrofolate reductase (DHFR) enzyme is preferentially synthesized in proliferative cells. A mouse muscle cell line resistant to 300 microM methotrexate was developed to investigate the molecular levels at which DHFR is down-regulated during myogenic withdrawal from the cell cycle. H- alpha R300T cells contained 540 copies of the endogenous DHFR gene and overexpressed DHFR mRNA and DHFR protein. Despite DHFR gene amplification, the cells remained diploid. As H- alpha R300T myoblasts withdrew from the cell cycle and committed to terminal differentiation, DHFR mRNA levels and DHFR synthesis rates decreased with closely matched kinetics. After 15 to 24 h, committed cells contained 5% the proliferative level of DHFR mRNA (80 molecules per committed cell) and synthesized DHFR protein at 6% the proliferative rate. At no point during the commitment process did the decrease in DHFR synthesis rate exceed the decrease in DHFR message. The decrease in DHFR mRNA levels during commitment was sufficient to account fully for the decrease in rates of DHFR synthesis. Furthermore, DHFR mRNA remained polysomal, and the average number of ribosomes per message remained constant (five to six ribosomes per DHFR mRNA). The constancy of polysome size, along with the uniform rate of DHFR synthesis per message, indicated that DHFR mRNA was efficiently translated in postreplicative cells. The results support a model wherein replication-dependent changes in DHFR synthesis rates are determined exclusively by changes in DHFR mRNA levels.
Collapse
|
6
|
Schmidt EE, Merrill GF. Changes in dihydrofolate reductase (DHFR) mRNA levels can account fully for changes in DHFR synthesis rates during terminal differentiation in a highly amplified myogenic cell line. Mol Cell Biol 1991; 11:3726-34. [PMID: 2046674 PMCID: PMC361140 DOI: 10.1128/mcb.11.7.3726-3734.1991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dihydrofolate reductase (DHFR) enzyme is preferentially synthesized in proliferative cells. A mouse muscle cell line resistant to 300 microM methotrexate was developed to investigate the molecular levels at which DHFR is down-regulated during myogenic withdrawal from the cell cycle. H- alpha R300T cells contained 540 copies of the endogenous DHFR gene and overexpressed DHFR mRNA and DHFR protein. Despite DHFR gene amplification, the cells remained diploid. As H- alpha R300T myoblasts withdrew from the cell cycle and committed to terminal differentiation, DHFR mRNA levels and DHFR synthesis rates decreased with closely matched kinetics. After 15 to 24 h, committed cells contained 5% the proliferative level of DHFR mRNA (80 molecules per committed cell) and synthesized DHFR protein at 6% the proliferative rate. At no point during the commitment process did the decrease in DHFR synthesis rate exceed the decrease in DHFR message. The decrease in DHFR mRNA levels during commitment was sufficient to account fully for the decrease in rates of DHFR synthesis. Furthermore, DHFR mRNA remained polysomal, and the average number of ribosomes per message remained constant (five to six ribosomes per DHFR mRNA). The constancy of polysome size, along with the uniform rate of DHFR synthesis per message, indicated that DHFR mRNA was efficiently translated in postreplicative cells. The results support a model wherein replication-dependent changes in DHFR synthesis rates are determined exclusively by changes in DHFR mRNA levels.
Collapse
Affiliation(s)
- E E Schmidt
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis
| | | |
Collapse
|
7
|
Valsamakis A, Zeichner S, Carswell S, Alwine JC. The human immunodeficiency virus type 1 polyadenylylation signal: a 3' long terminal repeat element upstream of the AAUAAA necessary for efficient polyadenylylation. Proc Natl Acad Sci U S A 1991; 88:2108-12. [PMID: 1848693 PMCID: PMC51178 DOI: 10.1073/pnas.88.6.2108] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Several polyadenylylation (PA) signals containing elements upstream of the AAUAAA have recently been characterized. Similar to PA elements found downstream of the AAUAAA, the upstream elements function to increase efficiency of AAUAAA use as a signal for cleavage and PA. Using deletion and linker scanning mutations we show that the PA signal of human immunodeficiency virus type 1 contains upstream elements transcribed from the U3 region of the 3' long terminal repeat. The element that has the greatest effect on PA site use lies 77 to 94 nucleotides upstream of the AAUAAA, between the TATA element and the transcriptional initiation site. Mutations in the adjacent region, between 59 and 76 nucleotides upstream of the AAUAAA, have a smaller effect on PA efficiency. Mutations in a region further upstream, between 141 and 176 nucleotides upstream of the AAUAAA, also affected PA modestly. Functional similarity between upstream elements was indicated by the ability of the human immunodeficiency virus upstream region to replace the upstream region of the simian virus 40 late PA signal. The sequence of the major upstream element of human immunodeficiency virus is uracil-rich, analogous to many defined downstream PA elements. This fact may imply that upstream and downstream elements have similar mechanisms of action.
Collapse
Affiliation(s)
- A Valsamakis
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia 19104-6142
| | | | | | | |
Collapse
|
8
|
Laird-Offringa IA, Elfferich P, Knaken HJ, de Ruiter J, van der Eb AJ. Analysis of polyadenylation site usage of the c-myc oncogene. Nucleic Acids Res 1989; 17:6499-514. [PMID: 2674898 PMCID: PMC318344 DOI: 10.1093/nar/17.16.6499] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The c-myc gene contains 2 well conserved polyadenylation (pA) sites. In all human and rat cell lines from various differentiation stages and tissue types the amount of mRNA terminating at the second pA site is 6-fold higher than the amount ending at the upstream site. This is not due to a difference in stability of the two mRNA types and therefore must be due to preferential usage of the downstream site. The usage of the pA sites is not altered during growth factor induction of quiescent cells. We have not been able to detect differences in behavior between mRNAs ending at either pA site. Both types of mRNA are induced upon treatment of cells with cycloheximide. Furthermore, we have shown that the poly(A) tail of c-myc mRNA is lost during degradation of the messenger, as was described previously for c-myc mRNA in an in vitro system. The time required for the loss of the poly(A) tail is similar to the half-life of c-myc mRNA.
Collapse
Affiliation(s)
- I A Laird-Offringa
- Laboratory for Molecular Carcinogenesis, Sylvius Laboratories, University of Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Schmidt EE, Merrill GF. Maintenance of dihydrofolate reductase enzyme after disappearance of DHFR mRNA during muscle cell differentiation. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1989; 25:697-704. [PMID: 2768131 DOI: 10.1007/bf02623722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Terminally differentiating mouse muscle cells were used to examine the relationship between myogenic withdrawal from the cell cycle and the levels of dihydrofolate reductase (DHFR) mRNA and DHFR activity. Differentiation was induced by removal of fibroblast growth factor activity from the medium. DHFR mRNA was measured by a RNase protection assay. DHFR activity was measured by a spectrophotometric assay and by a [3H]methotrexate binding assay. Proliferative myoblasts contained four DHFR mRNA molecules and 1.8 X 10(5) DHFR enzyme molecules. By 12.5 h after induction, when [3H]thymidine labeling indices showed all cells had withdrawn from the cell cycle, DHFR mRNA levels had declined to 0.7 copies per cell. In contrast, myogenic withdrawal did not result in reduced DHFR activity. Qualitatively similar results, i.e. down-regulation of mRNA and constitutive expression of activity, were observed in a methotrexate-selected muscle cell line with greater than 50-fold amplification of the DHFR gene. Enzyme synthesis rate and stability measurements indicated that persistence of DHFR activity in postreplicative cells was due to a long enzyme lifetime rather than to continued synthesis from residual normal DHFR mRNA or an alternative mRNA species not detected by the RNase protection assay. Unlike DHFR, thymidine kinase (TK) activity disappeared rapidly as muscle cells differentiated. Both DHFR mRNA and TK mRNA are expressed in a replication-dependent manner; however, the enzymes encoded by these messages are subject to different fates in postreplicative cells.
