1
|
Amaya E, Khvorova A, Piggot PJ. Analysis of promoter recognition in vivo directed by sigma(F) of Bacillus subtilis by using random-sequence oligonucleotides. J Bacteriol 2001; 183:3623-30. [PMID: 11371526 PMCID: PMC95239 DOI: 10.1128/jb.183.12.3623-3630.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of spores from vegetative bacteria by Bacillus subtilis is a primitive system of cell differentiation. Critical to spore formation is the action of a series of sporulation-specific RNA polymerase sigma factors. Of these, sigma(F) is the first to become active. Few genes have been identified that are transcribed by RNA polymerase containing sigma(F) (E-sigma(F)), and only two genes of known function are exclusively under the control of E-sigma(F), spoIIR and spoIIQ. In order to investigate the features of promoters that are recognized by E-sigma(F), we studied the effects of randomizing sequences for the -10 and -35 regions of the promoter for spoIIQ. The randomized promoter regions were cloned in front of a promoterless copy of lacZ in a vector designed for insertion by double crossover of single copies of the promoter-lacZ fusions into the amyE region of the B. subtilis chromosome. This system made it possible to test for transcription of lacZ by E-sigma(F) in vivo. The results indicate a weak sigma(F)-specific -10 consensus, GG/tNNANNNT, of which the ANNNT portion is common to all sporulation-associated sigma factors, as well as to sigma(A). There was a rather stronger -35 consensus, GTATA/T, of which GNATA is also recognized by other sporulation-associated sigma factors. The looseness of the sigma(F) promoter requirement contrasts with the strict requirement for sigma(A)-directed promoters of B. subtilis. It suggests that additional, unknown, parameters may help determine the specificity of promoter recognition by E-sigma(F) in vivo.
Collapse
Affiliation(s)
- E Amaya
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
2
|
Chen EJ, Frand AR, Chitouras E, Kaiser CA. A link between secretion and pre-mRNA processing defects in Saccharomyces cerevisiae and the identification of a novel splicing gene, RSE1. Mol Cell Biol 1998; 18:7139-46. [PMID: 9819400 PMCID: PMC109295 DOI: 10.1128/mcb.18.12.7139] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretory proteins in eukaryotic cells are transported to the cell surface via the endoplasmic reticulum (ER) and the Golgi apparatus by membrane-bounded vesicles. We screened a collection of temperature-sensitive mutants of Saccharomyces cerevisiae for defects in ER-to-Golgi transport. Two of the genes identified in this screen were PRP2, which encodes a known pre-mRNA splicing factor, and RSE1, a novel gene that we show to be important for pre-mRNA splicing. Both prp2-13 and rse1-1 mutants accumulate the ER forms of invertase and the vacuolar protease CPY at restrictive temperature. The secretion defect in each mutant can be suppressed by increasing the amount of SAR1, which encodes a small GTPase essential for COPII vesicle formation from the ER, or by deleting the intron from the SAR1 gene. These data indicate that a failure to splice SAR1 pre-mRNA is the specific cause of the secretion defects in prp2-13 and rse1-1. Moreover, these data imply that Sar1p is a limiting component of the ER-to-Golgi transport machinery and suggest a way that secretory pathway function might be coordinated with the amount of gene expression in a cell.
Collapse
Affiliation(s)
- E J Chen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
3
|
Qiu H, Garcia-Barrio MT, Hinnebusch AG. Dimerization by translation initiation factor 2 kinase GCN2 is mediated by interactions in the C-terminal ribosome-binding region and the protein kinase domain. Mol Cell Biol 1998; 18:2697-711. [PMID: 9566889 PMCID: PMC110649 DOI: 10.1128/mcb.18.5.2697] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The protein kinase GCN2 stimulates translation of the transcriptional activator GCN4 in yeast cells starved for amino acids by phosphorylating translation initiation factor 2. Several regulatory domains, including a pseudokinase domain, a histidyl-tRNA synthetase (HisRS)-related region, and a C-terminal (C-term) segment required for ribosome association, have been identified in GCN2. We used the yeast two-hybrid assay, coimmunoprecipitation analysis, and in vitro binding assays to investigate physical interactions between the different functional domains of GCN2. A segment containing about two thirds of the protein kinase (PK) catalytic domain and another containing the C-term region of GCN2 interacted with themselves in the two-hybrid assay, and both the PK and the C-term domains could be coimmunoprecipitated with wild-type GCN2 from yeast cell extracts. In addition, in vitro-translated PK and C-term segments showed specific binding in vitro to recombinant glutathione S-transferase (GST)-PK and GST-C-term fusion proteins, respectively. Wild-type GCN2 could be coimmunoprecipitated with a full-length LexA-GCN2 fusion protein from cell extracts, providing direct evidence for dimerization by full-length GCN2 molecules. Deleting the C-term or PK segments abolished or reduced, respectively, the yield of GCN2-LexA-GCN2 complexes. These results provide in vivo and in vitro evidence that GCN2 dimerizes through self-interactions involving the C-term and PK domains. The PK domain showed pairwise in vitro binding interactions with the pseudokinase, HisRS, and C-term domains; additionally, the HisRS domain interacted with the C-term region. We propose that physical interactions between the PK domain and its flanking regulatory regions and dimerization through the PK and C-term domains both play important roles in restricting GCN2 kinase activity to amino acid-starved cells.
Collapse
Affiliation(s)
- H Qiu
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2716, USA
| | | | | |
Collapse
|
4
|
Ogawara H, Urabe H, Ohtaki R, Nakamura Y. Properties of peptide chain release factor 2 from Streptomyces coelicolor A3(2): conserved primary structure but no frameshift regulation. J Bacteriol 1995; 177:5342-5. [PMID: 7545157 PMCID: PMC177330 DOI: 10.1128/jb.177.18.5342-5345.1995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A gene was cloned from Streptomyces coelicolor A3(2). It encodes a protein of 368 amino acid residues with a high degree of similarity to prokaryotic release factor 2. However, it has neither an internal stop codon nor the Shine-Dalgarno-like sequence immediately upstream of the assumed frameshift position. The gene is expressed and functional in Escherichia coli as peptide chain release factor 2. The transcription start site is at or adjacent to the translational start site. The size of the mRNA detected by hybridization suggests that the gene (prfB) is monocistronic in S. coelicolor A3(2). However, about 80 bp upstream of the gene there is an operon which is composed of two genes encoding eukaryotic-type serine/threonine kinases.
