1
|
Grandin N, Gallego ME, White CI, Charbonneau M. Inhibition of the alternative lengthening of telomeres pathway by subtelomeric sequences in Saccharomyces cerevisiae. DNA Repair (Amst) 2020; 96:102996. [PMID: 33126043 DOI: 10.1016/j.dnarep.2020.102996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, telomerase is constitutively active and is essential for chromosome end protection and illimited proliferation of cell populations. However, upon inactivation of telomerase, alternative mechanims of telomere maintenance allow proliferation of only extremely rare survivors. S. cerevisiae type I and type II survivors differ by the nature of the donor sequences used for repair by homologous recombination of the uncapped terminal TG1-3 telomeric sequences. Type I amplifies the subtelomeric Y' sequences and is more efficient than type II, which amplifies the terminal TG1-3 repeats. However, type II survivors grow faster than type I survivors and can easily outgrow them in liquid cultures. The mechanistic interest of studying S. cerevisiae telomeric recombination is reinforced by the fact that type II recombination is the equivalent of the alternative lengthening of telomeres (ALT) pathway that is used by 5-15 % of cancer types as an alternative to telomerase reactivation. In budding yeast, only around half of the 32 telomeres harbor Y' subtelomeric elements. We report here that in strains harboring Y' elements on all telomeres, type II survivors are not observed, most likely due to an increase in the efficiency of type I recombination. However, in a temperature-sensitive cdc13-1 mutant grown at semi-permissive temperature, the increased amount of telomeric TG1-3 repeats could overcome type II inhibition by the subtelomeric Y' sequences. Strikingly, in the 100 % Y' strain the replicative senescence crisis normally provoked by inactivation of telomerase completely disappeared and the severity of the crisis was proportional to the percentage of chromosome-ends lacking Y' subtelomeric sequences. The present study highlights the fact that the nature of subtelomeric elements can influence the selection of the pathway of telomere maintenance by recombination, as well as the response of the cell to telomeric damage caused by telomerase inactivation.
Collapse
Affiliation(s)
- Nathalie Grandin
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Maria Eugenia Gallego
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Charles I White
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Michel Charbonneau
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France.
| |
Collapse
|
2
|
Liu J, Liu JP. A method for efficient quantitative analysis of genomic subtelomere Y' element abundance in yeasts. Yeast 2020; 37:373-388. [PMID: 32639041 DOI: 10.1002/yea.3511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/09/2023] Open
Abstract
Subtelomere Y' elements get amplified by homologous recombination in sustaining the survival and division of the budding yeast Saccharomyces cerevisiae. However, current method for measurement of the subtelomere structures uses Southern blotting with labelled specific probes, which is laborious and time-consuming. By multiple sequence alignment analysis of all 19 subtelomere Y' elements across the 13 chromosomes of the sequenced S288C strain deposited in the yeast genome SGD database, we identified 12 consensus and relative longer fragments and 14 pairs of unique primers for real-time quantitative PCR analysis. With a PAC2 or ACT1 located near the centromere of chromosome V and VI as internal controls, these primers were applied to real-time quantitative PCR analysis, so the relative Y' element intensity normalised to that of wild type (WT) cells was calculated for subtelomere Y' element copy numbers across all different chromosomes using the formula: 2^[-((CTmutant Y' - CTmutant control ) - (CTWT Y' - CTWT control ))]. This novel quantitative subtelomere amplification assay across chromosomes by real-time PCR proves to be a much simpler and more sensitive way than the traditional Southern blotting method to analyse the Y' element recombination events in survivors derived from telomerase deficiency or recruitment failure.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jun-Ping Liu
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Faculty of Medicine, Monash University, Prahran, Victoria, Australia
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Luo Z, Hoffmann SA, Jiang S, Cai Y, Dai J. Probing eukaryotic genome functions with synthetic chromosomes. Exp Cell Res 2020; 390:111936. [PMID: 32165165 DOI: 10.1016/j.yexcr.2020.111936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023]
Abstract
The ability to redesign and reconstruct a cell at whole-genome level provides new platforms for biological study. The international synthetic yeast genome project-Sc2.0, designed by interrogating knowledge amassed by the yeast community to date, exemplifies how a classical synthetic biology "design-build-test-learn" engineering cycle can effectively test hypotheses about various genome fundamentals. The genome reshuffling SCRaMbLE system implemented in synthetic yeast strains also provides unprecedented diversified resources for genotype-phenotype study and yeast metabolic engineering. Further development of genome synthesis technology will shed new lights on complex biological processes in higher eukaryotes.
Collapse
Affiliation(s)
- Zhouqing Luo
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Stefan A Hoffmann
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Shuangying Jiang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yizhi Cai
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK.
| | - Junbiao Dai
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Wijsman M, Swiat MA, Marques WL, Hettinga JK, van den Broek M, Torre Cortés PDL, Mans R, Pronk JT, Daran JM, Daran-Lapujade P. A toolkit for rapid CRISPR-SpCas9 assisted construction of hexose-transport-deficient Saccharomyces cerevisiae strains. FEMS Yeast Res 2019; 19:5114578. [PMID: 30285096 PMCID: PMC6217715 DOI: 10.1093/femsyr/foy107] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Hexose transporter-deficient yeast strains are valuable testbeds for the study of sugar transport by native and heterologous transporters. In the popular Saccharomyces cerevisiae strain EBY.VW4000, deletion of 21 transporters completely abolished hexose transport. However, repeated use of the LoxP/Cre system in successive deletion rounds also resulted in major chromosomal rearrangements, gene loss and phenotypic changes. In the present study, CRISPR/SpCas9 was used to delete the 21 hexose transporters in an S. cerevisiae strain from the CEN.PK family in only three deletion rounds, using 11 unique guide RNAs. Even upon prolonged cultivation, the resulting strain IMX1812 (CRISPR-Hxt0) was unable to consume glucose, while its growth rate on maltose was the same as that of a strain equipped with a full set of hexose transporters. Karyotyping and whole-genome sequencing of the CRISPR-Hxt0 strain with Illumina and Oxford Nanopore technologies did not reveal chromosomal rearrangements or other unintended mutations besides a few SNPs. This study provides a new, ‘genetically unaltered’ hexose transporter-deficient strain and supplies a CRISPR toolkit for removing all hexose transporter genes from most S. cerevisiae laboratory strains in only three transformation rounds.