Collapse
Affiliation(s)
- E E Schmidt
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331
| | | |
Collapse
|
10
|
Tussey L, Felder MR. Tissue-specific genetic variation in the level of mouse alcohol dehydrogenase is controlled transcriptionally in kidney and posttranscriptionally in liver. Proc Natl Acad Sci U S A 1989; 86:5903-7. [PMID: 2474823 PMCID: PMC297739 DOI: 10.1073/pnas.86.15.5903] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tissue-specific genetic variation in expression of the alcohol dehydrogenase, encoded by the Adh-1 gene, is found between C57BL/6J (B6) mice and B6.S congenic mice. B6.S mice contain a variant Adh-1 allele derived from a wild Danish strain in a B6 genetic background. B6 mice have nearly twice the alcohol dehydrogenase activity in liver but less than half the activity in kidney as B6.S mice. These tissue-specific genetic changes in alcohol dehydrogenase expression are manifest at the level of Adh-1-encoded mRNA. The regulatory site(s) involved act cis in both kidney and liver. These strains also differ in the extent to which androgen induces mRNA encoded by kidney Adh-1, with androgen increasing these levels 17-fold and 7.4-fold in the B6 and B6.S kidney, respectively. To identify the regulatory mechanism(s) underlying this strain variation in Adh-1 transcription in the B6 and B6.S kidney, liver, and androgen-induced kidney. For both uninduced and induced kidney, a difference in the transcription rate alone accounts for the strain difference in mRNA concentration. In contrast, because the Adh-1 transcription rate in liver does not differ significantly between B6 and B6.S mice, strain-specific variation in posttranscriptional regulation must be operative. Taken together these results indicate that the variation in Adh-1 expression between B6 and B6.S mice results from changes in both transcriptional and posttranscriptional control, and these controls are differentially operative in kidney and liver.
Collapse
Affiliation(s)
- L Tussey
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | |
Collapse
|
11
|
Khursheed B, Rogers JC. Barley alpha-amylase genes and the thiol protease gene Aleurain: use of a single poly(A) addition signal associated with a conserved pentanucleotide at the cleavage site. Proc Natl Acad Sci U S A 1989; 86:3987-91. [PMID: 2786205 PMCID: PMC287373 DOI: 10.1073/pnas.86.11.3987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plant genes usually have multiple potential poly(A) addition signals, and different sites are used for 3' processing of transcripts from a single gene. In contrast, we show here that four barley genes that also have multiple poly(A) addition signals conforming to the plant consensus use only one signal. In each of these genes, the region of cleavage for poly(A) addition is centered on a conserved pentanucleotide. This AGGCA is followed by a conserved sequence homologous to sequences involved in self-cleavage of plant viroid RNA precursors; immediately following, in turn, are four or five nucleotides complementary to the nucleotides immediately preceding AGGCA in each gene. The presence of these conserved sequences and their association with a single region for poly(A) addition in three different gene types (high-pI and low-pI alpha-amylase genes and a thiol protease) that otherwise are not homologous in their 3' untranslated/flanking sequences suggest that they might participate in some common regulatory mechanism shared by these genes.
Collapse
Affiliation(s)
- B Khursheed
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| | | |
Collapse
|
12
|
Transcriptional and posttranscriptional mechanisms regulate murine thymidine kinase gene expression in serum-stimulated cells. Mol Cell Biol 1989. [PMID: 3244356 DOI: 10.1128/mcb.8.12.5280] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously isolated and characterized the structure of murine thymidine kinase (tk) genomic and cDNA sequences to begin a study designed to identify regions of the tk gene important for regulated expression during the transition of cells from G0 to a proliferating state. In this report, we describe the stable transfection of the cloned gene into L-M(TK-) cells and show that both thymidine kinase (TK) enzyme activity and DNA synthesis increase in parallel when transfectants in G0 arrest are stimulated by serum. To define promoter and regulatory regions more precisely, we have constructed a series of tk minigenes and have examined their expression in stable transfectants after serum stimulation. We have identified a 291-base-pair DNA fragment at the 5' end of the tk gene that has promoter function, and we have determined its sequence. In addition, we have found that DNA sequences which mediate serum-induced expression of TK are transcribed, since expression of the murine tk cDNA, fused to a promoter from either the murine tk gene, the simian virus 40 early region, or the herpes simplex virus tk gene, is stimulated by serum. Our constructs also reveal that the murine tk polyadenylation signal is not required for regulation, nor is most of the 3' untranslated region. RNA dot blot analysis indicates that murine cytoplasmic tk mRNA levels always parallel TK enzyme activity. Nuclear runon transcription assays show less than a 2-fold increase in transcription from the cloned tk gene in serum-stimulated transfectants, but an 11-fold increase in mouse L929 cells, which are inherently TK+. These results taken together suggest that the murine tk gene is controlled in serum-stimulated cells by a transcriptional mechanism influenced by DNA sequences that flank tk and also by a posttranscriptional system linked to gene sequences that are transcribed.
Collapse
|
13
|
Lindquester GJ, Flach JE, Fleenor DE, Hickman KH, Devlin RB. Avian tropomyosin gene expression. Nucleic Acids Res 1989; 17:2099-118. [PMID: 2701936 PMCID: PMC317544 DOI: 10.1093/nar/17.5.2099] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sequence analysis of overlapping fragments from a quail genomic library has revealed a tropomyosin gene consisting of 13 exons spaced over about 18 kilobase pairs of DNA. Skeletal muscle and smooth muscle transcripts share the same 5' untranslated sequence and may initiate from the same promoter. However, the regions encoding amino acids 39-80 and 258-284 are specific to each muscle type. The two sets of exons encoding these regions undergo mutually exclusive alternative splicing in a tissue-specific manner as determined by Northern blots and S1-nuclease protection. Similarly, the 3' ends of the transcripts are different in skeletal muscle and smooth muscle, and each contains two polyadenylation signals which appear to be utilized in vivo. The avian alpha-tropomyosin gene is not expressed in cardiac muscle. The sequence of the gene shows great homology with other muscle-specific tropomyosins and includes a region homologous to the amino terminus of nonmuscle tropomyosins.
Collapse
|
14
|
Kobayashi K, Kurosawa Y, Fujita K, Nagatsu T. Human dopamine beta-hydroxylase gene: two mRNA types having different 3'-terminal regions are produced through alternative polyadenylation. Nucleic Acids Res 1989; 17:1089-102. [PMID: 2922261 PMCID: PMC331724 DOI: 10.1093/nar/17.3.1089] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two kinds of cDNA (types A and B) encoding human dopamine beta-hydroxylase (DBH) were isolated from a pheochromocytoma cDNA library. Type A (2.7 kb) and B (2.4 kb) encoded the same amino acid sequence and were different only in 3'-untranslated region. Type A contained 3'-extension of 300 bp at the end of type B. Subsequently, we isolated human DBH gene and analyzed genomic DNA by Southern hybridization. Human DBH gene (approximately 23 kb) was composed of 12 exons and existed as a single gene on genome. Exon 12 encoded 3'-terminal region of 1,013 bp of type A, including the 300 bp sequence. These results indicate that alternative use of two polyadenylation sites from a single DBH gene generates different mRNA types. This conclusion was supported by Northern hybridization and S1 nuclease mapping experiments. The ratio of type A and B mRNAs in pheochromocytoma was roughly 1.0 to 0.2. We found possible transcription regulatory elements, TATA, CCAAT, CACCC, GC boxes, near the transcription initiation site of DBH gene. Sequences homologous to glucocorticoid and cyclic AMP response elements were also observed.
Collapse
Affiliation(s)
- K Kobayashi
- Department of Biochemistry, Nagoya University School of Medicine, Japan
| | | | | | | |
Collapse
|
15
|
Gross MK, Merrill GF. Regulation of thymidine kinase protein levels during myogenic withdrawal from the cell cycle is independent of mRNA regulation. Nucleic Acids Res 1988; 16:11625-43. [PMID: 3211745 PMCID: PMC339096 DOI: 10.1093/nar/16.24.11625] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Replication-dependent changes in levels of enzymes involved in DNA precursor biosynthesis are accompanied frequently by changes in levels of cognate mRNA. We tested the common assumption that changes in mRNA levels are responsible for growth-dependent expression of these enzymes using a line of mouse muscle cells that irreversibly withdraws from the cell cycle as part of its terminal differentiation program. Thymidine kinase (TK) mRNA, activity, and protein levels were quantitated in cells transformed with multiple copies of the chicken TK gene. The decline in TK mRNA (both whole cell and cytoplasmic) during myogenesis was poor (2-fold average) and variable (1.2 to 8-fold). In contrast, TK activity always was regulated efficiently (20-fold), even in cells which regulated TK mRNA very poorly. Thus, regulation of TK activity was independent of TK mRNA regulation as myoblasts withdrew from the cell cycle. A TK/beta-galactosidase fusion protein was used to derive an antibody against chicken TK. Immunoblot and immunoprecipitation analyses demonstrated TK protein levels, like TK activity levels, declined to a greater extent than TK mRNA levels. Thus, TK activity likely was regulated by a mechanism involving either decreased translation of TK mRNA or increased degradation of TK protein in committed muscle cells.