Collapse
Affiliation(s)
- H Ogawara
- Department of Biochemistry, Meiji College of Pharmacy, Tokyo, Japan
| | | | | | | |
Collapse
|
5
|
Wek SA, Zhu S, Wek RC. The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol 1995; 15:4497-506. [PMID: 7623840 PMCID: PMC230689 DOI: 10.1128/mcb.15.8.4497] [Citation(s) in RCA: 371] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Protein kinase GCN2 is a multidomain protein that contains a region homologous to histidyl-tRNA synthetases juxtaposed to the kinase catalytic moiety. Previous studies have shown that in response to histidine starvation, GCN2 phosphorylates eukaryotic initiation factor 2 (eIF-2), to induce the translational expression of GCN4, a transcriptional activator of genes subject to the general amino acid control. It was proposed that the synthetase-related sequences of GCN2 stimulate the activity of the kinase by interacting directly with uncharged tRNA that accumulates during amino acid limitation. In addition to histidine starvation, expression of GCN4 is also regulated by a number of other amino acid limitations. Questions that we posed in this report are whether uncharged tRNA is the most direct regulator of GCN2 and whether the function of this kinase is required to recognize each of the different amino acid starvation signals. We show that GCN2 phosphorylation of eIF-2, and the resulting general amino acid control pathway, is stimulated in response to starvation for each of several different amino acids, in addition to histidine limitation. Cells containing a defective aminoacyl-tRNA synthetase also stimulated GCN2 phosphorylation of eIF-2 in the absence of amino acid starvation, indicating that uncharged tRNA levels are the most direct regulator of GCN2 kinase. Using a Northwestern blot (RNA binding) assay, we show that uncharged tRNA can bind to the synthetase-related domain of GCN2. Mutations in the motif 2 sequence conserved among class II synthetases, including histidyl-tRNA synthetases, impair the ability of this synthetase-related domain to bind tRNA and abolish GCN2 phosphorylation of eIF-2 required to stimulate the general amino acid control response. These in vivo and in vitro experiments indicate that synthetase-related sequences regulate GCN2 kinase function by monitoring the levels of multiple uncharged tRNAs that accumulate during amino acid limitations.
Collapse
Affiliation(s)
- S A Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122, USA
| | | | | |
Collapse
|
6
|
DBF8, an essential gene required for efficient chromosome segregation in Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 8065366 DOI: 10.1128/mcb.14.9.6350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate chromosome segregation in Saccharomyces cerevisiae, we examined a collection of temperature-sensitive mutants that arrest as large-budded cells at restrictive temperatures (L. H. Johnston and A. P. Thomas, Mol. Gen. Genet. 186:439-444, 1982). We characterized dbf8, a mutation that causes cells to arrest with a 2c DNA content and a short spindle. DBF8 maps to chromosome IX near the centromere, and it encodes a 36-kDa protein that is essential for viability at all temperatures. Mutational analysis reveals that three dbf8 alleles are nonsense mutations affecting the carboxy-terminal third of the encoded protein. Since all of these mutations confer temperature sensitivity, it appears that the carboxyl-terminal third of the protein is essential only at a restrictive temperature. In support of this conclusion, an insertion of URA3 at the same position also confers a temperature-sensitive phenotype. Although they show no evidence of DNA damage, dbf8 mutants exhibit increased rates of chromosome loss and nondisjunction even at a permissive temperature. Taken together, our data suggest that Dbf8p plays an essential role in chromosome segregation.
Collapse
|
7
|
Houman F, Holm C. DBF8, an essential gene required for efficient chromosome segregation in Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:6350-60. [PMID: 8065366 PMCID: PMC359161 DOI: 10.1128/mcb.14.9.6350-6360.1994] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To investigate chromosome segregation in Saccharomyces cerevisiae, we examined a collection of temperature-sensitive mutants that arrest as large-budded cells at restrictive temperatures (L. H. Johnston and A. P. Thomas, Mol. Gen. Genet. 186:439-444, 1982). We characterized dbf8, a mutation that causes cells to arrest with a 2c DNA content and a short spindle. DBF8 maps to chromosome IX near the centromere, and it encodes a 36-kDa protein that is essential for viability at all temperatures. Mutational analysis reveals that three dbf8 alleles are nonsense mutations affecting the carboxy-terminal third of the encoded protein. Since all of these mutations confer temperature sensitivity, it appears that the carboxyl-terminal third of the protein is essential only at a restrictive temperature. In support of this conclusion, an insertion of URA3 at the same position also confers a temperature-sensitive phenotype. Although they show no evidence of DNA damage, dbf8 mutants exhibit increased rates of chromosome loss and nondisjunction even at a permissive temperature. Taken together, our data suggest that Dbf8p plays an essential role in chromosome segregation.
Collapse
Affiliation(s)
- F Houman
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
8
|
Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 8164662 DOI: 10.1128/mcb.14.5.3065] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron uptake in Saccharomyces cerevisiae involves at least two steps: reduction of ferric to ferrous ions extracellularly and transport of the reduced ions through the plasma membrane. We have cloned and molecularly characterized FRE2, a gene which is shown to account, together with FRE1, for the total membrane-associated ferric reductase activity of the cell. Although not similar at the nucleotide level, the two genes encode proteins with significantly similar primary structures and very similar hydrophobicity profiles. The FRE1 and FRE2 proteins are functionally related, having comparable properties as ferric reductases. FRE2 expression, like FRE1 expression, is induced by iron deprivation, and at least part of this control takes place at the transcriptional level, since 156 nucleotides upstream of the initiator AUG conferred iron-dependent regulation when fused to a heterologous gene. However, the two gene products have distinct temporal regulation of their activities during cell growth.
Collapse
|
9
|
Georgatsou E, Alexandraki D. Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:3065-73. [PMID: 8164662 PMCID: PMC358674 DOI: 10.1128/mcb.14.5.3065-3073.1994] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Iron uptake in Saccharomyces cerevisiae involves at least two steps: reduction of ferric to ferrous ions extracellularly and transport of the reduced ions through the plasma membrane. We have cloned and molecularly characterized FRE2, a gene which is shown to account, together with FRE1, for the total membrane-associated ferric reductase activity of the cell. Although not similar at the nucleotide level, the two genes encode proteins with significantly similar primary structures and very similar hydrophobicity profiles. The FRE1 and FRE2 proteins are functionally related, having comparable properties as ferric reductases. FRE2 expression, like FRE1 expression, is induced by iron deprivation, and at least part of this control takes place at the transcriptional level, since 156 nucleotides upstream of the initiator AUG conferred iron-dependent regulation when fused to a heterologous gene. However, the two gene products have distinct temporal regulation of their activities during cell growth.
Collapse
Affiliation(s)
- E Georgatsou
- Foundation for Research and Technology-HELLAS, Institute of Molecular Biology and Biotechnology, Crete, Greece
| | | |
Collapse
|
10
|
CDC44: a putative nucleotide-binding protein required for cell cycle progression that has homology to subunits of replication factor C. Mol Cell Biol 1994. [PMID: 8264593 DOI: 10.1128/mcb.14.1.255] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the means by which a cell regulates the progression of the mitotic cell cycle, we characterized cdc44, a mutation that causes Saccharomyces cerevisiae cells to arrest before mitosis. CDC44 encodes a 96-kDa basic protein with significant homology to a human protein that binds DNA (PO-GA) and to three subunits of human replication factor C (also called activator 1). The hypothesis that Cdc44p is involved in DNA metabolism is supported by the observations that (i) levels of mitotic recombination suggest elevated rates of DNA damage in cdc44 mutants and (ii) the cell cycle arrest observed in cdc44 mutants is alleviated by the DNA damage checkpoint mutations rad9, mec1, and mec2. The predicted amino acid sequence of Cdc44p contains GTPase consensus sites, and mutations in these regions cause a conditional cell cycle arrest. Taken together, these observations suggest that the essential CDC44 gene may encode the large subunit of yeast replication factor C.