Collapse
Affiliation(s)
- Melanie Wijsman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Michal A Swiat
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Wesley L Marques
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands.,School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas, SP 13083-862, Brazil.,Department of Chemical Engineering, University of São Paulo, Avenida Professor Lineu Prestes, 580 - Bloco 20, São Paulo, SP 05424-970, Brazil
| | - Johanna K Hettinga
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Pilar de la Torre Cortés
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| |
Collapse
|
5
|
Beyer T, Weinert T. Ontogeny of Unstable Chromosomes Generated by Telomere Error in Budding Yeast. PLoS Genet 2016; 12:e1006345. [PMID: 27716774 PMCID: PMC5065131 DOI: 10.1371/journal.pgen.1006345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/07/2016] [Indexed: 11/19/2022] Open
Abstract
DNA replication errors at certain sites in the genome initiate chromosome instability that ultimately leads to stable genomic rearrangements. Where instability begins is often unclear. And, early instability may form unstable chromosome intermediates whose transient nature also hinders mechanistic understanding. We report here a budding yeast model that reveals the genetic ontogeny of genome rearrangements, from initial replication error to unstable chromosome formation to their resolution. Remarkably, the initial error often arises in or near the telomere, and frequently forms unstable chromosomes. Early unstable chromosomes may then resolve to an internal "collection site" where a dicentric forms and resolves to an isochromosome (other outcomes are possible at each step). The initial telomere-proximal unstable chromosome is increased in mutants in telomerase subunits, Tel1, and even Rad9, with no known telomere-specific function. Defects in Tel1 and in Rrm3, a checkpoint protein kinase with a role in telomere maintenance and a DNA helicase, respectively, synergize dramatically to generate unstable chromosomes, further illustrating the consequence of replication error in the telomere. Collectively, our results suggest telomeric replication errors may be a common cause of seemingly unrelated genomic rearrangements located hundreds of kilobases away.
Collapse
Affiliation(s)
- Tracey Beyer
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Ted Weinert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
6
|
Solis-Escalante D, van den Broek M, Kuijpers NGA, Pronk JT, Boles E, Daran JM, Daran-Lapujade P. The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss. FEMS Yeast Res 2015; 15:fou004. [PMID: 25673752 DOI: 10.1093/femsyr/fou004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Saccharomyces cerevisiae harbours a large group of tightly controlled hexose transporters with different characteristics. Construction and characterization of S. cerevisiae EBY.VW4000, a strain devoid of glucose import, was a milestone in hexose-transporter research. This strain has become a widely used platform for discovery and characterization of transporters from a wide range of organisms. To abolish glucose uptake, 21 genes were knocked out, involving 16 successive deletion rounds with the LoxP/Cre system. Although such intensive modifications are known to increase the risk of genome alterations, the genome of EBY.VW4000 has hitherto not been characterized. Based on a combination of whole genome sequencing, karyotyping and molecular confirmation, the present study reveals that construction of EBY.VW4000 resulted in gene losses and chromosomal rearrangements. Recombinations between the LoxP scars have led to the assembly of four neo-chromosomes, truncation of two chromosomes and loss of two subtelomeric regions. Furthermore, sporulation and spore germination are severely impaired in EBY.VW4000. Karyotyping of the EBY.VW4000 lineage retraced its current chromosomal architecture to four translocations events occurred between the 6th and the 12th rounds of deletion. The presented data facilitate further studies on EBY.VW4000 and highlight the risks of genome alterations associated with repeated use of the LoxP/Cre system.
Collapse
Affiliation(s)
- Daniel Solis-Escalante
- Department of Biotechnology, Delft University of Technology Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Niels G A Kuijpers
- Department of Biotechnology, Delft University of Technology Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology Julianalaan 67, 2628 BC Delft, The Netherlands Platform Green Synthetic Biology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Eckhard Boles
- Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology Julianalaan 67, 2628 BC Delft, The Netherlands Platform Green Synthetic Biology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
7
|
Marie-Nelly H, Marbouty M, Cournac A, Flot JF, Liti G, Parodi DP, Syan S, Guillén N, Margeot A, Zimmer C, Koszul R. High-quality genome (re)assembly using chromosomal contact data. Nat Commun 2014; 5:5695. [PMID: 25517223 PMCID: PMC4284522 DOI: 10.1038/ncomms6695] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023] Open
Abstract
Closing gaps in draft genome assemblies can be costly and time-consuming, and published genomes are therefore often left ‘unfinished.’ Here we show that genome-wide chromosome conformation capture (3C) data can be used to overcome these limitations, and present a computational approach rooted in polymer physics that determines the most likely genome structure using chromosomal contact data. This algorithm—named GRAAL—generates high-quality assemblies of genomes in which repeated and duplicated regions are accurately represented and offers a direct probabilistic interpretation of the computed structures. We first validated GRAAL on the reference genome of Saccharomyces cerevisiae, as well as other yeast isolates, where GRAAL recovered both known and unknown complex chromosomal structural variations. We then applied GRAAL to the finishing of the assembly of Trichoderma reesei and obtained a number of contigs congruent with the know karyotype of this species. Finally, we showed that GRAAL can accurately reconstruct human chromosomes from either fragments generated in silico or contigs obtained from de novo assembly. In all these applications, GRAAL compared favourably to recently published programmes implementing related approaches. The correct assembly of genomes from sequencing data remains a challenge due to difficulties in correctly assigning the location of repeated DNA elements. Here the authors describe GRAAL, an algorithm that utilizes genome-wide chromosome contact data within a probabilistic framework to produce accurate genome assemblies.
Collapse
Affiliation(s)
- Hervé Marie-Nelly
- 1] Institut Pasteur, Department of Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France [2] CNRS, UMR 3525, 75015 Paris, France [3] Institut Pasteur, Unité Imagerie et Modélisation, 75015 Paris, France [4] CNRS, URA 2582, 75015 Paris, France [5] Sorbonne Universités, UPMC Univ Paris06, IFD, 4 place Jussieu, 75252 Paris, France
| | - Martial Marbouty
- 1] Institut Pasteur, Department of Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France [2] CNRS, UMR 3525, 75015 Paris, France
| | - Axel Cournac
- 1] Institut Pasteur, Department of Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France [2] CNRS, UMR 3525, 75015 Paris, France
| | - Jean-François Flot
- Max Planck Institute for Dynamics and Self-Organization, Group Biological Physics and Evolutionary Dynamics, Bunsenstr. 10, 37073 Göttingen, Germany
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR 7284-INSERM U108, Université de Nice Sophia Antipolis, 06107 Nice, France
| | - Dante Poggi Parodi
- 1] Sorbonne Universités, UPMC Univ Paris06, IFD, 4 place Jussieu, 75252 Paris, France [2] IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Sylvie Syan
- Institut Pasteur, Unité Cell Biology of Parasitism, 75015 Paris, France
| | - Nancy Guillén
- Institut Pasteur, Unité Cell Biology of Parasitism, 75015 Paris, France
| | - Antoine Margeot
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Christophe Zimmer
- 1] Institut Pasteur, Unité Imagerie et Modélisation, 75015 Paris, France [2] CNRS, URA 2582, 75015 Paris, France
| | - Romain Koszul
- 1] Institut Pasteur, Department of Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France [2] CNRS, UMR 3525, 75015 Paris, France
| |
Collapse
|
8
|
|
9
|
Pan J, Sasaki M, Kniewel R, Murakami H, Blitzblau HG, Tischfield SE, Zhu X, Neale MJ, Jasin M, Socci ND, Hochwagen A, Keeney S. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 2011; 144:719-31. [PMID: 21376234 PMCID: PMC3063416 DOI: 10.1016/j.cell.2011.02.009] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/13/2011] [Accepted: 02/03/2011] [Indexed: 12/17/2022]
Abstract
The nonrandom distribution of meiotic recombination influences patterns of inheritance and genome evolution, but chromosomal features governing this distribution are poorly understood. Formation of the DNA double-strand breaks (DSBs) that initiate recombination results in the accumulation of Spo11 protein covalently bound to small DNA fragments. By sequencing these fragments, we uncover a genome-wide DSB map of unprecedented resolution and sensitivity. We use this map to explore how DSB distribution is influenced by large-scale chromosome structures, chromatin, transcription factors, and local sequence composition. Our analysis offers mechanistic insight into DSB formation and early processing steps, supporting the view that the recombination terrain is molded by combinatorial and hierarchical interaction of factors that work on widely different size scales. This map illuminates the occurrence of DSBs in repetitive DNA elements, repair of which can lead to chromosomal rearrangements. We also discuss implications for evolutionary dynamics of recombination hot spots.