Collapse
Affiliation(s)
- M K Gross
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331
| | | |
Collapse
|
16
|
Lieberman HB, Lin PF, Yeh DB, Ruddle FH. Transcriptional and posttranscriptional mechanisms regulate murine thymidine kinase gene expression in serum-stimulated cells. Mol Cell Biol 1988; 8:5280-91. [PMID: 3244356 PMCID: PMC365630 DOI: 10.1128/mcb.8.12.5280-5291.1988] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We previously isolated and characterized the structure of murine thymidine kinase (tk) genomic and cDNA sequences to begin a study designed to identify regions of the tk gene important for regulated expression during the transition of cells from G0 to a proliferating state. In this report, we describe the stable transfection of the cloned gene into L-M(TK-) cells and show that both thymidine kinase (TK) enzyme activity and DNA synthesis increase in parallel when transfectants in G0 arrest are stimulated by serum. To define promoter and regulatory regions more precisely, we have constructed a series of tk minigenes and have examined their expression in stable transfectants after serum stimulation. We have identified a 291-base-pair DNA fragment at the 5' end of the tk gene that has promoter function, and we have determined its sequence. In addition, we have found that DNA sequences which mediate serum-induced expression of TK are transcribed, since expression of the murine tk cDNA, fused to a promoter from either the murine tk gene, the simian virus 40 early region, or the herpes simplex virus tk gene, is stimulated by serum. Our constructs also reveal that the murine tk polyadenylation signal is not required for regulation, nor is most of the 3' untranslated region. RNA dot blot analysis indicates that murine cytoplasmic tk mRNA levels always parallel TK enzyme activity. Nuclear runon transcription assays show less than a 2-fold increase in transcription from the cloned tk gene in serum-stimulated transfectants, but an 11-fold increase in mouse L929 cells, which are inherently TK+. These results taken together suggest that the murine tk gene is controlled in serum-stimulated cells by a transcriptional mechanism influenced by DNA sequences that flank tk and also by a posttranscriptional system linked to gene sequences that are transcribed.
Collapse
Affiliation(s)
- H B Lieberman
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | | | | | |
Collapse
|
17
|
Abstract
To identify the regulatory elements of the human thymidine kinase (TK) gene, we have established stable cell lines carrying different chimeric constructs of the TK gene. Our results can be summarized as follows. (i) When the TK coding sequence is under the control of the calcyclin promoter (a promoter that is activated when G0 cells are stimulated by growth factors), TK mRNA levels are higher in G1-arrested cells than in proliferating cells; (ii) when the TK coding sequence is under the control of the promoter of heat shock protein HSP70, steady-state levels of TK mRNA are highest after heat shock, regardless of the position of the cells in the cell cycle; (iii) the bacterial CAT gene under the control of the human TK promoter is maximally expressed in the S phase; (iv) the TK cDNA driven by the simian virus 40 promoter is also maximally expressed in the S phase; and (v) TK enzyme activity is always at a maximum in the S phase, even when the levels of TK mRNA are highest in nonproliferating cells. We conclude that although the TK coding sequence may also play some role, the TK promoter has an important role in the cell cycle regulation of TK mRNA levels.
Collapse
|
18
|
Travali S, Lipson KE, Jaskulski D, Lauret E, Baserga R. Role of the promoter in the regulation of the thymidine kinase gene. Mol Cell Biol 1988; 8:1551-7. [PMID: 3380089 PMCID: PMC363315 DOI: 10.1128/mcb.8.4.1551-1557.1988] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To identify the regulatory elements of the human thymidine kinase (TK) gene, we have established stable cell lines carrying different chimeric constructs of the TK gene. Our results can be summarized as follows. (i) When the TK coding sequence is under the control of the calcyclin promoter (a promoter that is activated when G0 cells are stimulated by growth factors), TK mRNA levels are higher in G1-arrested cells than in proliferating cells; (ii) when the TK coding sequence is under the control of the promoter of heat shock protein HSP70, steady-state levels of TK mRNA are highest after heat shock, regardless of the position of the cells in the cell cycle; (iii) the bacterial CAT gene under the control of the human TK promoter is maximally expressed in the S phase; (iv) the TK cDNA driven by the simian virus 40 promoter is also maximally expressed in the S phase; and (v) TK enzyme activity is always at a maximum in the S phase, even when the levels of TK mRNA are highest in nonproliferating cells. We conclude that although the TK coding sequence may also play some role, the TK promoter has an important role in the cell cycle regulation of TK mRNA levels.
Collapse
Affiliation(s)
- S Travali
- Department of Pathology and Fels Research, Temple University Medical School, Philadelphia, Pennsylvania 19140
| | | | | | | | | |
Collapse
|
19
|
Bracey LT, Paigen K. Changes in translational yield regulate tissue-specific expression of beta-glucuronidase. Proc Natl Acad Sci U S A 1987; 84:9020-4. [PMID: 3480527 PMCID: PMC299683 DOI: 10.1073/pnas.84.24.9020] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The number of beta-glucuronidase (GUS; beta-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) molecules per cell varies as much as 12-fold among mouse tissues. To identify the regulatory mechanisms responsible, estimates of the rates of GUS protein synthesis (ks) and degradation (kd) were obtained for six tissues in the B6.PAC-Gusn mouse strain, which carries the N haplotype of the GUS gene. Differences in enzyme levels among tissues were predominantly due to differences in rates of enzyme synthesis; only brain differed significantly in the rate of protein degradation. Typically, tissues contain about 2 molecules of GUS mRNA per cell. Differences in GUS mRNA levels were found among tissues, but these were not sufficient to account for observed differences in ks. This suggests that tissues differ in translational yield, which is defined as the product of the efficiency with which the GUS message is translated and the fraction of newly made polypeptides that are successfully matured into GUS tetramers. Experimental estimates of translational yield confirmed that this is indeed a source of tissue differences in GUS gene regulation. This finding also proved to be true of the B haplotype of the GUS gene. The differential regulation of special-function genes is, in general, effected transcriptionally. In contrast, the differential regulation of several "housekeeping" genes has been reported to arise from changes in mRNA maturation and/or stability. It is now apparent that translational yield, which is an aspect of protein synthesis, can also serve as a differential regulatory mechanism.
Collapse
Affiliation(s)
- L T Bracey
- University of California, Berkeley 94720
| | | |
Collapse
|
20
|
Abstract
CAD codes for a trifunctional protein involved in the catalysis of the first three enzymatic activities in the de novo pyrimidine biosynthetic pathway, namely, carbamoyl-phosphate synthetase II (EC 6.3.5.5), aspartate transcarbamylase (EC 2.1.3.2), and dihydroorotase (EC 3.5.2.3). CAD regulation was studied in the human promyelocyte leukemic line HL-60 as it differentiated into monocytic or granulocytic lineages after induction by 12-O-tetradecanoylphorbol-13-acetate or trans-retinoic acid and dibutyryl cyclic AMP, respectively. Within 12 h of induction of HL-60 cells with either inducer, total cellular levels of CAD RNA essentially disappeared. On the other hand, no apparent decreases in beta-actin RNA levels were seen even 48 h after HL-60 cells were induced, as compared with untreated cells. With nuclear runoff assays, it was clearly shown that the inactivation of CAD gene expression during the induction of HL-60 cells with either inducer was at the transcriptional level. The nuclear runoff experiments also demonstrated that the CAD gene expression was shut down in less than 4 h after induction, well before morphological changes were observed in these cells. At the enzymatic level, the activity of aspartate transcarbamylase, one of the three enzymes encoded by the CAD gene, decreased by about half within 24 h of induction, suggesting a CAD protein half-life of 24 h in differentiating HL-60 cells. Nevertheless, this means that significant levels of aspartate transcarbamylase activity remained even after the cells have stopped proliferating. From the RNA data, it is clear that CAD gene expression is rapidly turned off as promyelocytes begin to terminally differentiate into macrophages and granulocytes. We suspect that the inactivation of the CAD gene in induced HL-60 cells is a consequence of the differentiating cells leaving the cell cycle and becoming nonproliferating.