Collapse
|
11
|
The Saccharomyces cerevisiae Cdc68 transcription activator is antagonized by San1, a protein implicated in transcriptional silencing. Mol Cell Biol 1994. [PMID: 8246972 DOI: 10.1128/mcb.13.12.7553] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CDC68 gene (also called SPT16) encodes a transcription factor for the expression of a diverse set of genes in the budding yeast Saccharomyces cerevisiae. To identify other proteins that are functionally related to the Cdc68 protein, we searched for genetic suppressors of a cdc68 mutation. Four suppressor genes in which mutations reverse the temperature sensitivity imposed by the cdc68-1 mutation were found. We show here that one of the suppressor genes is the previously reported SAN1 gene; san1 mutations were originally identified as suppressors of a sir4 mutation, implicated in the chromatin-mediated transcriptional silencing of the two mating-type loci HML and HMR. Each san1 mutation, including a san1 null allele, reversed all aspects of the cdc68 mutant phenotype. Conversely, increased copy number of the wild-type SAN1 gene lowered the restrictive temperature for the cdc68-1 mutation. Our findings suggest that the San1 protein antagonizes the transcriptional activator function of the Cdc68 protein. The identification of san1 mutations as suppressors of cdc68 mutations suggests a role for Cdc68 in chromatin structure.
Collapse
|
12
|
Howell EA, McAlear MA, Rose D, Holm C. CDC44: a putative nucleotide-binding protein required for cell cycle progression that has homology to subunits of replication factor C. Mol Cell Biol 1994; 14:255-67. [PMID: 8264593 PMCID: PMC358375 DOI: 10.1128/mcb.14.1.255-267.1994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To investigate the means by which a cell regulates the progression of the mitotic cell cycle, we characterized cdc44, a mutation that causes Saccharomyces cerevisiae cells to arrest before mitosis. CDC44 encodes a 96-kDa basic protein with significant homology to a human protein that binds DNA (PO-GA) and to three subunits of human replication factor C (also called activator 1). The hypothesis that Cdc44p is involved in DNA metabolism is supported by the observations that (i) levels of mitotic recombination suggest elevated rates of DNA damage in cdc44 mutants and (ii) the cell cycle arrest observed in cdc44 mutants is alleviated by the DNA damage checkpoint mutations rad9, mec1, and mec2. The predicted amino acid sequence of Cdc44p contains GTPase consensus sites, and mutations in these regions cause a conditional cell cycle arrest. Taken together, these observations suggest that the essential CDC44 gene may encode the large subunit of yeast replication factor C.
Collapse
Affiliation(s)
- E A Howell
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | |
Collapse
|
13
|
Xu Q, Johnston GC, Singer RA. The Saccharomyces cerevisiae Cdc68 transcription activator is antagonized by San1, a protein implicated in transcriptional silencing. Mol Cell Biol 1993; 13:7553-65. [PMID: 8246972 PMCID: PMC364827 DOI: 10.1128/mcb.13.12.7553-7565.1993] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The CDC68 gene (also called SPT16) encodes a transcription factor for the expression of a diverse set of genes in the budding yeast Saccharomyces cerevisiae. To identify other proteins that are functionally related to the Cdc68 protein, we searched for genetic suppressors of a cdc68 mutation. Four suppressor genes in which mutations reverse the temperature sensitivity imposed by the cdc68-1 mutation were found. We show here that one of the suppressor genes is the previously reported SAN1 gene; san1 mutations were originally identified as suppressors of a sir4 mutation, implicated in the chromatin-mediated transcriptional silencing of the two mating-type loci HML and HMR. Each san1 mutation, including a san1 null allele, reversed all aspects of the cdc68 mutant phenotype. Conversely, increased copy number of the wild-type SAN1 gene lowered the restrictive temperature for the cdc68-1 mutation. Our findings suggest that the San1 protein antagonizes the transcriptional activator function of the Cdc68 protein. The identification of san1 mutations as suppressors of cdc68 mutations suggests a role for Cdc68 in chromatin structure.
Collapse
Affiliation(s)
- Q Xu
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
14
|
Heat shock-mediated cell cycle blockage and G1 cyclin expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1993. [PMID: 8380888 DOI: 10.1128/mcb.13.2.1034] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For cells of the yeast Saccharomyces cerevisiae, heat shock causes a transient inhibition of the cell cycle-regulatory step START. We have determined that this heat-induced START inhibition is accompanied by decreased CLN1 and CLN2 transcript abundance and by possible posttranscriptional changes to CLN3 (WHI1/DAF1) cyclin activity. Persistent CLN2 expression from a heterologous promoter or the CLN2-1 or CLN3-1 alleles that are thought to encode cyclin proteins with increased stability eliminated heat-induced START inhibition but did not affect other aspects of the heat shock response. Heat-induced START inhibition was shown to be independent of functions that regulate cyclin activity under other conditions and of transcriptional regulation of SWI4, an activator of cyclin transcription. Cells lacking Bcy1 function and thus without cyclic AMP control of A kinase activity were inhibited for START by heat shock as long as A kinase activity was attenuated by mutation. We suggest that heat shock mediates START blockage through effects on the G1 cyclins.
Collapse
|
15
|
Rowley A, Johnston GC, Butler B, Werner-Washburne M, Singer RA. Heat shock-mediated cell cycle blockage and G1 cyclin expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:1034-41. [PMID: 8380888 PMCID: PMC358988 DOI: 10.1128/mcb.13.2.1034-1041.1993] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
For cells of the yeast Saccharomyces cerevisiae, heat shock causes a transient inhibition of the cell cycle-regulatory step START. We have determined that this heat-induced START inhibition is accompanied by decreased CLN1 and CLN2 transcript abundance and by possible posttranscriptional changes to CLN3 (WHI1/DAF1) cyclin activity. Persistent CLN2 expression from a heterologous promoter or the CLN2-1 or CLN3-1 alleles that are thought to encode cyclin proteins with increased stability eliminated heat-induced START inhibition but did not affect other aspects of the heat shock response. Heat-induced START inhibition was shown to be independent of functions that regulate cyclin activity under other conditions and of transcriptional regulation of SWI4, an activator of cyclin transcription. Cells lacking Bcy1 function and thus without cyclic AMP control of A kinase activity were inhibited for START by heat shock as long as A kinase activity was attenuated by mutation. We suggest that heat shock mediates START blockage through effects on the G1 cyclins.
Collapse
Affiliation(s)
- A Rowley
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
16
|
Willimsky G, Bang H, Fischer G, Marahiel MA. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J Bacteriol 1992; 174:6326-35. [PMID: 1400185 PMCID: PMC207576 DOI: 10.1128/jb.174.20.6326-6335.1992] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A new class of cold shock-induced proteins that may be involved in an adaptive process required for cell viability at low temperatures or may function as antifreeze proteins in Escherichia coli and Saccharomyces cerevisiae has been identified. We purified a small Bacillus subtilis cold shock protein (CspB) and determined its amino-terminal sequence. By using mixed degenerate oligonucleotides, the corresponding gene (cspB) was cloned on two overlapping fragments of 5 and 6 kb. The gene encodes an acidic 67-amino-acid protein (pI 4.31) with a predicted molecular mass of 7,365 Da. Nucleotide and deduced amino acid sequence comparisons revealed 61% identity to the major cold shock protein of E. coli and 43% identity to a family of eukaryotic DNA binding proteins. Northern RNA blot and primer extension studies indicated the presence of one cspB transcript that was initiated 119 bp upstream of the initiation codon and was found to be induced severalfold when exponentially growing B. subtilis cell cultures were transferred from 37 degrees C to 10 degrees C. Consistent with this cold shock induction of cspB mRNA, a six- to eightfold induction of a cspB-directed beta-galactosidase synthesis was observed upon downshift in temperature. To investigate the function of CspB, we inactivated the cold shock protein by replacing the cspB gene in the B. subtilis chromosome with a cat-interrupted copy (cspB::cat) by marker replacement recombination. The viability of cells of this mutant strain, GW1, at freezing temperatures was strongly affected. However, the effect of having no CspB in GW1 could be slightly compensated for when cells were preincubated at 10 degrees C before freezing. These results indicate that CspB belongs to a new type of stress-inducible proteins that might be able to protect B. subtilis cells from damage caused by ice crystal formation during freezing.