Collapse
Affiliation(s)
- Jing Pan
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Mariko Sasaki
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Ryan Kniewel
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Hajime Murakami
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Sam E. Tischfield
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Graduate Program in Computational Biology and Medicine, Cornell University, New York, NY, USA
| | - Xuan Zhu
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Matthew J. Neale
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nicholas D. Socci
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
10
|
Ames RM, Rash BM, Hentges KE, Robertson DL, Delneri D, Lovell SC. Gene duplication and environmental adaptation within yeast populations. Genome Biol Evol 2010; 2:591-601. [PMID: 20660110 PMCID: PMC2997561 DOI: 10.1093/gbe/evq043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Population-level differences in the number of copies of genes resulting from gene duplication and loss have recently been recognized as an important source of variation in eukaryotes. However, except for a small number of cases, the phenotypic effects of this variation are unknown. Data from the Saccharomyces Genome Resequencing Project permit the study of duplication in genome sequences from a set of individuals within the same population. These sequences can be correlated with available information on the environments from which these yeast strains were isolated. We find that yeast show an abundance of duplicate genes that are lineage specific, leading to a large degree of variation in gene content between individual strains. There is a detectable bias for specific functions, indicating that selection is acting to preferentially retain certain duplicates. Most strikingly, we find that sets of over- and underrepresented duplicates correlate with the environment from which they were isolated. Together, these observations indicate that gene duplication can give rise to substantial phenotypic differences within populations that in turn can offer a shortcut to evolutionary adaptation.
Collapse
Affiliation(s)
- Ryan M Ames
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Faddah DA, Ganko EW, McCoach C, Pickrell JK, Hanlon SE, Mann FG, Mieczkowska JO, Jones CD, Lieb JD, Vision TJ. Systematic identification of balanced transposition polymorphisms in Saccharomyces cerevisiae. PLoS Genet 2009; 5:e1000502. [PMID: 19503594 PMCID: PMC2682701 DOI: 10.1371/journal.pgen.1000502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 05/04/2009] [Indexed: 01/22/2023] Open
Abstract
High-throughput techniques for detecting DNA polymorphisms generally do not identify changes in which the genomic position of a sequence, but not its copy number, varies among individuals. To explore such balanced structural polymorphisms, we used array-based Comparative Genomic Hybridization (aCGH) to conduct a genome-wide screen for single-copy genomic segments that occupy different genomic positions in the standard laboratory strain of Saccharomyces cerevisiae (S90) and a polymorphic wild isolate (Y101) through analysis of six tetrads from a cross of these two strains. Paired-end high-throughput sequencing of Y101 validated four of the predicted rearrangements. The transposed segments contained one to four annotated genes each, yet crosses between S90 and Y101 yielded mostly viable tetrads. The longest segment comprised 13.5 kb near the telomere of chromosome XV in the S288C reference strain and Southern blotting confirmed its predicted location on chromosome IX in Y101. Interestingly, inter-locus crossover events between copies of this segment occurred at a detectable rate. The presence of low-copy repetitive sequences at the junctions of this segment suggests that it may have arisen through ectopic recombination. Our methodology and findings provide a starting point for exploring the origins, phenotypic consequences, and evolutionary fate of this largely unexplored form of genomic polymorphism. Balanced structural polymorphisms are differences in the relative arrangement of genomic features within species that do not affect DNA copy number. Little is known about their prevalence or importance because they are difficult to observe. Here, we present a novel methodology for systematically identifying such polymorphisms based on the idea that single-copy DNA that occupies different genomic locations in two parents will segregate independently during meiosis and will therefore reveal itself as a copy number difference among a fraction of progeny. Comparative hybridization reveals multiple balanced structural polymorphisms that involve changes to gene order in two strains of yeast; the results are independently validated using paired-end whole genome shotgun sequencing. The longest transposed segment we identify comprises 13.5 kb near the telomere of chromosome XV in the S288C reference strain and contains several annotated genes. We map the location of this polymorphism in the non-reference strain using genome-wide genotypic data, which also reveals an appreciable frequency of ectopic recombination among transposed segment pairs. The breakpoints of the remaining polymorphisms are localized by the paired-end sequence data. Our work provides proof-of-principle for a very general approach to systematically identify all balanced genomic polymorphisms in two different genotypes and is a starting point for understanding the frequency, evolutionary origins, and functional consequences of this seldom-studied class of genomic structural variation in eukaryotes.
Collapse
Affiliation(s)
- Dina A. Faddah
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eric W. Ganko
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caroline McCoach
- Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Joseph K. Pickrell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sean E. Hanlon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Frederick G. Mann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joanna O. Mieczkowska
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason D. Lieb
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JDL); (TJV)
| | - Todd J. Vision
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JDL); (TJV)
| |
Collapse
|
12
|
Buhler C, Borde V, Lichten M. Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae. PLoS Biol 2008; 5:e324. [PMID: 18076285 PMCID: PMC2121111 DOI: 10.1371/journal.pbio.0050324] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 10/25/2007] [Indexed: 11/19/2022] Open
Abstract
DNA double-strand breaks (DSBs), which are formed by the Spo11 protein, initiate meiotic recombination. Previous DSB-mapping studies have used rad50S or sae2Δ mutants, which are defective in break processing, to accumulate Spo11-linked DSBs, and report large (≥ 50 kb) “DSB-hot” regions that are separated by “DSB-cold” domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2Δ mutants. We therefore developed a novel method to map genome-wide, single-strand DNA (ssDNA)–associated DSBs that accumulate in processing-capable, repair-defective dmc1Δ and dmc1Δ rad51Δ mutants. DSBs were observed at known hot spots, but also in most previously identified “DSB-cold” regions, including near centromeres and telomeres. Although approximately 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1Δ shows that most of these regions have substantial DSB activity. Southern blot assays of DSBs in selected regions in dmc1Δ, rad50S, and wild-type cells confirm these findings. Thus, DSBs are distributed much more uniformly than was previously believed. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as a critical strand-exchange activity genome-wide, and confirm previous conclusions that Spo11-induced lesions initiate all meiotic recombination. During meiosis, the two copies of each chromosome present in the full (diploid) genome come together and then separate, forming haploid gametes (sperm and eggs, in animals). Recombination, which swaps DNA between chromosomes, is critical for chromosome pairing and separation, and also promotes genetic diversity in the next generation, providing the feedstock for evolution. DNA double-strand breaks (DSBs), which are formed by the conserved Spo11 nuclease, initiate meiotic recombination. DSB mapping is thus an alternative to standard genetic analysis for determining where meiotic recombination occurs. DSBs have been most extensively mapped in budding yeast mutants that fail to remove Spo11 from break ends, blocking further recombination steps. Paradoxically, those studies indicated that DSBs are absent from large regions where recombination was known to occur. We developed a new DSB mapping method that purifies and analyzes the single-strand DNA formed at breaks after Spo11 removal. This new map shows that DSBs (and by inference, recombination) actually occur frequently throughout almost all of the budding yeast genome, in a distribution that is consistent with recombination's roles in chromosome pairing and in generating genetic diversity. This new mapping method will be useful for studying meiotic recombination and DNA damage repair in other organisms. The authors developed a new method to detect DNA damage genome-wide, and they used it to show that meiotic recombination is more uniformly distributed in budding yeast than was previously believed.