Collapse
|
21
|
Rao GN, Buford ES, Davidson JN. Transcriptional regulation of the human CAD gene during myeloid differentiation. Mol Cell Biol 1987; 7:1961-6. [PMID: 2885743 PMCID: PMC365302 DOI: 10.1128/mcb.7.5.1961-1966.1987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CAD codes for a trifunctional protein involved in the catalysis of the first three enzymatic activities in the de novo pyrimidine biosynthetic pathway, namely, carbamoyl-phosphate synthetase II (EC 6.3.5.5), aspartate transcarbamylase (EC 2.1.3.2), and dihydroorotase (EC 3.5.2.3). CAD regulation was studied in the human promyelocyte leukemic line HL-60 as it differentiated into monocytic or granulocytic lineages after induction by 12-O-tetradecanoylphorbol-13-acetate or trans-retinoic acid and dibutyryl cyclic AMP, respectively. Within 12 h of induction of HL-60 cells with either inducer, total cellular levels of CAD RNA essentially disappeared. On the other hand, no apparent decreases in beta-actin RNA levels were seen even 48 h after HL-60 cells were induced, as compared with untreated cells. With nuclear runoff assays, it was clearly shown that the inactivation of CAD gene expression during the induction of HL-60 cells with either inducer was at the transcriptional level. The nuclear runoff experiments also demonstrated that the CAD gene expression was shut down in less than 4 h after induction, well before morphological changes were observed in these cells. At the enzymatic level, the activity of aspartate transcarbamylase, one of the three enzymes encoded by the CAD gene, decreased by about half within 24 h of induction, suggesting a CAD protein half-life of 24 h in differentiating HL-60 cells. Nevertheless, this means that significant levels of aspartate transcarbamylase activity remained even after the cells have stopped proliferating. From the RNA data, it is clear that CAD gene expression is rapidly turned off as promyelocytes begin to terminally differentiate into macrophages and granulocytes. We suspect that the inactivation of the CAD gene in induced HL-60 cells is a consequence of the differentiating cells leaving the cell cycle and becoming nonproliferating.
Collapse
|
22
|
Owen D, Kühn LC. Noncoding 3' sequences of the transferrin receptor gene are required for mRNA regulation by iron. EMBO J 1987; 6:1287-93. [PMID: 3608980 PMCID: PMC553931 DOI: 10.1002/j.1460-2075.1987.tb02366.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The cell-surface receptor for transferrin mediates cellular uptake of iron from serum. Transferrin receptor protein and mRNA levels are increased in cells treated with iron chelating agents, and are decreased by treatment with iron salts or hemin. Here we report that expression of human transferrin receptor cDNA constructions in stably transfected mouse fibroblasts is regulated both by the iron chelator, desferrioxamine, and by hemin. We found that sequences within the 3' noncoding region are required for the iron-dependent feed-back regulation of receptor expression, whereas the presence of the transferrin receptor promoter region is not necessary. Regulation by iron is observed when transcription is initiated at either the SV-40 early promoter or the transferrin receptor promoter, but deletion of a 2.3 kb fragment within the 2.6 kb 3' noncoding region of the cDNA abolishes regulation and increases the constitutive level of receptor expression. Furthermore, the 3' deletion does not affect the decrease in receptors which is observed in response to growth arrest, indicating that transferrin receptor expression is controlled by at least two distinct mechanisms.
Collapse
|
23
|
In vitro cleavage of the simian virus 40 early polyadenylation site adjacent to a required downstream TG sequence. Mol Cell Biol 1987. [PMID: 3025668 DOI: 10.1128/mcb.6.12.4734] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exogenous RNA containing the simian virus 40 early polyadenylation site was efficiently and accurately polyadenylated in in vitro nuclear extracts. Correct cleavage required ATP. In the absence of ATP, nonpoly(A)+ products accumulated which were 18 to 20 nucleotides longer than the RNA generated by correct cleavage; the longer RNA terminated adjacent to the downstream TG element required for polyadenylation. In the presence of ATP analogs, alternate cleavage was not observed; instead, correct cleavage without poly(A) addition occurred. ATP-independent cleavage of simian virus 40 early RNA had many of the same properties as correct cleavage including requirements for an intact AAUAAA element, a proximal 3' terminus, and extract small nuclear ribonucleoproteins. This similarity in reaction parameters suggested that ATP-independent cleavage is an activity of the normal polyadenylation machinery. The ATP-independent cleavage product, however, did not behave as an intermediate in polyadenylation. The alternate RNA did not preferentially chase into correctly cleaved material upon readdition of ATP; instead, poly(A) was added to the 3' terminus of the cleaved RNA during a chase. Purified ATP-independent cleavage RNA, however, was a substrate for correct cleavage when reintroduced into the nuclear extract. Thus, alternate cleavage of polyadenylation sites adjacent to a required downstream sequence element is directed by the polyadenylation machinery in the absence of ATP.
Collapse
|
24
|
Isolation and characterization of expressible cDNA clones encoding the M1 and M2 subunits of mouse ribonucleotide reductase. Mol Cell Biol 1987. [PMID: 3025593 DOI: 10.1128/mcb.6.10.3433] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian ribonucleotide reductase consists of two nonidentical subunits, proteins M1 and M2, which are differentially regulated during the cell cycle. We have isolated expressible cDNA clones of both subunits from an Okayama-Berg cDNA library made with mRNA from hydroxyurea-resistant, M2 protein-overproducing mouse TA3 cells. Expression of M2 protein could be demonstrated by electron paramagnetic resonance spectroscopy after transfection of COS-7 monkey cells with the plasmid. Electrophoresis and blot analyses of the parent and hydroxyurea-resistant TA3 mRNA revealed two M2 transcripts, a major one of 2.1 kilobases and a minor one of about 1.6 kilobases. Restriction endonuclease mapping of the corresponding cDNAs indicated that the two mRNAs differed only in the length of the 3' untranslated ends. By contrast, there was only one mRNA corresponding to the M1 protein, and its mobility corresponded to about 3.1 kilobases. The hydroxyurea-resistant TA3 cells contained a 50- to 100-fold excess of the M2 mRNAs over that of the parent cells and a 10-fold excess of the M1 mRNA. However, a Southern blot analysis of the corresponding genomic DNA sequences showed that the M2 gene was amplified fivefold but the M1 gene was still single copy. The complete nucleotide sequence of the 2,111-base-pair-long M2 cDNA revealed an open reading frame coding for 390 amino acids, which corresponds to a molecular weight of 45,100. The mouse M2 protein sequence was quite homologous to the equivalent protein in the clam Spisula solidissima, while the homology to the smaller subunits of Epstein-Barr virus, herpes simplex virus type 2, and Escherichia coli ribonucleotide reductases were less pronounced.
Collapse
|
25
|
Hofbauer R, Müllner E, Seiser C, Wintersberger E. Cell cycle regulated synthesis of stable mouse thymidine kinase mRNA is mediated by a sequence within the cDNA. Nucleic Acids Res 1987; 15:741-52. [PMID: 3822814 PMCID: PMC340464 DOI: 10.1093/nar/15.2.741] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The cDNA for mouse thymidine kinase (TK) was isolated from a cDNA library in lambda-gt11 and sequenced. It was used as a probe to follow the time course of TK mRNA expression in growth stimulated mouse fibroblasts. Linked to the HSV-TK promoter the cDNA was able to transform LTK-cells to the TK+ phenotype. The transformed cells expressed the TK mRNA and enzyme activity in a growth dependent fashion suggesting that the regulatory element is localized on the cDNA.
Collapse
|
26
|
Abstract
The murine dihydrofolate reductase gene codes for mRNAs that differ in the length of their 3' untranslated region as well as in the length of their 5' leader sequence. In addition, the dihydrofolate reductase promoter functions bidirectionally, producing a series of RNAs from the opposite strand than the dihydrofolate reductase mRNAs. We have examined the production of these RNAs and their heterogeneous 5' and 3' termini as mouse 3T6 cells progress through a physiologically continuous cell cycle. We found that all of the transcripts traverse the cell cycle in a similar manner, increasing at the G1/S boundary without significantly changing their ratios relative to one another. We conclude that cell-cycle regulation of dihydrofolate reductase is achieved without recruiting new transcription initiation sites and without a change in polyadenylation sites. It appears that the mechanism responsible for the transcriptional cell-cycle regulation of the dihydrofolate reductase gene is manifested only by transiently increasing the efficiency of transcription at the dihydrofolate reductase promoter.