Collapse
Affiliation(s)
- G Willimsky
- Fachbereich Chemie/Biochemie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
17
|
Tanaka S, Isono K. Physical dissection and characterization of chromosomes V and VIII of Saccharomyces cerevisiae. Nucleic Acids Res 1992; 20:3011-20. [PMID: 1535703 PMCID: PMC312431 DOI: 10.1093/nar/20.12.3011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chromosomes V and VIII of S. cerevisiae were dissected and ordered clone banks were constructed and characterized. Each bank contains almost the entire chromosome from the left to the right telomere except for a small gap in each case. The size of the banks constructed is in good agreement with the physical length of these chromosomes, 580 kb, estimated by pulsed-field gel electrophoresis. The remaining gap in the ordered clone bank of chromosome V was found to be only 1.6 kb in length and to contain a 1.5 kb-long portion of one of the two Ty elements located in tandem. The gap in the bank of chromosome VIII was 6.4 kb in length and contained four copies of the CUP1 gene. A genomic restriction map analysis of the corresponding region of chromosome VIII revealed that a unit of about 2 kb in length harbouring the CUP1 gene was repeated ten times in strain DC5 rho degrees which was used for the bank construction. A 588.5 kb-long high resolution physical map for chromosome V and a 585.6 kb-long one for chromosome VIII have thus been established.
Collapse
Affiliation(s)
- S Tanaka
- Division of Science of Intelligence, Postgraduate School of Science and Technology, Kobe University, Japan
| | | |
Collapse
|
18
|
Urabe H, Ogawara H. Nucleotide sequence and transcriptional analysis of activator-regulator proteins for beta-lactamase in Streptomyces cacaoi. J Bacteriol 1992; 174:2834-42. [PMID: 1569015 PMCID: PMC205934 DOI: 10.1128/jb.174.9.2834-2842.1992] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nucleotide sequence of the 2.7-kb DNA fragment upstream of the structural gene of beta-lactamase in Streptomyces cacaoi was determined. Computer-aided "FRAME" analysis revealed four possible open reading frames (ORFs), three in one direction and one in the opposite direction. One of them (ORF1, BlaA) encoded an activator-regulator protein whose deduced amino acid sequence was similar to that of other activator-regulator proteins in bacteria. Insertion of an 8-bp BamHI linker into the BlaA region decreased the beta-lactamase activity sharply, from 50 U to 1 U/ml. This protein (BlaA) was found to bind to the nucleotide sequence between the bla (beta-lactamase structural gene) and blaA genes. Another ORF (ORF2, BlaB) in the same orientation had a couple of amino acid sequences similar to that of pBR322 beta-lactamase. However, insertion of the 8-bp BamHI linker indicated that this ORF was functional as an activator-regulator but not as a beta-lactamase. Therefore, there were two activator-regulator proteins in the upstream region of the structural gene of the beta-lactamase. Nuclease S1 mapping predicted that transcription for the activator proteins commenced at the translational initiation codon or within a few nucleotides from the translational start site. Transcription was in the opposite direction to that of the beta-lactamase structural gene.
Collapse
Affiliation(s)
- H Urabe
- Department of Biochemistry, Meiji College of Pharmacy, Tokyo, Japan
| | | |
Collapse
|
19
|
CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus. Mol Cell Biol 1991. [PMID: 1833637 DOI: 10.1128/mcb.11.11.5718] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell cycle of the budding yeast Saccharomyces cerevisiae has been investigated through the study of conditional cdc mutations that specifically affect cell cycle performance. Cells bearing the cdc68-1 mutation (J. A. Prendergast, L. E. Murray, A. Rowley, D. R. Carruthers, R. A. Singer, and G. C. Johnston, Genetics 124:81-90, 1990) are temperature sensitive for the performance of the G1 regulatory event, START. Here we describe the CDC68 gene and present evidence that the CDC68 gene product functions in transcription. CDC68 encodes a 1,035-amino-acid protein with a highly acidic and serine-rich carboxyl terminus. The abundance of transcripts from several unrelated genes is decreased in cdc68-1 mutant cells after transfer to the restrictive temperature, while at least one transcript, from the HSP82 gene, persists in an aberrant fashion. Thus, the cdc68-1 mutation has both positive and negative effects on gene expression. Our findings complement those of Malone et al. (E. A. Malone, C. D. Clark, A. Chiang, and F. Winston, Mol. Cell. Biol. 11:5710-5717, 1991), who have independently identified the CDC68 gene (as SPT16) as a transcriptional suppressor of delta-insertion mutations. Among transcripts that rapidly become depleted in cdc68-1 mutant cells are those of the G1 cyclin genes CLN1, CLN2, and CLN3/WHI1/DAF1, whose activity has been previously shown to be required for the performance of START. The decreased abundance of cyclin transcripts in cdc68-1 mutant cells, coupled with the suppression of cdc68-1-mediated START arrest by the CLN2-1 hyperactive allele of CLN2, shows that the CDC68 gene affects START through cyclin gene expression.
Collapse
|
20
|
Rowley A, Singer RA, Johnston GC. CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus. Mol Cell Biol 1991; 11:5718-26. [PMID: 1833637 PMCID: PMC361943 DOI: 10.1128/mcb.11.11.5718-5726.1991] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cell cycle of the budding yeast Saccharomyces cerevisiae has been investigated through the study of conditional cdc mutations that specifically affect cell cycle performance. Cells bearing the cdc68-1 mutation (J. A. Prendergast, L. E. Murray, A. Rowley, D. R. Carruthers, R. A. Singer, and G. C. Johnston, Genetics 124:81-90, 1990) are temperature sensitive for the performance of the G1 regulatory event, START. Here we describe the CDC68 gene and present evidence that the CDC68 gene product functions in transcription. CDC68 encodes a 1,035-amino-acid protein with a highly acidic and serine-rich carboxyl terminus. The abundance of transcripts from several unrelated genes is decreased in cdc68-1 mutant cells after transfer to the restrictive temperature, while at least one transcript, from the HSP82 gene, persists in an aberrant fashion. Thus, the cdc68-1 mutation has both positive and negative effects on gene expression. Our findings complement those of Malone et al. (E. A. Malone, C. D. Clark, A. Chiang, and F. Winston, Mol. Cell. Biol. 11:5710-5717, 1991), who have independently identified the CDC68 gene (as SPT16) as a transcriptional suppressor of delta-insertion mutations. Among transcripts that rapidly become depleted in cdc68-1 mutant cells are those of the G1 cyclin genes CLN1, CLN2, and CLN3/WHI1/DAF1, whose activity has been previously shown to be required for the performance of START. The decreased abundance of cyclin transcripts in cdc68-1 mutant cells, coupled with the suppression of cdc68-1-mediated START arrest by the CLN2-1 hyperactive allele of CLN2, shows that the CDC68 gene affects START through cyclin gene expression.