Collapse
Affiliation(s)
- Cyril Buhler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Valérie Borde
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Couteaudier Y, Viaud M. New insights into population structure of Beauveria bassiana with regard to vegetative compatibility groups and telomeric restriction fragment length polymorphisms. FEMS Microbiol Ecol 2006. [DOI: 10.1111/j.1574-6941.1997.tb00369.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Abad JP, De Pablos B, Osoegawa K, De Jong PJ, Martín-Gallardo A, Villasante A. Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at telomeres. Mol Biol Evol 2004; 21:1613-9. [PMID: 15163766 DOI: 10.1093/molbev/msh174] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The repetitive nature of heterochromatin hampers its analysis in general genome-sequencing projects. Specific studies are needed to extend the sequence into telomeric and centromeric heterochromatin. Drosophila telomeres lack the telomerase-generated repeats that are characteristic of other eukaryotic chromosomes. Instead, they consist of tandem arrays of HeT-A and TART elements. Herein, we present the genomic organization of the telomeres in the isogenic strain (y; cn bw sp) that was used for the Drosophila melanogaster sequencing project. The data indicate that the canonical features of telomere organization are widely conserved in evolution. In addition, we have identified full-length elements, likely competent elements, for HeT-A and TART.
Collapse
|
15
|
Li W, Bernaola-Galván P, Haghighi F, Grosse I. Applications of recursive segmentation to the analysis of DNA sequences. COMPUTERS & CHEMISTRY 2002; 26:491-510. [PMID: 12144178 DOI: 10.1016/s0097-8485(02)00010-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recursive segmentation is a procedure that partitions a DNA sequence into domains with a homogeneous composition of the four nucleotides A, C, G and T. This procedure can also be applied to any sequence converted from a DNA sequence, such as to a binary strong(G + C)/weak(A + T) sequence, to a binary sequence indicating the presence or absence of the dinucleotide CpG, or to a sequence indicating both the base and the codon position information. We apply various conversion schemes in order to address the following five DNA sequence analysis problems: isochore mapping, CpG island detection, locating the origin and terminus of replication in bacterial genomes, finding complex repeats in telomere sequences, and delineating coding and noncoding regions. We find that the recursive segmentation procedure can successfully detect isochore borders, CpG islands, and the origin and terminus of replication, but it needs improvement for detecting complex repeats as well as borders between coding and noncoding regions.
Collapse
Affiliation(s)
- Wentian Li
- Center for Genomics and Human Genetics, North Shore-LIJ Research Institute, Manhasset, NY 11030, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
This review focuses on the factors that define the differences between the two types of DNA ends encountered by eukaryotic cells: telomeres and double strand breaks (DSBs). Although these two types of DNA termini are functionally distinct, recent studies have shown that a number of proteins is shared at telomeres and sites of DSB repair. The significance of these common components is discussed, as well as the types of DNA repair events that can compensate for a defective telomere.
Collapse
Affiliation(s)
- V Lundblad
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Park HS, Nogami M, Okumura K, Hattori M, Sakaki Y, Fujiyama A. Newly identified repeat sequences, derived from human chromosome 21qter, are also localized in the subtelomeric region of particular chromosomes and 2q13, and are conserved in the chimpanzee genome. FEBS Lett 2000; 475:167-9. [PMID: 10869549 DOI: 10.1016/s0014-5793(00)01632-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subtelomeric regions have been a target of structural and functional studies of human chromosomes. Markers having a defined structure are especially useful to such studies. Here, we report 93 bp tandem repeat sequences found in the subtelomeric region of human chromosome 21q. They were also detected in the telomeric region of several other chromosomes. Interestingly, the repeat was also found in the 2q13 region which is known to be a position of chromosomal fusion, a major difference between the human and chimpanzee karyotypes. To the best of our knowledge, this repetitive sequence is a new member of human subtelomeric interspersed repeats.
Collapse
Affiliation(s)
- H S Park
- RIKEN Genomic Sciences Center, c/o Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Double-strand chromosome breaks can arise in a number of ways, by ionizing radiation, by spontaneous chromosome breaks during DNA replication, or by the programmed action of endonucleases, such as in meiosis. Broken chromosomes can be repaired either by one of several homologous recombination mechanisms, or by a number of nonhomologous repair processes. Many of these pathways compete actively for the repair of a double-strand break. Which of these repair pathways is used appears to be regulated developmentally, genetically and during the cell cycle.
Collapse
Affiliation(s)
- J E Haber
- Rosentiel Basic Medical Sciences Research Center, MS 029 Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
19
|
Abstract
The leptotene/zygotene transition of meiosis, as defined by classical cytological studies, is the period when homologous chromosomes, already being discernible individualized entities, begin to be close together or touching over portions of their lengths. This period also includes the bouquet stage: Chromosome ends, which have already become integral components of the inner nuclear membrane, move into a polarized configuration, along with other nuclear envelope components. Chromosome movements, active or passive, also occur. The detailed nature of interhomologue interactions during this period, with special emphasis on the involvement of chromosome ends, and the overall role for meiosis and recombination of chromosome movement and, especially, the bouquet stage are discussed.
Collapse
Affiliation(s)
- D Zickler
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France.
| | | |
Collapse
|
20
|
Yamada M, Hayatsu N, Matsuura A, Ishikawa F. Y'-Help1, a DNA helicase encoded by the yeast subtelomeric Y' element, is induced in survivors defective for telomerase. J Biol Chem 1998; 273:33360-6. [PMID: 9837911 DOI: 10.1074/jbc.273.50.33360] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Y' element is a highly polymorphic repetitive sequence present in the subtelomeric regions of many yeast telomeres. The Y' element is classed as either Y'-L or Y'-S, depending on its length. It has been reported that survivors arising from telomerase-deficient yeast mutants compensate for telomere loss by the amplification of Y' elements. The total Saccharomyces cerevisiae genome DNA data base was searched for Y' elements, and 11 Y'-Ls and eight Y'-Ss were identified. As reported previously, many of the sequences were found to contain long open reading frames which potentially encode helicase. We examined the expression of the Y' elements in telomerase-deficient Deltatlc1 survivors, in which the TLC1 gene encoding the yeast telomerase template RNA had been disrupted, and found that the Y' element is highly expressed in the survivors, but not in the wild-type cells. Moreover, we demonstrated that the survivors produce a Y'-encoded protein designated as Y'-Help1 (Y'-helicase protein 1), and that this protein possesses helicase activity. Therefore, we suggest that the Y' element has a novel and potentially important role in trans, in addition to the well characterized role in cis, in telomerase-independent telomere maintenance in yeast.