Collapse
|
27
|
c-erbB activation in avian leukosis virus-induced erythroblastosis: multiple epidermal growth factor receptor mRNAs are generated by alternative RNA processing. Mol Cell Biol 1986. [PMID: 3023963 DOI: 10.1128/mcb.6.9.3128] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian leukosis virus-induced erythroblastosis results from the specific interruption of the host oncogene, c-erbB, by the insertion of an intact provirus. This insertion results in the expression of two size classes (3.6 and 7.0 kilobases [kb]) of truncated c-erbB transcripts which are initiated in the 5' long terminal repeat of the integrated provirus. Through sequence analysis of erbB cDNA clones we have previously shown that the 3.6-kb activated erbB mRNA contains portions of viral gag and env genes fused to c-erbB sequences (T.W. Nilsen, P.A. Maroney, R.G. Goodwin, F.M. Rottman, L.B. Crittenden, M.A. Raines, and H.-J. Kung, Cell 41:719-726, 1985). In this report we show that the 7-kb mRNA differs from the shorter activated c-erbB mRNA in the length of its 3' untranslated sequence such that the longer mRNA has an extremely long (4.3 kb) 3' untranslated sequence. Additionally, we demonstrate that activated c-erbB mRNA precursors can be processed by alternative splicing to yield mRNAs with viral gag sequences fused directly to c-erbB sequences. Finally, blot hybridization evidence suggests that the two size classes of activated c-erbB mRNA in erythroblastic tissue represent truncated versions of the two c-erbB mRNAs present in normal tissue.
Collapse
|
28
|
5' Nucleotide sequences influence serum-modulated expression of a human dihydrofolate reductase minigene. Mol Cell Biol 1986. [PMID: 3022136 DOI: 10.1128/mcb.6.3.878] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human dihydrofolate reductase (DHFR) gene sequences were isolated from DHFR gene-amplified breast cancer cell line MCF-7. These genomic sequences plus human DHFR cDNA sequences were used to construct a DHFR minigene. Calcium phosphate-mediated transfer of minigene DNA into DHFR gene-deleted Chinese hamster ovary cells converted these cells to a DHFR+ phenotype at a frequency of 0.12%. Minigene-transfected cells contained 20 to 30 minigene copies per cell and had DHFR enzyme levels similar to those of wild-type MCF-7 human cells (1.4 pmol/mg of protein). In contrast to gene-amplified MCF-7 cells, which contained multiple DHFR mRNA species (1.1, 1.6, 3.8, and 5.3 kilobases), only a single 3.8-kilobase DHFR mRNA was found in minigene-transfected cells. Previous studies on normal cells demonstrated modulation of DHFR levels by a variety of conditions which altered cell growth. When cell growth was induced in minigene-transfected cells by release from serum deprivation and DHFR levels were assayed at the time of maximum DNA synthesis, these levels were increased 2.4 to 3.7-fold. In contrast, the DHFR levels in cells transfected with a construct made from DHFR cDNA and viral promoter, intron, and termination sequences were unchanged. Minigene deletions were made and analyzed to determine the DHFR gene sequences responsible for regulation. Deletion of sequences upstream from 322 base pairs 5' to the start of transcription or 90 base pairs downstream from the termination of translation (which removed most of the 3' nontranslated region of the gene) did not alter the responsiveness of minigene-transfected cells to serum deprivation. However, when sequences between 322 and 113 base pairs 5' to the start of transcription were deleted, serum-dependent expression in minigene-transfected cells was affected.
Collapse
|
29
|
Sperry AO, Berget SM. In vitro cleavage of the simian virus 40 early polyadenylation site adjacent to a required downstream TG sequence. Mol Cell Biol 1986; 6:4734-41. [PMID: 3025668 PMCID: PMC367259 DOI: 10.1128/mcb.6.12.4734-4741.1986] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Exogenous RNA containing the simian virus 40 early polyadenylation site was efficiently and accurately polyadenylated in in vitro nuclear extracts. Correct cleavage required ATP. In the absence of ATP, nonpoly(A)+ products accumulated which were 18 to 20 nucleotides longer than the RNA generated by correct cleavage; the longer RNA terminated adjacent to the downstream TG element required for polyadenylation. In the presence of ATP analogs, alternate cleavage was not observed; instead, correct cleavage without poly(A) addition occurred. ATP-independent cleavage of simian virus 40 early RNA had many of the same properties as correct cleavage including requirements for an intact AAUAAA element, a proximal 3' terminus, and extract small nuclear ribonucleoproteins. This similarity in reaction parameters suggested that ATP-independent cleavage is an activity of the normal polyadenylation machinery. The ATP-independent cleavage product, however, did not behave as an intermediate in polyadenylation. The alternate RNA did not preferentially chase into correctly cleaved material upon readdition of ATP; instead, poly(A) was added to the 3' terminus of the cleaved RNA during a chase. Purified ATP-independent cleavage RNA, however, was a substrate for correct cleavage when reintroduced into the nuclear extract. Thus, alternate cleavage of polyadenylation sites adjacent to a required downstream sequence element is directed by the polyadenylation machinery in the absence of ATP.
Collapse
|
30
|
Seiler-Tuyns A, Paterson BM. A chimeric mouse histone H4 gene containing either an intron or poly(A) addition signal behaves like a basal histone. Nucleic Acids Res 1986; 14:8845-62. [PMID: 3024121 PMCID: PMC311915 DOI: 10.1093/nar/14.22.8845] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have modified the basic structure of the mouse H4 histone gene by introducing, in one case, the IVS-II of the human beta globin gene in the middle of the H4 coding region and, in the second case, the poly(A) addition signal from either the chicken vimentin gene or the alpha globin gene, displacing the hairpin loop structure in the 3' direction. Constructs were placed into the vector, PSV2gpt, and stably transformed into L cells. Pools of 100-500 independent transformants were analyzed for H4 expression. Even though the intron is processed correctly, the growth regulated expression of the modified gene is lost and the gene is now expressed at a constant basal level. Furthermore, unprocessed transcripts accumulate in the nucleus of Go cells when compared to exponentially growing cultures. Polyadenylated H4 RNA is correctly processed but expressed at reduced levels (30 fold) in a constitutive manner, independent of the growth state of the cell. The altered expression of these chimeric H4 genes compared to the endogenous copy or the transfected wild type gene suggests a structural model to explain the cell cycle independent expression of the basal histones.
Collapse
|
31
|
Identification of sequences in the herpes simplex virus thymidine kinase gene required for efficient processing and polyadenylation. Mol Cell Biol 1986. [PMID: 3018551 DOI: 10.1128/mcb.5.8.2104] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus (HSV) type 1 thymidine kinase gene (tk) was resected from its 3' end with BAL 31 exonuclease. Two sets of plasmids were isolated that lacked information distal to the two copies of the hexanucleotide 5'-AATAAA-3' located at the 3' end of the HSV tk gene. The presence of a simian virus 40 origin of DNA replication in each plasmid facilitated analysis of patterns of transcription in transfected Cos-1 monkey cells. Transcription analyses were performed with an S1 nuclease protection assay. Efficient processing and polyadenylation at the normal site still occurred when all sequences more than 44 or 46 base pairs (bp) downstream from the first AATAAA were removed (pTK311R/SV010 and pTK209R/SV010). Removal of an additional 7 bp (pTK312R/SV010) decreased the amount of tk mRNA processed at that normal site, and tk mRNA polyadenylated at a cryptic site within pBR322 sequences began to appear. The normal processing and polyadenylation site was not used at all when an additional 12 bp was removed (pTK314R/SV010); the small amount of tk mRNA produced was processed and polyadenylated at the cryptic pBR322 site. The region of the tk gene critical for efficient processing and polyadenylation of tk mRNA is located 20 to 38 bp downstream from the first AATAAA, distal to the polyadenylation site, and as RNA can form a stem-loop structure containing AAUAAA. Similar G + T-rich elements were located in DNA fragments which substitute efficiently for the HSV tk processing and polyadenylation signal and were not found in AATAAA-containing DNA fragments which substitute inefficiently for the HSV tk signal.
Collapse
|
32
|
Analysis of the mouse dhfr promoter region: existence of a divergently transcribed gene. Mol Cell Biol 1986. [PMID: 3018531 DOI: 10.1128/mcb.5.8.1847] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of murine dihydrofolate reductase (dhfr) gene amplification mutants enabled us to identify important structural and functional features of the dhfr promoter region. We found another transcription unit, at least 14 kilobases in size, which initiates within 130 base pairs of the major dhfr transcript and is transcribed divergently. The 5' ends of both transcripts were analyzed and found to have multiple initiation sites. The major dhfr transcript and the divergent transcript appear to share the same promoter region; the longer transcripts of the dhfr gene overlap with the divergent transcripts and use a different promoter region. The divergent transcript appears to code for a protein; an homologous sequence to its first exon is found in the corresponding location near the human dhfr gene.