Collapse
Affiliation(s)
- A Rowley
- Department of Microbiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
21
|
Larson TG, Goodgal SH. Sequence and transcriptional regulation of com101A, a locus required for genetic transformation in Haemophilus influenzae. J Bacteriol 1991; 173:4683-91. [PMID: 1856167 PMCID: PMC208145 DOI: 10.1128/jb.173.15.4683-4691.1991] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A 2.8-kb EcoRI-BglII fragment cloned from the wild-type Haemophilus influenzae Rd chromosome is shown to increase the transformability of the Com-101 mutant through trans complementation. Deletion and sequence analyses indicate that the active region of the clone carries a 687-bp open reading frame. A 0.3-kb insertion in the corresponding EcoRI-BglII fragment of the Com-101 chromosome is shown to be a partial (331-bp) duplication of this open reading frame. The wild-type sequence produces a peptide of a size that is consistent with the sequence data when this sequence is expressed in Escherichia coli with a T7 promoter-based transcription vector. RNA hybridization analysis using a DNA probe derived from the open reading frame suggests that the sequence is transiently expressed during competence development. On the basis of these observations, it is proposed that the open reading frame corresponds to the com101A gene.
Collapse
Affiliation(s)
- T G Larson
- Graduate Group in Biochemistry, University of Pennsylvania, School of Medicine, Philadelphia 19104
| | | |
Collapse
|
22
|
Micka B, Groch N, Heinemann U, Marahiel MA. Molecular cloning, nucleotide sequence, and characterization of the Bacillus subtilis gene encoding the DNA-binding protein HBsu. J Bacteriol 1991; 173:3191-8. [PMID: 1902464 PMCID: PMC207914 DOI: 10.1128/jb.173.10.3191-3198.1991] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A homologous class of histonelike proteins which are believed to wrap the DNA and to condense the chromosome into highly folded nucleoid structures has been identified in different bacterial species. Bacillus subtilis encodes a homodimeric DNA-binding protein called HBsu. We have cloned the corresponding gene (hbs) on a 3.8-kb fragment. The gene was subcloned to a 1-kb fragment, sequenced, and characterized. It encodes a 92-amino-acid protein with a predicted molecular mass of 9,884 Da. Fortunately, analysis of the DNA sequence downstream of the 3' end of hbs revealed the location of the first 19 amino acid residues of MtrA. This finding located the hbs gene unequivocally to the 5' end of the mtr operon at about 204 degrees on the standard genetic map of B. subtilis. Northern (RNA) blot analysis and primer extension studies indicated the presence of two distinct hbs transcripts, which were found to be initiated at two different sites located about 160 bases apart. Several attempts to replace the hbs gene in the B. subtilis chromosome with a cat-interrupted copy (hbs::cat) through marker replacement recombination were unsuccessful. In order to study whether hbs is an essential gene, we have constructed a strain containing a truncated copy of the gene behind its own promoter and another intact copy under control of the isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible spac-1 promoter. In this strain (BM19), normal growth was found to depend on IPTG, whereas in the absence of IPTG, growth was severely affected. These results suggest an essential role for the hbs gene product for normal growth in B. subtilis.
Collapse
Affiliation(s)
- B Micka
- Fachbereich Chemie/Biochemie, Philipps-Universität Marburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
23
|
Abstract
In the cell cycle of the budding yeast Saccharomyces cerevisiae, expression of the histone genes H2A and H2B of the TRT1 and TRT2 loci is regulated by the performance of "start," the step that also regulates the cell cycle. Here we show that histone production is also subject to an additional form of regulation that is unrelated to the mitotic cell cycle. Expression of histone genes, as assessed by Northern (RNA) analysis, was shown to increase promptly after the stimulation, brought about by fresh medium, that activates stationary-phase cells to reenter the mitotic cell cycle. The use of a yeast mutant that is conditionally blocked in the resumption of proliferation at a step that is not part of the mitotic cell cycle (M.A. Drebot, G.C. Johnston, and R.A. Singer, Proc. Natl. Acad. Sci. 84:7948, 1987) showed that this increased gene expression that occurs upon stimulation of stationary-phase cells took place in the absence of DNA synthesis and without the performance of start. This stimulation-specific gene expression was blocked by the mating pheromone alpha-factor, indicating that alpha-factor directly inhibits expression of these histone genes, independently of start.
Collapse
|
24
|
Drebot MA, Veinot-Drebot LM, Singer RA, Johnston GC. Induction of yeast histone genes by stimulation of stationary-phase cells. Mol Cell Biol 1990; 10:6356-61. [PMID: 2247060 PMCID: PMC362911 DOI: 10.1128/mcb.10.12.6356-6361.1990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the cell cycle of the budding yeast Saccharomyces cerevisiae, expression of the histone genes H2A and H2B of the TRT1 and TRT2 loci is regulated by the performance of "start," the step that also regulates the cell cycle. Here we show that histone production is also subject to an additional form of regulation that is unrelated to the mitotic cell cycle. Expression of histone genes, as assessed by Northern (RNA) analysis, was shown to increase promptly after the stimulation, brought about by fresh medium, that activates stationary-phase cells to reenter the mitotic cell cycle. The use of a yeast mutant that is conditionally blocked in the resumption of proliferation at a step that is not part of the mitotic cell cycle (M.A. Drebot, G.C. Johnston, and R.A. Singer, Proc. Natl. Acad. Sci. 84:7948, 1987) showed that this increased gene expression that occurs upon stimulation of stationary-phase cells took place in the absence of DNA synthesis and without the performance of start. This stimulation-specific gene expression was blocked by the mating pheromone alpha-factor, indicating that alpha-factor directly inhibits expression of these histone genes, independently of start.
Collapse
Affiliation(s)
- M A Drebot
- Department of Microbiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
25
|
Urabe H, Lenzini MV, Mukaide M, Dusart J, Nakano MM, Ghuysen JM, Ogawara H. Beta-lactamase expression in Streptomyces cacaoi. J Bacteriol 1990; 172:6427-34. [PMID: 2228966 PMCID: PMC526829 DOI: 10.1128/jb.172.11.6427-6434.1990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Plasmids were prepared by inserting genomic DNA fragments from Streptomyces cacaoi within the mel gene of plasmid pIJ702. The inserted DNA fragments contain the beta-lactamase-encoding bla gene and upstream nucleotide sequences of various lengths. The transcription start point of bla was identified by nuclease S1 mapping. Upstream nucleotide sequences of sufficient lengths had an enhancing effect on beta-lactamase production by the Streptomyces host. The dot blot hybridization assay revealed that this effect was exerted at the transcriptional level. Experimental evidence strongly suggests that the underlying mechanism involves, at least in part, one or several trans-acting elements. In one of the constructs, in which the upstream nucleotide sequence was reduced to 0.3 kb, the bla promoter was present but the bla gene was expressed by readthrough from a promoter, possibly the mel promoter, of the pIJ702 vector.