Collapse
Affiliation(s)
- M Yamada
- Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
21
|
Klein S, Zenvirth D, Dror V, Barton AB, Kaback DB, Simchen G. Patterns of meiotic double-strand breakage on native and artificial yeast chromosomes. Chromosoma 1996; 105:276-84. [PMID: 8939820 DOI: 10.1007/bf02524645] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The preferred positions for meiotic double-strand breakage were mapped on Saccharomyces cerevisiae chromosomes I and VI, and on a number of yeast artificial chromosomes carrying human DNA inserts. Each chromosome had strong and weak double-strand break (DSB) sites. On average one DSB-prone region was detected by pulsed-field gel electrophoresis per 25 kb of DNA, but each chromosome had a unique distribution of DSB sites. There were no preferred meiotic DSB sites near the telomeres. DSB-prone regions were associated with all of the known "hot spots" for meiotic recombination on chromosomes I, III and VI.
Collapse
Affiliation(s)
- S Klein
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
22
|
Biessmann H, Donath J, Walter MF. Molecular characterization of the Anopheles gambiae 2L telomeric region via an integrated transgene. INSECT MOLECULAR BIOLOGY 1996; 5:11-20. [PMID: 8630530 DOI: 10.1111/j.1365-2583.1996.tb00035.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A Drosophila P-element derivative (pUChsneo) integrated into the telomeric region of the left arm of the second chromosome of Anopheles gambiae was used to clone the proximally flanking An. gambiae sequences. Molecular analyses revealed that the pUChsneo construct was partially duplicated and had integrated into a subterminal minisatellite. This satellite has a repeat unit of 820 bp and is located exclusively at the tip of 2L. No sequence similarity to subterminal minisatellites from other dipterans was detected, but some structural features such as tandem subrepeats are shared. The end of the chromosome was mapped with respect to restriction sites in pUChsneo at approximately generation 100 after the integration event. Considering inevitable terminal nucleotide loss due to incomplete DNA replication, we conclude that the chromosome end must have undergone a dramatic elongation process since it was mapped in generation 23.
Collapse
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine, 92717, USA
| | | | | |
Collapse
|
23
|
Abstract
Yeast chromosome ends are similar in structure and function to chromosome ends in most, if not all, eukaryotic organisms. There is a G-rich terminal repeat at the ends which is maintained by telomerase. In addition to the classical functions of protecting the end from degradation and end-to-end fusions, and completing replication, yeast telomeres have several interesting properties including: non-nucleosomal chromatin structure; transcriptional position effect variegation for genes with adjacent telomeres; nuclear peripheral localization; apparent physical clustering; non-random recombinational interactions. A number of genes have been identified that are involved in modifying one or more of these properties. These include genes involved in general DNA metabolism, chromatin structure and telomere maintenance. Adjacent to the terminal repeat is a mosaic of middle repetitive elements that exhibit a great deal of polymorphism both between individual strains and among different chromosome ends. Much of the sequence redundancy in the yeast genome is found in the sub-telomeric regions (within the last 25 kb of each end). The sub-telomeric regions are generally low in gene density, low in transcription, low in recombination, and they are late replicating. The only element which appears to be shared by all chromosome ends is part of the previously defined X element containing an ARS consensus. Most of the 'core' X elements also contain an Abf1p binding site and a URS1-like element, which may have consequences for the chromatin structure, nuclear architecture and transcription of native telomeres. Possible functions of sub-telomeric repeats include: fillers for increasing chromosome size to some minimum threshold level necessary for chromosome stability; barrier against transcriptional silencing; a suitable region for adaptive amplification of genes; secondary mechanism of telomere maintenance via recombination when telomerase activity is absent.
Collapse
Affiliation(s)
- E J Louis
- Yeast Genetics, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
24
|
Walter MF, Jang C, Kasravi B, Donath J, Mechler BM, Mason JM, Biessmann H. DNA organization and polymorphism of a wild-type Drosophila telomere region. Chromosoma 1995; 104:229-41. [PMID: 8565699 DOI: 10.1007/bf00352254] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Telomeres at the ends of linear chromosomes of eukaryotes protect the chromosome termini from degradation and fusion. While telomeric replication/elongation mechanisms have been studied extensively, the functions of subterminal sequences are less well understood. In general, subterminal regions can be quite polymorphic, varying in size from organism to organism, and differing among chromosomes within an organism. The subterminal regions of Drosophila melanogaster are not well characterized today, and it is not known which and how many different components they contain. Here we present the molecular characterization of DNA components and their organization in the subterminal region of the left arm of chromosome 2 of the Oregon RC wild-type strain of D. melanogaster, including a minisatellite with a 457bp repeat length. Two distinct polymorphic arrangements at 2L were found and analyzed, supporting the Drosophila telomere elongation model by retrotransposition. The high incidence of terminal chromosome deficiencies occurring in natural Drosophila populations is discussed in view of the telomere structure at 2L.
Collapse
Affiliation(s)
- M F Walter
- Developmental Biology Center, University of California, Irvine, CA 92717, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Farman ML, Leong SA. Genetic and physical mapping of telomeres in the rice blast fungus, Magnaporthe grisea. Genetics 1995; 140:479-92. [PMID: 7498730 PMCID: PMC1206628 DOI: 10.1093/genetics/140.2.479] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Telomeric restriction fragments were genetically mapped to a previously described linkage map of Magnaporthe grisea, using RFLPs identified by a synthetic probe. (TTAGGG)3. Frequent rearrangement of telomeric sequences was observed in progeny isolates creating a potential for misinterpretation of data. Therefore a consensus segregation data set used to minimize mapping errors. TWelve of the 14 telomeres were found to be genetically linked to existing RFLP markers. Second-dimensional electrophoresis of restricted chromosomes confirmed these linkage assignments and revealed the chromosomal location of the two unlinked telomeres. We were thus able to assign all 14 M. grisea telomeres to their respective chromosome ends. The Achilles' cleavage (AC) technique was employed to determine that chromosome 1 markers 11 and CH5-120H were approximately 1.8 Mb and 1.28 Mb, respectively, from their nearest telomeres. RecA-AC was also used to determine that unlinked telomere 6 was approximately 530 kb from marker CH5-176H in strain 2539 and 580 kb in Guy11. These experiments indicated that large portions of some chromosome ends are unrepresented by genetic markers and provided estimates of the relationship of genetic to physical distance in these regions of the genome.
Collapse
Affiliation(s)
- M L Farman
- Department of Plant Pathology, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
26
|
Cheung WY, Money TA, Abbo S, Devos KM, Gale MD, Moore G. A family of related sequences associated with (TTTAGGG)n repeats are located in the interstitial regions of wheat chromosomes. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:349-54. [PMID: 7816045 DOI: 10.1007/bf00290115] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A family of related sequences associated with (TTTAGGG)n repeats has been cloned from the wheat cultivar Chinese Spring. These sequences reveal a high level of polymorphism between wheat varieties when used as restriction fragment length polymorphism (RFLP) probes. Although this family of sequences contains motifs homologous to the repeats in the telomeres of wheat, they are located at interstitial sites on wheat chromosomes.