Collapse
|
33
|
Thelander L, Berg P. Isolation and characterization of expressible cDNA clones encoding the M1 and M2 subunits of mouse ribonucleotide reductase. Mol Cell Biol 1986; 6:3433-42. [PMID: 3025593 PMCID: PMC367091 DOI: 10.1128/mcb.6.10.3433-3442.1986] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mammalian ribonucleotide reductase consists of two nonidentical subunits, proteins M1 and M2, which are differentially regulated during the cell cycle. We have isolated expressible cDNA clones of both subunits from an Okayama-Berg cDNA library made with mRNA from hydroxyurea-resistant, M2 protein-overproducing mouse TA3 cells. Expression of M2 protein could be demonstrated by electron paramagnetic resonance spectroscopy after transfection of COS-7 monkey cells with the plasmid. Electrophoresis and blot analyses of the parent and hydroxyurea-resistant TA3 mRNA revealed two M2 transcripts, a major one of 2.1 kilobases and a minor one of about 1.6 kilobases. Restriction endonuclease mapping of the corresponding cDNAs indicated that the two mRNAs differed only in the length of the 3' untranslated ends. By contrast, there was only one mRNA corresponding to the M1 protein, and its mobility corresponded to about 3.1 kilobases. The hydroxyurea-resistant TA3 cells contained a 50- to 100-fold excess of the M2 mRNAs over that of the parent cells and a 10-fold excess of the M1 mRNA. However, a Southern blot analysis of the corresponding genomic DNA sequences showed that the M2 gene was amplified fivefold but the M1 gene was still single copy. The complete nucleotide sequence of the 2,111-base-pair-long M2 cDNA revealed an open reading frame coding for 390 amino acids, which corresponds to a molecular weight of 45,100. The mouse M2 protein sequence was quite homologous to the equivalent protein in the clam Spisula solidissima, while the homology to the smaller subunits of Epstein-Barr virus, herpes simplex virus type 2, and Escherichia coli ribonucleotide reductases were less pronounced.
Collapse
|
34
|
Kao HT, Nevins JR. Alteration of cellular gene expression in adenovirus transformed cells by post-transcriptional mechanisms. Nucleic Acids Res 1986; 14:7253-63. [PMID: 3763404 PMCID: PMC311750 DOI: 10.1093/nar/14.18.7253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have isolated cDNA clones complementary to human mRNAs that are expressed at elevated levels in 293 cells, adenovirus-transformed human embryonic kidney cells, as compared to a normal counterpart of this cell line. Approximately 200 clones out of 100,000 that were screened were positive; 40 of these were isolated, of which 31 were determined to be unique and were further characterized. Each clone detected a mRNA that was 5 to 50 times more abundant in 293 cells than in the non-transformed HEK cell line. For several of these transcripts, the elevated expression appeared to be a function of transformation since they were also high in other human tumor cell lines. Strikingly, we have found that post-transcriptional control is largely responsible for the regulation of the abundance of these mRNAs.
Collapse
|
35
|
Goodwin RG, Rottman FM, Callaghan T, Kung HJ, Maroney PA, Nilsen TW. c-erbB activation in avian leukosis virus-induced erythroblastosis: multiple epidermal growth factor receptor mRNAs are generated by alternative RNA processing. Mol Cell Biol 1986; 6:3128-33. [PMID: 3023963 PMCID: PMC367047 DOI: 10.1128/mcb.6.9.3128-3133.1986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Avian leukosis virus-induced erythroblastosis results from the specific interruption of the host oncogene, c-erbB, by the insertion of an intact provirus. This insertion results in the expression of two size classes (3.6 and 7.0 kilobases [kb]) of truncated c-erbB transcripts which are initiated in the 5' long terminal repeat of the integrated provirus. Through sequence analysis of erbB cDNA clones we have previously shown that the 3.6-kb activated erbB mRNA contains portions of viral gag and env genes fused to c-erbB sequences (T.W. Nilsen, P.A. Maroney, R.G. Goodwin, F.M. Rottman, L.B. Crittenden, M.A. Raines, and H.-J. Kung, Cell 41:719-726, 1985). In this report we show that the 7-kb mRNA differs from the shorter activated c-erbB mRNA in the length of its 3' untranslated sequence such that the longer mRNA has an extremely long (4.3 kb) 3' untranslated sequence. Additionally, we demonstrate that activated c-erbB mRNA precursors can be processed by alternative splicing to yield mRNAs with viral gag sequences fused directly to c-erbB sequences. Finally, blot hybridization evidence suggests that the two size classes of activated c-erbB mRNA in erythroblastic tissue represent truncated versions of the two c-erbB mRNAs present in normal tissue.
Collapse
|
36
|
Gibson CW, Rittling SR, Hirschhorn RR, Kaczmarek L, Calabretta B, Stiles CD, Baserga R. Cell cycle dependent genes inducible by different mitogens in cells from different species. Mol Cell Biochem 1986; 71:61-9. [PMID: 3755218 DOI: 10.1007/bf00219329] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A number of genes and cDNA sequences (including at least four oncogenes) are known to be expressed in a cell cycle-dependent manner, i.e. the levels of specific mRNAs vary with the phases of the cell cycle. In order to explore the significance of some of these sequences in the mitogenic response, we have investigated the expression of 8 cell cycle-dependent sequences (plus two control sequences, not expressed in a cell cycle-dependent manner) under a variety of conditions. These conditions included cells of different types, from different species, stimulated to proliferate by different mitogens. The genes (or sequences) studied included five cDNA clones whose sequences are preferentially expressed in early G1, i.e. two cDNA clones inducible by platelet-derived growth factor (JE-3 and KC-1), and three cDNA clones inducible by serum (2A9, 2F1, 4F1); and three oncogenes (c-myc, c-rasHa and p53) whose expression is known to be cycle-dependent. All of the tested genes, except 2A9, c-rasHa and the control genes, are expressed in a cell cycle-dependent manner in human peripheral blood mononuclear cells stimulated by phytohemagglutinin and in serum-stimulated mouse and Syrian hamster fibroblasts. The inducibility of these genes by different mitogens in cells of different types and from different species strongly suggests that these genes play a role in cell cycle progression. This conclusion is further supported by the known structural and functional similarities between cell-cycle dependent genes, oncogenes and genes coding for cell-cycle related molecules.
Collapse
|
37
|
Kim SH, Moores JC, David D, Respess JG, Jolly DJ, Friedmann T. The organization of the human HPRT gene. Nucleic Acids Res 1986; 14:3103-18. [PMID: 3008106 PMCID: PMC339724 DOI: 10.1093/nar/14.7.3103] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The organization of the X-linked gene for human hypoxanthine phosphoribosyltransferase (HPRT, EC 2.4.2.8.) has been determined by a combination of restriction endonuclease mapping, heteroduplex analysis and DNA sequence analysis of overlapping genomic clones. The entire gene is 42 kilobases in length and split into 9 exons. The sizes of the 7 internal exons and the exon-intron boundaries are identical to those of mouse HPRT gene. The 5' end of the gene lacks the prototypical 5' transcriptional regulatory sequence elements but contains extremely GC-rich sequences and five GC hexanucleotide motifs (5'-GGCGGG-3'). These structural features are very similar to those found in the mouse HPRT gene and to some of the regulatory signals common to a class of constitutively expressed "housekeeping" genes. Several transcriptional start sites have been identified by nuclease protection studies. Extensive sequence homology between the mouse and human genes is found in the 3' non-coding portion of the gene.
Collapse
|
38
|
Goldsmith ME, Beckman CA, Cowan KH. 5' Nucleotide sequences influence serum-modulated expression of a human dihydrofolate reductase minigene. Mol Cell Biol 1986; 6:878-86. [PMID: 3022136 PMCID: PMC367588 DOI: 10.1128/mcb.6.3.878-886.1986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human dihydrofolate reductase (DHFR) gene sequences were isolated from DHFR gene-amplified breast cancer cell line MCF-7. These genomic sequences plus human DHFR cDNA sequences were used to construct a DHFR minigene. Calcium phosphate-mediated transfer of minigene DNA into DHFR gene-deleted Chinese hamster ovary cells converted these cells to a DHFR+ phenotype at a frequency of 0.12%. Minigene-transfected cells contained 20 to 30 minigene copies per cell and had DHFR enzyme levels similar to those of wild-type MCF-7 human cells (1.4 pmol/mg of protein). In contrast to gene-amplified MCF-7 cells, which contained multiple DHFR mRNA species (1.1, 1.6, 3.8, and 5.3 kilobases), only a single 3.8-kilobase DHFR mRNA was found in minigene-transfected cells. Previous studies on normal cells demonstrated modulation of DHFR levels by a variety of conditions which altered cell growth. When cell growth was induced in minigene-transfected cells by release from serum deprivation and DHFR levels were assayed at the time of maximum DNA synthesis, these levels were increased 2.4 to 3.7-fold. In contrast, the DHFR levels in cells transfected with a construct made from DHFR cDNA and viral promoter, intron, and termination sequences were unchanged. Minigene deletions were made and analyzed to determine the DHFR gene sequences responsible for regulation. Deletion of sequences upstream from 322 base pairs 5' to the start of transcription or 90 base pairs downstream from the termination of translation (which removed most of the 3' nontranslated region of the gene) did not alter the responsiveness of minigene-transfected cells to serum deprivation. However, when sequences between 322 and 113 base pairs 5' to the start of transcription were deleted, serum-dependent expression in minigene-transfected cells was affected.