Collapse
Affiliation(s)
- H Urabe
- Department of Biochemistry, Meiji College of Pharmacy, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Translational activation of GCN4 mRNA in a cell-free system is triggered by uncharged tRNAs. Mol Cell Biol 1990. [PMID: 2196452 DOI: 10.1128/mcb.10.8.4375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation of GCN4 mRNA is activated when yeast cells are grown under conditions of amino acid limitation. In this study, we established the conditions through which translation of the GCN4 mRNA could be activated in a homologous in vitro system. This activation paralleled the in vivo situation: it required the small open reading frames located in the 5' untranslated region of the GCN4 mRNA, and it was coupled with reduced rates of 43S preinitiation complex formation. Translational derepression in vitro was triggered by uncharged tRNA molecules, demonstrating that deacylated tRNAs are more proximal signals for translational activation of the GCN4 mRNA.
Collapse
|
27
|
Krupitza G, Thireos G. Translational activation of GCN4 mRNA in a cell-free system is triggered by uncharged tRNAs. Mol Cell Biol 1990; 10:4375-8. [PMID: 2196452 PMCID: PMC360992 DOI: 10.1128/mcb.10.8.4375-4378.1990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Translation of GCN4 mRNA is activated when yeast cells are grown under conditions of amino acid limitation. In this study, we established the conditions through which translation of the GCN4 mRNA could be activated in a homologous in vitro system. This activation paralleled the in vivo situation: it required the small open reading frames located in the 5' untranslated region of the GCN4 mRNA, and it was coupled with reduced rates of 43S preinitiation complex formation. Translational derepression in vitro was triggered by uncharged tRNA molecules, demonstrating that deacylated tRNAs are more proximal signals for translational activation of the GCN4 mRNA.
Collapse
Affiliation(s)
- G Krupitza
- Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Crete, Greece
| | | |
Collapse
|
28
|
Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression. Mol Cell Biol 1990. [PMID: 2188100 DOI: 10.1128/mcb.10.6.2820] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GCN4 is a transcriptional activator of amino acid-biosynthetic genes in the yeast Saccharomyces cerevisiae. GCN2, a translational activator of GCN4 expression, contains a domain homologous to the catalytic subunit of eucaryotic protein kinases. Substitution of a highly conserved lysine residue in the kinase domain abolished GCN2 regulatory function in vivo and its ability to autophosphorylate in vitro, indicating that GCN2 acts as a protein kinase in stimulating GCN4 expression. Elevated GCN2 gene dosage led to derepression of GCN4 under nonstarvation conditions; however, we found that GCN2 mRNA and protein levels did not increase in wild-type cells in response to amino acid starvation. Therefore, it appears that GCN2 protein kinase function is stimulated posttranslationally in amino acid-starved cells. Three dominant-constitutive GCN2 point mutations were isolated that led to derepressed GCN4 expression under nonstarvation conditions. Two of the GCN2(Con) mutations mapped in the kinase domain itself. The third mapped just downstream from a carboxyl-terminal segment homologous to histidyl-tRNA synthetase (HisRS), which we suggested might function to detect uncharged tRNA in amino acid-starved cells and activate the adjacent protein kinase moiety. Deletions and substitutions in the HisRS-related sequences and in the carboxyl-terminal segment in which one of the GCN2(Con) mutation mapped abolished GCN2 positive regulatory function in vivo without lowering autophosphorylation activity in vitro. These results suggest that sequences flanking the GCN2 protein kinase moiety are positive-acting domains required to increase recognition of physiological substrates or lower the requirement for uncharged tRNA to activate kinase activity under conditions of amino acid starvation.
Collapse
|
29
|
Wek RC, Ramirez M, Jackson BM, Hinnebusch AG. Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression. Mol Cell Biol 1990; 10:2820-31. [PMID: 2188100 PMCID: PMC360643 DOI: 10.1128/mcb.10.6.2820-2831.1990] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
GCN4 is a transcriptional activator of amino acid-biosynthetic genes in the yeast Saccharomyces cerevisiae. GCN2, a translational activator of GCN4 expression, contains a domain homologous to the catalytic subunit of eucaryotic protein kinases. Substitution of a highly conserved lysine residue in the kinase domain abolished GCN2 regulatory function in vivo and its ability to autophosphorylate in vitro, indicating that GCN2 acts as a protein kinase in stimulating GCN4 expression. Elevated GCN2 gene dosage led to derepression of GCN4 under nonstarvation conditions; however, we found that GCN2 mRNA and protein levels did not increase in wild-type cells in response to amino acid starvation. Therefore, it appears that GCN2 protein kinase function is stimulated posttranslationally in amino acid-starved cells. Three dominant-constitutive GCN2 point mutations were isolated that led to derepressed GCN4 expression under nonstarvation conditions. Two of the GCN2(Con) mutations mapped in the kinase domain itself. The third mapped just downstream from a carboxyl-terminal segment homologous to histidyl-tRNA synthetase (HisRS), which we suggested might function to detect uncharged tRNA in amino acid-starved cells and activate the adjacent protein kinase moiety. Deletions and substitutions in the HisRS-related sequences and in the carboxyl-terminal segment in which one of the GCN2(Con) mutation mapped abolished GCN2 positive regulatory function in vivo without lowering autophosphorylation activity in vitro. These results suggest that sequences flanking the GCN2 protein kinase moiety are positive-acting domains required to increase recognition of physiological substrates or lower the requirement for uncharged tRNA to activate kinase activity under conditions of amino acid starvation.
Collapse
Affiliation(s)
- R C Wek
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
30
|
Krätzschmar J, Krause M, Marahiel MA. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol 1989; 171:5422-9. [PMID: 2477357 PMCID: PMC210379 DOI: 10.1128/jb.171.10.5422-5429.1989] [Citation(s) in RCA: 186] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The DNA sequence of about 5.9 kilobase pairs (kbp) of the gramicidin S biosynthesis operon (grs) was determined. Three open reading frames were identified; the corresponding genes, called grsT, grsA, and grsB, were found to be organized in one transcriptional unit, not two as previously reported (M. Krause and M. A. Marahiel, J. Bacteriol. 170:4669-4674, 1988). The entire nucleotide sequence of grsA, coding for the 126.663-kilodalton gramicidin S synthetase 1, grsT, encoding a 29.191-kilodalton protein of unknown function, and 732 bp of the 5' end of grsB, encoding the gramicidin S synthetase 2, were determined. A single initiation site of transcription 81 bp upstream of the grsT initiation condon GTG was identified by high-resolution S1 mapping studies. The sequence of the grsA gene product showed a high degree of homology to the tyrocidine synthetase 1 (TycA protein), and that of grsT exhibited a significant degree of homology to vertebrate fatty acid thioesterases.