Collapse
Affiliation(s)
- W Y Cheung
- Cambridge Laboratory, John Innes Centre, Norwich, UK
| | | | | | | | | | | |
Collapse
|
27
|
Louis EJ, Naumova ES, Lee A, Naumov G, Haber JE. The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics 1994; 136:789-802. [PMID: 8005434 PMCID: PMC1205885 DOI: 10.1093/genetics/136.3.789] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Yeast chromosome ends are composed of several different repeated elements. Among six clones of chromosome ends from two strains of Saccharomyces cerevisiae, at least seven different repeated sequence families were found. These included the previously identified Y' and X elements. Some families are highly variable in copy number and location between strains of S. cerevisiae, while other elements appear constant in copy number and location. Three repeated sequence elements are specific to S. cerevisiae and are not found in its evolutionarily close relative, Saccharomyces paradoxus. Two other repeated sequences are found in both S. cerevisiae and S. paradoxus. None of those described here is found (by low stringency DNA hybridization) in the next closest species, Saccharomyces bayanus. The loosely characterized X element is now more precisely defined. X is a composite of at least four small (ca. 45-140 bp) sequences found at some, but not all, ends. There is also a potential "core" X element of approximately 560 bp which may be found at all ends. Distal to X, only one of six clones had (TG1-3)n telomere sequence at the junction between X and Y'. The presence of these internal (TG1-3)n sequences correlates with the ability of a single Y' to expand into a tandem array of Y's by unequal sister chromatid exchange. The presence of shared repeated elements proximal to the X region can override the strong preference of Y's to recombine ectopically with other Y's of the same size class. The chromosome ends in yeast are evolutionarily dynamic in terms of subtelomeric repeat structure and variability.
Collapse
Affiliation(s)
- E J Louis
- Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, England
| | | | | | | | | |
Collapse
|
28
|
Abstract
Yeast cells lacking a functional EST1 gene show progressive shortening of the terminal G1-3T telomeric repeats and a parallel increase in the frequency of cell death. Although the majority of the cells in an est1- culture die, a minor subpopulation survives the potentially lethal consequences of the est1 mutation. We show that these est1- survivors arise as a result of the amplification and acquisition of subtelomeric elements (and their deletion derivatives) by a large number of telomeres. Hence, even when the primary pathway for telomere replication is defective, an alternative backup pathway can restore telomere function and keep the cell alive.
Collapse
Affiliation(s)
- V Lundblad
- Department of Microbiology and Immunology University of California, San Francisco 94143-0414
| | | |
Collapse
|
29
|
Burr B, Burr FA, Matz EC, Romero-Severson J. Pinning down loose ends: mapping telomeres and factors affecting their length. THE PLANT CELL 1992; 4:953-60. [PMID: 1356536 PMCID: PMC160187 DOI: 10.1105/tpc.4.8.953] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A degenerately repeated sequence, proximal to the telomere heptanucleotide repeat in maize, contains restriction enzyme sites that permit the separation of telomeres from the rest of the chromosomes. Probing with a telomere-specific oligonucleotide revealed genotype-dependent telomere lengths that vary more than 25-fold in maize among the 22 inbreds that have been surveyed. These lengths were found to segregate reproducibly in a recombinant inbred family where 50% of the variation can be accounted for by three loci. The dynamic control over telomere length in maize appears to act rapidly to achieve new genotypically determined telomere lengths in the F1. Clones of telomere proximal sequences were used to map restriction fragment length loci at the distal ends of eight of 20 chromosome arms.
Collapse
Affiliation(s)
- B Burr
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine 92717
| | | |
Collapse
|
31
|
Abstract
The advent of pulsed field electrophoresis has allowed a direct approach to the karyotype of Leishmania. The molecular karyotype thus obtained is a stable characteristic of a given strain, although minor modifications may occur during in vitro maintenance. Between 20 and 28 chromosomal bands can be resolved depending on the strain, ranging in size from approximately 250 to 2600 kb. The technique has revealed a striking degree of polymorphism in the size and number of the chromosomal bands between different strains, and this seems independent of the category (species, zymodeme, population) to which the strains belong. It appears that only certain strains originating from the same geographic area may share extensive similarities. This polymorphism can largely be accounted for by chromosome size variations, which can involve up to 25% of the chromosome length. As a result, homologous chromosomes can exist in versions of markedly different size within the same strain. When this occurs with several different chromosomes, the interpretation of PFE patterns appears difficult without prior identification of the size-variable chromosomes and of the chromosome homologies. DNA deletions and amplifications have been shown to account for some of these size modifications, but other mechanisms are probably involved; nevertheless, interchromosomal exchange does not seem to play a major role in these polymorphisms. These chromosomal rearrangements, yet in an early stage of characterization, exhibit two relevant features: they seem (1) to affect essentially the subtelomeric regions and (2) to occur in a recurrent nonrandom manner. Chromosomal rearrangements sharing the same characteristics have been identified in yeast and other protozoa such as Trypanosoma and Plasmodium. The significance of this hypervariability for the biology of the parasite remains unknown, but it can be expected that such mechanisms have been maintained for some purpose; genes specifically located near chromosome ends might benefit from rapid sequence change, alternating activation, or polymorphism of expression. The chromosomal plasticity could represent a general mode of mutation in these parasites, in parallel with genetic exchange which may be uncommon in nature. The molecular characterization of these rearrangements, the identification of each chromosome with the help of physical restriction maps and linkage maps, and the collation of such data on a number of strains and species should allow a significant progress in the understanding of the genetics of Leishmania, in particular as regards ploidy, generation of phenotypic diversity, and genome evolution. Finally, like other models, this is susceptible to improve our knowledge of DNA-DNA interactions and of the chromosome functional structure and dynamics.
Collapse
Affiliation(s)
- P Bastien
- Laboratoire d'Ecologie Médicale et Pathologie Parasitaire, Annexe de la Faculté de Médecine, Montpellier, France
| | | | | |
Collapse
|
32
|
Brown WR, MacKinnon PJ, Villasanté A, Spurr N, Buckle VJ, Dobson MJ. Structure and polymorphism of human telomere-associated DNA. Cell 1990; 63:119-32. [PMID: 2208276 DOI: 10.1016/0092-8674(90)90293-n] [Citation(s) in RCA: 248] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have analyzed the DNA sequences associated with four different human telomeres. Two are members of distinct repeated sequence families which are located mainly but not exclusively at telomeres. Two are unique in the genome, one deriving from the long arm telomere of chromosome 7 and the other from the pseudoautosomal telomere. One telomere-associated repeated sequence has a polymorphic distribution among the chromosome ends, being present at a different combination of ends in different individuals. These data thus identify a new source of human genetic variation and indicate that the canonical features of the organization of telomere-associated DNA are widely conserved in evolution.
Collapse
Affiliation(s)
- W R Brown
- Biochemistry Department, Oxford University, England
| | | | | | | | | | | |
Collapse
|
33
|
Biessmann H, Mason JM, Ferry K, d'Hulst M, Valgeirsdottir K, Traverse KL, Pardue ML. Addition of telomere-associated HeT DNA sequences "heals" broken chromosome ends in Drosophila. Cell 1990; 61:663-73. [PMID: 2111731 DOI: 10.1016/0092-8674(90)90478-w] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stocks of D. melanogaster X chromosomes carrying terminal deletions (RT chromosomes) have been maintained for several years. Some of the chromosomes are slowly losing DNA from the broken ends (as expected if replication is incomplete) and show no telomere-associated DNA added to the receding ends. Two stocks carry chromosomes that have become "healed" and are no longer losing DNA. In both stocks the broken chromosome end has acquired a segment of HeT DNA, a family of complex repeats found only at telomeres and in pericentric heterochromatin. Although the HeT family is complex, the HeT sequence joined to the broken chromosome end is the same in both stocks. In contrast, the two chromosomes are broken in different places and have no detectable sequence similarity at the junction with the new DNA. Sequence analysis suggests that the new telomere sequences have been added by a specific mechanism that does not involve homologous recombination.