Collapse
|
39
|
Abstract
The murine dihydrofolate reductase gene codes for mRNAs that differ in the length of their 3' untranslated region as well as in the length of their 5' leader sequence. In addition, the dihydrofolate reductase promoter functions bidirectionally, producing a series of RNAs from the opposite strand than the dihydrofolate reductase mRNAs. We have examined the production of these RNAs and their heterogeneous 5' and 3' termini as mouse 3T6 cells progress through a physiologically continuous cell cycle. We found that all of the transcripts traverse the cell cycle in a similar manner, increasing at the G1/S boundary without significantly changing their ratios relative to one another. We conclude that cell-cycle regulation of dihydrofolate reductase is achieved without recruiting new transcription initiation sites and without a change in polyadenylation sites. It appears that the mechanism responsible for the transcriptional cell-cycle regulation of the dihydrofolate reductase gene is manifested only by transiently increasing the efficiency of transcription at the dihydrofolate reductase promoter.
Collapse
|
40
|
Abstract
The thymidine kinase (TK) gene has been isolated from human genomic DNA. The gene was passaged twice by transfection of LTK- cells with human chromosomal DNA, and genomic libraries were made in lambda Charon 30 from a second-round TK+ transformant. When the library was screened with a human Alu probe, seven overlapping lambda clones from the human TK locus were obtained. None of the seven contained a functional TK gene as judged by transfection analysis, but several combinations of clones gave rise to TK+ colonies when cotransfected into TK- cells. A functional cDNA clone encoding the human TK gene has also been isolated. Using this cDNA clone as a probe in restriction enzyme/blot hybridization analyses, we have mapped the coding sequences and direction of transcription of the gene. We have also used a single-copy subclone from within the coding region to monitor steady-state levels of TK mRNA in serum-stimulated and simian virus 40-infected simian CV1 tissue culture cells. Our results indicate that the previously reported increase in TK enzyme levels seen after either treatment is paralleled by an equivalent increase in the steady-state levels of TK mRNA. In the case of simian virus 40-infected cells, the induction was delayed by 8 to 12 h, which is the length of time after infection required for early viral protein synthesis. In both cases, induction of TK mRNA coincides with the onset of DNA synthesis, but virally infected cells ultimately accumulate more TK mRNA than do serum-stimulated cells.
Collapse
|
41
|
Crouse GF, Leys EJ, McEwan RN, Frayne EG, Kellems RE. Analysis of the mouse dhfr promoter region: existence of a divergently transcribed gene. Mol Cell Biol 1985; 5:1847-58. [PMID: 3018531 PMCID: PMC366900 DOI: 10.1128/mcb.5.8.1847-1858.1985] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The use of murine dihydrofolate reductase (dhfr) gene amplification mutants enabled us to identify important structural and functional features of the dhfr promoter region. We found another transcription unit, at least 14 kilobases in size, which initiates within 130 base pairs of the major dhfr transcript and is transcribed divergently. The 5' ends of both transcripts were analyzed and found to have multiple initiation sites. The major dhfr transcript and the divergent transcript appear to share the same promoter region; the longer transcripts of the dhfr gene overlap with the divergent transcripts and use a different promoter region. The divergent transcript appears to code for a protein; an homologous sequence to its first exon is found in the corresponding location near the human dhfr gene.
Collapse
|
42
|
Cole CN, Stacy TP. Identification of sequences in the herpes simplex virus thymidine kinase gene required for efficient processing and polyadenylation. Mol Cell Biol 1985; 5:2104-13. [PMID: 3018551 PMCID: PMC366928 DOI: 10.1128/mcb.5.8.2104-2113.1985] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The herpes simplex virus (HSV) type 1 thymidine kinase gene (tk) was resected from its 3' end with BAL 31 exonuclease. Two sets of plasmids were isolated that lacked information distal to the two copies of the hexanucleotide 5'-AATAAA-3' located at the 3' end of the HSV tk gene. The presence of a simian virus 40 origin of DNA replication in each plasmid facilitated analysis of patterns of transcription in transfected Cos-1 monkey cells. Transcription analyses were performed with an S1 nuclease protection assay. Efficient processing and polyadenylation at the normal site still occurred when all sequences more than 44 or 46 base pairs (bp) downstream from the first AATAAA were removed (pTK311R/SV010 and pTK209R/SV010). Removal of an additional 7 bp (pTK312R/SV010) decreased the amount of tk mRNA processed at that normal site, and tk mRNA polyadenylated at a cryptic site within pBR322 sequences began to appear. The normal processing and polyadenylation site was not used at all when an additional 12 bp was removed (pTK314R/SV010); the small amount of tk mRNA produced was processed and polyadenylated at the cryptic pBR322 site. The region of the tk gene critical for efficient processing and polyadenylation of tk mRNA is located 20 to 38 bp downstream from the first AATAAA, distal to the polyadenylation site, and as RNA can form a stem-loop structure containing AAUAAA. Similar G + T-rich elements were located in DNA fragments which substitute efficiently for the HSV tk processing and polyadenylation signal and were not found in AATAAA-containing DNA fragments which substitute inefficiently for the HSV tk signal.
Collapse
|
43
|
Abstract
The thymidine kinase (TK) gene has been isolated from human genomic DNA. The gene was passaged twice by transfection of LTK- cells with human chromosomal DNA, and genomic libraries were made in lambda Charon 30 from a second-round TK+ transformant. When the library was screened with a human Alu probe, seven overlapping lambda clones from the human TK locus were obtained. None of the seven contained a functional TK gene as judged by transfection analysis, but several combinations of clones gave rise to TK+ colonies when cotransfected into TK- cells. A functional cDNA clone encoding the human TK gene has also been isolated. Using this cDNA clone as a probe in restriction enzyme/blot hybridization analyses, we have mapped the coding sequences and direction of transcription of the gene. We have also used a single-copy subclone from within the coding region to monitor steady-state levels of TK mRNA in serum-stimulated and simian virus 40-infected simian CV1 tissue culture cells. Our results indicate that the previously reported increase in TK enzyme levels seen after either treatment is paralleled by an equivalent increase in the steady-state levels of TK mRNA. In the case of simian virus 40-infected cells, the induction was delayed by 8 to 12 h, which is the length of time after infection required for early viral protein synthesis. In both cases, induction of TK mRNA coincides with the onset of DNA synthesis, but virally infected cells ultimately accumulate more TK mRNA than do serum-stimulated cells.
Collapse
|
44
|
Knight E, Anton ED, Fahey D, Friedland BK, Jonak GJ. Interferon regulates c-myc gene expression in Daudi cells at the post-transcriptional level. Proc Natl Acad Sci U S A 1985; 82:1151-4. [PMID: 3856253 PMCID: PMC397212 DOI: 10.1073/pnas.82.4.1151] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
c-myc gene mRNA is reduced by greater than 75% in the human lymphoblastoid cell line Daudi when growth is inhibited by treatment with human interferon beta (IFN-beta). In the present communication, we describe the effect of IFN-beta treatment on transcription of the c-myc gene and on the steady-state level of c-myc mRNA in the cytoplasm of Daudi cells. The results show that, although the rate of c-myc transcription is not significantly different in nuclei isolated either from untreated cells or from those treated with IFN-beta for 3 or 24 hr, the level of c-myc mRNA in the cytoplasm is reduced by 60% within 3 hr of IFN-beta treatment. These results suggest that IFN-beta regulates the c-myc mRNA at a post-transcriptional level. These results are in contrast to the regulation of two IFN-beta-induced genes that under identical conditions are regulated in these cells at the transcriptional level. We have also detected induction of the (2'-5')oligoadenylate synthetase (2-5A synthetase) gene in IFN-beta-treated Daudi cells. Since certain c-myc transcripts have the capacity to form double-stranded RNA regions, we propose that one mechanism by which c-myc could be regulated post-transcriptionally in IFN-beta-treated cells is by activating, through its own double-strandedness, the 2-5A synthetase/RNase L endonuclease system, which would cause selective degradation of the c-myc RNA.