Collapse
Affiliation(s)
- J Krätzschmar
- Institut für Biochemie und Molekulare Biologie, Technische Universität Berlin, Federal Republic of Germany
| | | | | |
Collapse
|
31
|
Wek RC, Jackson BM, Hinnebusch AG. Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc Natl Acad Sci U S A 1989; 86:4579-83. [PMID: 2660141 PMCID: PMC287314 DOI: 10.1073/pnas.86.12.4579] [Citation(s) in RCA: 211] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The GCN2 protein of Saccharomyces cerevisiae stimulates the expression of amino acid biosynthetic genes under conditions of amino acid starvation by derepressing GCN4, a transcriptional activator of these genes. GCN2 contains sequences homologous to the catalytic domain of protein kinases. We show here that substitution of a highly conserved lysine in the presumed ATP-binding site of this domain impairs the derepression of histidine biosynthetic genes under GCN4 control. This result supports the idea that protein kinase activity is required for GCN2 positive regulatory function. Determination of the nucleotide sequence of the entire GCN2 complementation unit, and measurement of the molecular weight of GCN2 protein expressed in vivo, indicate that GCN2 is a Mr approximately 180,000 protein and contains a Mr approximately 60,000 segment homologous to histidyl-tRNA synthetases (HisRSs) juxtaposed to the protein kinase domain. Several two-codon insertion mutations in the HisRS-related coding sequences inactivate GCN2 regulatory function. Based on these results, we propose that the GCN2 HisRS domain responds to the presence of uncharged tRNA by activating the adjacent protein kinase moiety, thus providing a means of coupling GCN2-mediated derepression of GCN4 expression to the availability of amino acids.
Collapse
Affiliation(s)
- R C Wek
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, MD 20892
| | | | | |
Collapse
|
32
|
Nakatani Y, Nicholson WL, Neitzke KD, Setlow P, Freese E. Sigma-G RNA polymerase controls forespore-specific expression of the glucose dehydrogenase operon in Bacillus subtilis. Nucleic Acids Res 1989; 17:999-1017. [PMID: 2493633 PMCID: PMC331718 DOI: 10.1093/nar/17.3.999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The gene encoding glucose dehydrogenase (gdh) is part of an operon whose expression is transcriptionally activated specifically in the developing forespore of Bacillus subtilis at stage III of sporulation. The in vivo startpoint of gdh transcription was determined using primer extension analysis. Deletion mapping and site-specific mutagenesis experiments indicated that the region responsible for regulated expression of gdh in vivo was limited to the "-35" and "-10" regions preceding the transcriptional start site. RNA polymerase containing omega G (E omega G) transcribed gdh in vitro with a start site identical to that found in vivo, and transcription of gdh by E omega G in vitro also did not require any specific sequences upstream from "-35" region. These results suggest that the appearance of E omega G in the forespore at stage III of sporulation is sufficient to cause temporal and compartment-specific expression of the gdh operon.
Collapse
Affiliation(s)
- Y Nakatani
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
33
|
Abstract
The start point of spoIIA transcription was defined by primer extension analysis with two separate primers. It was 27 bases upstream from the putative translation initiation codon of the first open reading frame in the spoIIA locus. A region extending at least 52 bases upstream from the transcription start site was necessary for transcription, as determined with integrative plasmids. Transcription of spoIIA was dependent on the spoOA, spoOB, and spoOF loci, but this dependency was partly overcome by increasing the number of copies of the spoIIA promoter region. Transcription of spoIIA was absolutely dependent on the spoOH locus, which codes for the RNA polymerase sigma factor sigma H. Regions approximately -35 and -10 upstream from the spoIIA transcription start site showed sequence homology with Bacillus subtilis sigma H promoters.
Collapse
Affiliation(s)
- J J Wu
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | | | |
Collapse
|
34
|
Transcriptional-translational regulatory circuit in Saccharomyces cerevisiae which involves the GCN4 transcriptional activator and the GCN2 protein kinase. Mol Cell Biol 1988. [PMID: 3290651 DOI: 10.1128/mcb.8.5.2132] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GCN4 protein mediates the transcriptional activation of amino acid biosynthetic genes in Saccharomyces cerevisiae by specifically binding to DNA sequences in their 5'-regulatory regions. GCN4 expression is regulated at the level of translation, with translational derepression occurring under conditions of amino acid starvation. The product of the GCN2 gene is essential for translational derepression of GCN4. Sequence analysis of the GCN2 gene reveals that the GCN2 protein has a domain highly homologous to the catalytic domain of all known protein kinases. Furthermore, gcn2 strains are deficient in a protein kinase activity corresponding to a protein with the calculated molecular weight deduced from the GCN2 open reading frame. Therefore it is likely that GCN2 encodes a protein kinase, which may be directly involved in translational regulation of the GCN4 mRNA. Transcription of the GCN2 gene is increased when cells are cultured in amino acid starvation medium. This transcriptional activation is mediated by the GCN4 protein, which binds to the promoter region of the GCN2 gene. Thus, this system is modulated by a transcriptional-translational regulatory circuit, which is activated by amino acid starvation. Activation is not the result of a simple quantitative increase of either one of the identified components of the circuit.
Collapse
|
35
|
Abstract
Disruption of ADR1, a positive regulatory gene in the yeast Saccharomyces cerevisiae, abolished derepression of ADH2 but did not affect glucose repression of ADH2 or cell viability. The ADR1 mRNA was 5 kilobases long and had an unusually long leader containing 509 nucleotides. ADR1 mRNA levels were regulated by the carbon source in a strain-dependent fashion. beta-Galactosidase levels measured in strains carrying an ADR1-lacZ gene fusion paralleled ADR1 and ADR1-lacZ mRNA levels, indicating a lack of translational regulation of ADR1 mRNA. ADH2 was regulated by the carbon source to the same extent in all strains examined and showed complete dependence on ADR1 as well. The expression of ADR1 mRNA and an ADR1-beta-galactosidase fusion protein during glucose repression suggested that the activity of the ADR1 protein is regulated at the posttranslational level to properly regulate ADH2 expression. The ADR1-beta-galactosidase fusion protein was able to activate ADH2 expression during glucose repression but showed significantly higher levels of activation upon derepression. A similar result was obtained when ADR1 was present on a multicopy plasmid. These results suggest that low-level expression of ADR1 is required to maintain glucose repression of ADH2 and are consistent with the hypothesis that ADR1 is regulated at the posttranslational level.
Collapse
|
36
|
Roussou I, Thireos G, Hauge BM. Transcriptional-translational regulatory circuit in Saccharomyces cerevisiae which involves the GCN4 transcriptional activator and the GCN2 protein kinase. Mol Cell Biol 1988; 8:2132-9. [PMID: 3290651 PMCID: PMC363394 DOI: 10.1128/mcb.8.5.2132-2139.1988] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
GCN4 protein mediates the transcriptional activation of amino acid biosynthetic genes in Saccharomyces cerevisiae by specifically binding to DNA sequences in their 5'-regulatory regions. GCN4 expression is regulated at the level of translation, with translational derepression occurring under conditions of amino acid starvation. The product of the GCN2 gene is essential for translational derepression of GCN4. Sequence analysis of the GCN2 gene reveals that the GCN2 protein has a domain highly homologous to the catalytic domain of all known protein kinases. Furthermore, gcn2 strains are deficient in a protein kinase activity corresponding to a protein with the calculated molecular weight deduced from the GCN2 open reading frame. Therefore it is likely that GCN2 encodes a protein kinase, which may be directly involved in translational regulation of the GCN4 mRNA. Transcription of the GCN2 gene is increased when cells are cultured in amino acid starvation medium. This transcriptional activation is mediated by the GCN4 protein, which binds to the promoter region of the GCN2 gene. Thus, this system is modulated by a transcriptional-translational regulatory circuit, which is activated by amino acid starvation. Activation is not the result of a simple quantitative increase of either one of the identified components of the circuit.