Collapse
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine 92717
| | | | | | | | | | | | | |
Collapse
|
34
|
Dore E, Pace T, Ponzi M, Picci L, Frontali C. Organization of subtelomeric repeats in Plasmodium berghei. Mol Cell Biol 1990; 10:2423-7. [PMID: 2183034 PMCID: PMC360592 DOI: 10.1128/mcb.10.5.2423-2427.1990] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several (but not all) Plasmodium berghei chromosomes bear in the subtelomeric position a cluster of 2.3-kilobase (kb) tandem repeats. The 2.3-kb unit contains 160 base pairs of telomeric sequence. The resulting subtelomeric structure is one in which stretches of telomeric sequences are periodically spaced by a 2.1-kb reiterated sequence. This periodic organization of internal telomeric sequences might be related to chromosome-size polymorphisms involving the loss or addition of subtelomeric 2.3-kb units.
Collapse
Affiliation(s)
- E Dore
- Laboratory of Cell Biology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
35
|
Louis EJ, Haber JE. The subtelomeric Y' repeat family in Saccharomyces cerevisiae: an experimental system for repeated sequence evolution. Genetics 1990; 124:533-45. [PMID: 2179052 PMCID: PMC1203947 DOI: 10.1093/genetics/124.3.533] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The subtelomeric Y' repeated sequence families in two divergent strains of the yeast Saccharomyces cerevisiae have been characterized in terms of copy number, location and restriction site differences. The strain YP1 has 26 to 30 Y's that fall into two previously described, long (6.7 kb) and short (5.2 kb), size classes. These Y's reside at 19 of the 32 chromosome ends and are concentrated in the higher molecular weight chromosomes. Five ends contain tandem arrays, each of which has only one size class of Y's. There is restriction site homogeneity among the Y's of YP1 even between size classes. The Y's of strain Y55 contrast sharply with the Y's of YP1 in terms of copy number, location and sequence differences. There are 14 to 16 Y's, both long and short, most of which are found at different chromosome ends than those of YP1. None of these are tandemly arrayed. Four to six of the Y's appear degenerate in that they have homology with a telomere distal end Y' probe but no homology with sequences at the telomere proximal end. The majority of the Y55 Y's have the same restriction sites as in YP1. Despite the conservation of restriction sites among Y's, a great deal of restriction fragment length heterogeneity between the strains is observed. The characterized Y' repeated sequence families provide an experimental system in which repeated sequence interactions and subsequent evolution can be studied.
Collapse
Affiliation(s)
- E J Louis
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110
| | | |
Collapse
|
36
|
Louis EJ, Haber JE. Mitotic recombination among subtelomeric Y' repeats in Saccharomyces cerevisiae. Genetics 1990; 124:547-59. [PMID: 2179053 PMCID: PMC1203948 DOI: 10.1093/genetics/124.3.547] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Y's are a dispersed family of repeats that vary in copy number, location and restriction fragment lengths between strains but exhibit within-strain homogeneity. We have studied mitotic recombination between members of the subtelomeric Y' repeated sequence family of Saccharomyces cerevisiae. Individual copies of Y's were marked with SUP11 and URA3 which allowed for the selection of duplications and losses of the marked Y's. Duplications occurred by ectopic recombinational interactions between Y's at different chromosome ends as well as by unequal sister chromatid exchange. Several of the ectopic duplications resulted in an originally Y'-less chromosome end acquiring a marked Y'. Among losses, most resulted from ectopic exchange or conversion in which only the marker sequence was lost. In some losses, the chromosome end became Y'-less. Although the two subsets of Y's, Y'-longs (6.7 kb) and Y'-shorts (5.2 kb), share extensive sequence homology, a marked Y' recombines highly preferentially within its own subset. These mitotic interactions can in part explain the maintenance of Y's and their subsets, the homogeneity among Y's within a strain, as well as diversity between strains.
Collapse
Affiliation(s)
- E J Louis
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254
| | | |
Collapse
|
37
|
|
38
|
Abstract
The advent of pulsed field gradient electrophoresis has proved remarkably useful for studying chromosomes of the genetically intractable malaria parasite Plasmodium falciparum. Advances include determination of the karyotype, a linkage map and restriction maps of individual chromosomes that enable the ordering of genes. The structural basis underlying a frequently occurring form of chromosome size polymorphism is now understood and other polymorphisms are providing tantalizing clues to the mechanisms underlying drug resistance.
Collapse
|
39
|
Abstract
We describe a general assay designed to detect mutants of yeast that are defective for any of several aspects of telomere function. Using this assay, we have isolated a mutant that displays a progressive decrease in telomere length as well as an increased frequency of chromosome loss. This mutation defines a new gene, designated EST1 (for ever shorter telomeres). Null alleles of EST1 are not immediately inviable; instead, they have a senescence phenotype, due to the gradual loss of sequences essential for telomere function, leading to a progressive decrease in chromosomal stability and subsequent cell death.
Collapse
Affiliation(s)
- V Lundblad
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
40
|
Vanoni M, Sollitti P, Goldenthal M, Marmur J. Structure and regulation of the multigene family controlling maltose fermentation in budding yeast. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1989; 37:281-322. [PMID: 2672110 DOI: 10.1016/s0079-6603(08)60701-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
|
42
|
Abstract
The time of replication of centromeres and telomeres of the yeast S. cerevisiae was determined by performing Meselson-Stahl experiments with synchronized cells. The nine centromeres examined become hybrid in density early in S phase, eliminating the possibility that a delay in the replication of centromeres until mitosis is responsible for sister chromatid adherence and proper chromosome segregation at anaphase. The conserved sequence element Y', present at most telomeres, replicates late in S phase, as do the unique sequences adjacent to five specific telomeres. The early and late replication times of these structural elements may be either essential for their proper function or a consequence of some architectural feature of the chromosome.
Collapse
Affiliation(s)
- R M McCarroll
- Department of Genetics, University of Washington, Seattle 98195
| | | |
Collapse
|
43
|
Corcoran LM, Thompson JK, Walliker D, Kemp DJ. Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum. Cell 1988; 53:807-13. [PMID: 3286016 DOI: 10.1016/0092-8674(88)90097-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present restriction maps for chromosomes 1 and 2 of six cloned lines of P. falciparum. These delineate the locations of eight genetic markers, including genes for five antigens. In parasites from diverse areas, chromosome structure is conserved in central regions but is polymorphic both in length and sequence near the telomeres. The telomeres and adjacent sequences comprise a conserved structure at the ends of most P. falciparum chromosomes. However, the subtelomeric zones are polymorphic and coincide with the locations of a repetitive element (rep20). Deletions of rep20 generate clones of P. falciparum that lack rep20 on one or both ends of chromosomes 1 or 2, and larger deletions remove telomere-proximal genes as well. The chromosome length polymorphisms can therefore be largely explained by recombination within these blocks of repeats, a mechanism that is also important in the generation of diversity in genes for repetitive antigens of P. falciparum.