Collapse
|
45
|
Post-transcriptional regulation of the abundance of mRNAs encoding alpha-tubulin and a 94,000-dalton protein in teratocarcinoma-derived stem cells versus differentiated cells. Mol Cell Biol 1985. [PMID: 6513923 DOI: 10.1128/mcb.4.11.2428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Changes in the expression of the genes encoding alpha-tubulin and a 94,000-dalton protein (p94) specified by a cDNA clone, p4-30, were examined in a differentiated teratocarcinoma-derived parietal endoderm cell line, PYS-2, and an undifferentiated teratocarcinoma stem cell line, F9. Relative to other proteins or mRNA species, the synthesis rate of the alpha-tubulins and of p94, as well as the levels of their corresponding cytoplasmic mRNAs, were lower in PYS-2 than in F9 cells. The decrease was greater for the relative abundance of cytoplasmic alpha-tubulin mRNA than for p94 mRNA. Similarly, induction of differentiation of F9 cells by simultaneous exposure to retinoic acid (RA) and dibutyryl cyclic AMP resulted in reduced relative levels of the cytoplasmic mRNAs for these proteins. The reduction in abundance of the two RNA species was not due to a decrease in growth rate since the differentiated cells, PYS-2, RA-treated F9, and RA plus dibutyryl cyclic AMP-treated F9 cells, grew at a rate similar to that of undifferentiated F9 cells. However, induction of differentiation of F9 cells by treatment with RA alone did not cause down-regulation of the two RNA species. The relative levels of total cellular RNA encoding alpha-tubulin and p94 in PYS-2 cells were also lower than those in F9 cells to an extent comparable to the decrease in the cytoplasmic RNAs. Since the apparent relative rates of RNA transcription were similar in both cell types, we conclude that the reduction in relative levels of the alpha-tubulin and p94 RNAs in the cell depends largely on the relative stability of the two RNAs and not on the relative rates of transcription. The faster disappearance of the two RNA species relative to other cellular RNAs from actinomycin D-treated PYS-2 compared with F9 cells is consistent with this interpretation.
Collapse
|
46
|
Use of a cell cycle mutant to delineate the critical period for the control of histone mRNA levels in the mammalian cell cycle. Mol Cell Biol 1985. [PMID: 6513920 DOI: 10.1128/mcb.4.11.2364] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temporal analysis of DNA replication and histone mRNA accumulation in a hamster fibroblast cell cycle mutant (K12) showed that histone mRNA accumulates periodically during the cell cycle and reaches its highest level in the S phase. The direct correlation between the initiation of DNA synthesis and the accumulation of histone mRNA to high levels in S phase demonstrated the strict interdependence of these two events. Moreover, a critical period necessary for histone mRNA accumulation occurred late in G1 phase. If cells were incubated at the nonpermissive temperature during this critical period, the amount of histone mRNA remained at the basal level. Transcription rate measurements indicated that the triggering of histone mRNA synthesis occurred in late G1 and this mRNA was synthesized at its maximal rate 3 to 5 h before its peak of accumulation. However, if cells were prohibited from synthesizing DNA as a consequence of the temperature-sensitive block in G1, the synthesis of histone mRNA was not initiated.
Collapse
|
47
|
Abstract
We purified and characterized the mRNAs coding for each of the three subunits of Xenopus fibrinogen. Purification was accomplished by electrophoretic separation of liver polyadenylated RNA in a fully denaturing gel, followed by recovery of the RNA from the gel via transfer to an ion-exchange membrane. This procedure yielded fractions which were highly enriched for the mRNAs for each of the fibrinogen chains. The fibrinogen mRNAs were identified by two methods: (i) in vitro translation followed by subunit-specific cleavage with the proteases thrombin and batroxobin; and (ii) cross-hybridization with cDNA clones for individual subunits of rat fibrinogen. The results demonstrate that the A alpha and gamma chains of frog fibrinogen are each coded by a single mRNA species. The A alpha mRNA is ca. 3,100 nucleotides in length, which is nearly twice the minimum size required to code for the A alpha precursor polypeptide. The gamma chain mRNA comprises about 1,600 bases and includes only a small untranslated region. In contrast, the B beta subunit is synthesized from two mRNAs, one of which is 2,500 and the other 1,800 nucleotides long. The 2,500-base mRNA includes a large noncoding region, whereas the smaller one is near the minimum required size. The larger B beta mRNA is ca, fivefold more abundant that the smaller species.
Collapse
|
48
|
tk Enzyme expression in differentiating muscle cells is regulated through an internal segment of the cellular tk gene. Mol Cell Biol 1984. [PMID: 6493233 DOI: 10.1128/mcb.4.9.1777] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thymidine kinase (tk) enzyme expression is shut down when cultured skeletal muscle cells terminally differentiate. This regulation is mediated by a rapid and specific decline in the abundance of cellular tk mRNA. tk-deficient mouse myoblasts were transformed to the tk-positive phenotype by using both the cellular tk gene of the chicken and the herpesvirus tk gene. Myoblasts transformed with the cellular tk gene effectively regulate tk enzyme activity upon terminal differentiation. Conversely, myoblasts transformed with the herpesvirus tk gene continue to express tk enzyme activity in postreplicative muscle cells. A regulated pattern of expression is retained when the promoter of the cellular tk gene is replaced by the promoter of the herpesvirus tk gene. Moreover, the cellular tk gene is appropriately regulated during terminal muscle differentiation when its 3' terminus is removed and replaced by the terminus of the viral tk gene. Thus, the element of the cellular tk gene sufficient to specify its regulation is entirely intragenic.
Collapse
|
49
|
Artishevsky A, Delegeane AM, Lee AS. Use of a cell cycle mutant to delineate the critical period for the control of histone mRNA levels in the mammalian cell cycle. Mol Cell Biol 1984; 4:2364-9. [PMID: 6513920 PMCID: PMC369066 DOI: 10.1128/mcb.4.11.2364-2369.1984] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Temporal analysis of DNA replication and histone mRNA accumulation in a hamster fibroblast cell cycle mutant (K12) showed that histone mRNA accumulates periodically during the cell cycle and reaches its highest level in the S phase. The direct correlation between the initiation of DNA synthesis and the accumulation of histone mRNA to high levels in S phase demonstrated the strict interdependence of these two events. Moreover, a critical period necessary for histone mRNA accumulation occurred late in G1 phase. If cells were incubated at the nonpermissive temperature during this critical period, the amount of histone mRNA remained at the basal level. Transcription rate measurements indicated that the triggering of histone mRNA synthesis occurred in late G1 and this mRNA was synthesized at its maximal rate 3 to 5 h before its peak of accumulation. However, if cells were prohibited from synthesizing DNA as a consequence of the temperature-sensitive block in G1, the synthesis of histone mRNA was not initiated.
Collapse
|
50
|
Holland LJ, Wangh LJ. Xenopus fibrinogen: characterization of the mRNAs for the three subunits. Mol Cell Biol 1984; 4:2543-8. [PMID: 6513931 PMCID: PMC369088 DOI: 10.1128/mcb.4.11.2543-2548.1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We purified and characterized the mRNAs coding for each of the three subunits of Xenopus fibrinogen. Purification was accomplished by electrophoretic separation of liver polyadenylated RNA in a fully denaturing gel, followed by recovery of the RNA from the gel via transfer to an ion-exchange membrane. This procedure yielded fractions which were highly enriched for the mRNAs for each of the fibrinogen chains. The fibrinogen mRNAs were identified by two methods: (i) in vitro translation followed by subunit-specific cleavage with the proteases thrombin and batroxobin; and (ii) cross-hybridization with cDNA clones for individual subunits of rat fibrinogen. The results demonstrate that the A alpha and gamma chains of frog fibrinogen are each coded by a single mRNA species. The A alpha mRNA is ca. 3,100 nucleotides in length, which is nearly twice the minimum size required to code for the A alpha precursor polypeptide. The gamma chain mRNA comprises about 1,600 bases and includes only a small untranslated region. In contrast, the B beta subunit is synthesized from two mRNAs, one of which is 2,500 and the other 1,800 nucleotides long. The 2,500-base mRNA includes a large noncoding region, whereas the smaller one is near the minimum required size. The larger B beta mRNA is ca, fivefold more abundant that the smaller species.
Collapse
|