Collapse
Affiliation(s)
- L M Corcoran
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- R M Walmsley
- Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology, U.K
| |
Collapse
|
45
|
Pace T, Ponzi M, Dore E, Frontali C. Telomeric motifs are present in a highly repetitive element in the Plasmodium berghei genome. Mol Biochem Parasitol 1987; 24:193-202. [PMID: 3041211 DOI: 10.1016/0166-6851(87)90106-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Using as probes the subfragments of the telomeric sequence previously cloned by us from Plasmodium berghei DNA, we identified and cloned a 2.3 kb repeat, largely overlapping the original telomeric insert. Restriction mapping indicated that cloned inserts (2.3 kb in length) represented circularly permutated versions of a rather well conserved repeated element, at least in part organized in tandem. The 2.3 kb repeat family with a copy number of about 300 occupies about 4% of the whole genome. The copies are unevenly distributed among the chromosome-sized molecules revealed by pulsed field gradient electrophoresis. Complete sequence determination of the 2.3 kb element revealed that telomere-related motifs are present with a characteristic pattern in a set of tandem repeats, 27 bp long. The perfect conservation of these motifs as well as the pattern of chromosomal distribution suggest that we are dealing with a specialised structure subject to selective mechanisms of amplification and maintenance.
Collapse
|
46
|
de Jonge P, de Jongh FC, Meijers R, Steensma HY, Scheffers WA. Orthogonal-field-alternation gel electrophoresis banding patterns of DNA from yeasts. Yeast 1986; 2:193-204. [PMID: 3333308 DOI: 10.1002/yea.320020307] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chromosomal DNAs from various yeast species were separated by orthogonal-field-alternation gel electrophoresis (OFAGE). To this end we developed a spheroplasting and lysis method to obtain intact DNA from both ascomycetous and basidiomycetous yeasts. The OFAGE banding patterns of 22 ascomycetous and four basidiomycetous yeast strains were compared. The strains represented species from the genera: Brettanomyces, Candida, Cryptococcus, Filobasidiella, Geotrichum, Hansenula, Kluyveromyces, Pachysolen, Pichia, Rhodosporidium, Rhodotorula, Saccharomyces, Saccharomycodes, Saccharomycopsis, Schizosaccharomyces and Zygosaccharomyces. Variations occurred in the number of bands and their positions in the gel, not only among strains of different genera but also among species from the same genus and even between varieties of the same species. The ascomycetous yeasts, with the exception of Saccharomyces cerevisiae, only showed one to five bands of DNA larger than 1000 kilobase pairs (kb) in general none smaller. The patterns of the four basidiomycetous yeasts revealed also a few large DNA bands but in addition one to six bands ranging in size from 500 to 1000 kb, with the exception of a single smaller chromosome in Rhodotorula mucilaginosa. From the OFAGE banding patterns of strains studied here it appears that in Sacch. cerevisiae the partitioning of DNA over chromosomes is unique. But rather than the large number of chromosomes, the presence of four chromosomes with less than 500 kb of DNA is characteristic for Sacch. cerevisiae.
Collapse
Affiliation(s)
- P de Jonge
- Department of Microbiology and Enzymology, Delft University of Technology, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Zakian VA, Blanton HM, Wetzel L. Distribution of telomere-associated sequences in yeast. BASIC LIFE SCIENCES 1986; 40:493-8. [PMID: 3551920 DOI: 10.1007/978-1-4684-5251-8_37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Two middle repetitive DNA sequences called X and Y' are found near the telomeres of many chromosomes in Saccharomyces cerevisiae. Orthogonal field gel electrophoresis (OFAGE) was used to examine the distribution of X and Y' on different yeast chromosomes. Although the distribution of X and Y' varies among different laboratory strains of yeast, most yeast chromosomes in four different strains carry both X and Y'. However, at least one chromosome in each strain lacks the Y' element. This result indicates that Y' is not essential for replication or segregation of at least some yeast chromosomes.
Collapse
|
48
|
Cooke HJ, Brown WR, Rappold GA. Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature 1985; 317:687-92. [PMID: 2997619 DOI: 10.1038/317687a0] [Citation(s) in RCA: 211] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pairing of human X and Y chromosomes during meiosis initiates within the so-called pairing region at the telomeres or the chromosome short arms. Using DNA from the Y chromosome we found sequence homology in the pairing region of the human X and Y chromosomes. This DNA is telomeric, contains repetitive sequences and is highly polymorphic in the population. The polymorphism has allowed family studies which show the sequences are not inherited as though linked to the sex chromosomes. This 'pseudoautosomal' pattern of inheritance points to an obligate recombination in the pairing region of the sex chromosomes during male meiosis.
Collapse
|
49
|
Pays E, Houard S, Pays A, Van Assel S, Dupont F, Aerts D, Huet-Duvillier G, Gomés V, Richet C, Degand P. Trypanosoma brucei: the extent of conversion in antigen genes may be related to the DNA coding specificity. Cell 1985; 42:821-9. [PMID: 4053185 DOI: 10.1016/0092-8674(85)90278-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The boundaries of gene conversion in variant-specific antigen genes have been determined in six clones of Trypanosoma brucei. In each clone, antigenic switching involved interaction between two telomeric members of the AnTat 1.1 multigene family, which share extensive homology throughout their coding regions. All conversion events occurred by substitution of faithful copies of donor sequences. Conversion endpoints were nonrandomly distributed. In four clones, the 5' conversion limit was near the antigen translation initiation codon, while in three clones, the 3' conversion limit was located at the "hinge" between the two major antigen domains. In one case, two segmental conversions were involved in antigen switching. These observations reveal that antigen gene conversion can occur without generating point mutations, and suggest that postrecombinational selection may impose a limit on the number of possible rearrangements within antigen genes.
Collapse
|
50
|
Gibson WC, Osinga KA, Michels PA, Borst P. Trypanosomes of subgenus Trypanozoon are diploid for housekeeping genes. Mol Biochem Parasitol 1985; 16:231-42. [PMID: 3840571 DOI: 10.1016/0166-6851(85)90066-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ploidy of trypanosomes has until now remained undetermined, although isoenzyme studies and direct measurements of DNA content and complexity suggest diploidy. Direct cytogenetic analysis is not possible, because the chromosomes do not condense at any stage of the cell cycle. We now present evidence from analysis of restriction site polymorphisms in and around three glycolytic enzyme genes (phosphoglycerate kinase, triosephosphate isomerase, glyceraldehyde phosphate dehydrogenase) and the tubulin gene cluster, that trypanosomes of subgenus Trypanozoon are diploid for these housekeeping genes. This result is still compatible with the single copy nature of variant surface glycoprotein (VSG) genes in Trypanozoon, if different VSG genes are present in corresponding positions on paired chromosomes. Using pulse field gradient gel electrophoresis, we show that the genes for the three glycolytic enzymes are all located in very large DNA molecules, but the gene for triosephosphate isomerase is in another fraction from the genes for the other two enzymes. Since all three enzymes are located in glycosomes, which are trypanosome microbodies, the genes for glycosomal enzymes are not all clustered in one chromosomal segment of the trypanosome genome.
Collapse
|