Collapse
Affiliation(s)
- I Roussou
- University of Crete, Department of Biology, Greece
| | | | | |
Collapse
|
37
|
Blumberg H, Hartshorne TA, Young ET. Regulation of expression and activity of the yeast transcription factor ADR1. Mol Cell Biol 1988; 8:1868-76. [PMID: 3290644 PMCID: PMC363364 DOI: 10.1128/mcb.8.5.1868-1876.1988] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Disruption of ADR1, a positive regulatory gene in the yeast Saccharomyces cerevisiae, abolished derepression of ADH2 but did not affect glucose repression of ADH2 or cell viability. The ADR1 mRNA was 5 kilobases long and had an unusually long leader containing 509 nucleotides. ADR1 mRNA levels were regulated by the carbon source in a strain-dependent fashion. beta-Galactosidase levels measured in strains carrying an ADR1-lacZ gene fusion paralleled ADR1 and ADR1-lacZ mRNA levels, indicating a lack of translational regulation of ADR1 mRNA. ADH2 was regulated by the carbon source to the same extent in all strains examined and showed complete dependence on ADR1 as well. The expression of ADR1 mRNA and an ADR1-beta-galactosidase fusion protein during glucose repression suggested that the activity of the ADR1 protein is regulated at the posttranslational level to properly regulate ADH2 expression. The ADR1-beta-galactosidase fusion protein was able to activate ADH2 expression during glucose repression but showed significantly higher levels of activation upon derepression. A similar result was obtained when ADR1 was present on a multicopy plasmid. These results suggest that low-level expression of ADR1 is required to maintain glucose repression of ADH2 and are consistent with the hypothesis that ADR1 is regulated at the posttranslational level.
Collapse
Affiliation(s)
- H Blumberg
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | |
Collapse
|
38
|
Guzmán P, Westpheling J, Youngman P. Characterization of the promoter region of the Bacillus subtilis spoIIE operon. J Bacteriol 1988; 170:1598-609. [PMID: 2832371 PMCID: PMC211007 DOI: 10.1128/jb.170.4.1598-1609.1988] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mutations that define the spoIIE locus of Bacillus subtilis block sporulation at an early stage and recently were shown to prevent the proteolytic processing of sigma E (sigma 29) into its active form, an event that is believed to control critical changes in gene expression during the second hour of development. By taking advantage of two Tn917-mediated insertional mutations in spoIIE, we have cloned DNA spanning the locus. Gene disruption experiments with subcloned fragments transferred to integrational vectors revealed that the locus consisted of a single transcription unit about 2.5 kilobase pairs in size. Transcriptional lacZ fusions were used to show that expression of this transcription unit initiated at 1.5 h after the end of log-phase growth and depended upon the products of all spo0 loci. Expression was directed by a single promoter whose position was determined by high-resolution S1 protection mapping. A deletion analysis of the promoter region was also carried out, with novel integrational vectors based on derivatives of coliphage M13. The results indicated that a region of DNA extending from 183 to 118 base pairs upstream from the start point of transcription was required for full activity of the spoIIE promoter. The presumptive RNA polymerase-binding region of the promoter exhibited striking similarity to the spoIIG promoter and featured perfect but unusually spaced -10 and -35 consensus sequences for sigma A (sigma 43)-associated RNA polymerase.
Collapse
Affiliation(s)
- P Guzmán
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | |
Collapse
|
39
|
Guijarro J, Santamaria R, Schauer A, Losick R. Promoter determining the timing and spatial localization of transcription of a cloned Streptomyces coelicolor gene encoding a spore-associated polypeptide. J Bacteriol 1988; 170:1895-901. [PMID: 2450872 PMCID: PMC211047 DOI: 10.1128/jb.170.4.1895-1901.1988] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Streptomyces coelicolor is a filamentous, gram-positive bacterium that exhibits a complex cycle of morphological differentiation involving the formation of an aerial mycelium of multinucleoid hyphae which undergo septation to form long chains of spores. We report the identification of two proteins of 13 and 3 kilodaltons, designated SapA and SapB, respectively, that are produced during formation of the aerial mycelium and are found in assocation with purified, mature spores. We cloned the structural gene (sapA) for one of these spore-associated proteins. Nucleotide sequence analysis suggests that the 13-kilodalton polypeptide is derived from a larger pre- or preproprotein containing a leader sequence of 37 amino acids. Nuclease protection-hybridization analysis and experiments using the Vibrio harveyi, luciferase-encoding luxAB operon as a gene tag demonstrated that expression of sapA is controlled from a promoter contained within a region of less than 110 base pairs in length, whose transcription start site is located approximately 50 base pairs upstream from the initiation codon for the sapA open reading frame. Transcription of sapA was induced at the time of appearance of the aerial mycelium, and the level of sapA transcripts was significantly reduced in certain mutants blocked in aerial mycelium (bld) and or spore (whi) formation. As further evidence of the association of sapA transcription with morphological differentiation, experiments in which we monitored sapA transcription topographically by use of a sapA-luxAB operon fusion demonstrated a close spatial correlation between colony regions undergoing aerial mycelium formation and zones of sapA-promoted light emission.
Collapse
Affiliation(s)
- J Guijarro
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | |
Collapse
|
40
|
Schüller HJ, Entian KD. Isolation and expression analysis of two yeast regulatory genes involved in the derepression of glucose-repressible enzymes. MOLECULAR & GENERAL GENETICS : MGG 1987; 209:366-73. [PMID: 2823078 DOI: 10.1007/bf00329667] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Yeast strains carrying one of the two regulatory mutations cat1 and cat3 are defective in derepression of several glucose-repressible enzymes that are necessary for utilizing non-fermentable carbon sources. Hence, these strains fail to grow on ethanol, glycerol or acetate. The synthesis of isocitrate lyase, malate synthase, malate dehydrogenase and fructose-1,6-bisphosphatase is strongly affected in cat1 and cat3 strains. Genes CAT1 and CAT3 have been isolated by complementation of the cognate mutations after transformation with an episomal plasmid gene library. The restriction map of CAT1 proved its allelism to the earlier isolated SNF1 gene. Both genes appear to exist as single-copy genes per haploid genome as indicated by Southern hybridization. Northern analysis has shown that the 1.35 kb CAT3 mRNA is constitutively expressed, independent of the carbon source in the medium. Derepression studies with CAT3 transformants using a multi-copy plasmid showed over-expression of glyoxylate cycle enzymes. This result would be consistent with a direct effector function for the CAT3 gene product.
Collapse
Affiliation(s)
- H J Schüller
- Medizinisch-Naturwissenschaftliches Forschungszentrum, Universität Tübingen, Federal Republic of Germany
| | | |
Collapse
|
41
|
Nishiwaki K, Hayashi N, Irie S, Chung DH, Harashima S, Oshima Y. Structure of the yeast HIS5 gene responsive to general control of amino acid biosynthesis. MOLECULAR & GENERAL GENETICS : MGG 1987; 208:159-67. [PMID: 3302607 DOI: 10.1007/bf00330437] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The nucleotide sequence of a 2.1 kb DNA fragment bearing the HIS5 gene of Saccharomyces cerevisiae, which encodes histidinol-phosphate aminotransferase (EC 2.6.1.9), has been determined. An open reading frame of 1,152 bp was found. S1 nuclease mapping indicated that the major transcription starts at position -37 from the ATG codon and the minor (approximately 20%) at -34 in both repressive and derepressive conditions. Northern analysis indicated that transcription of the HIS5 gene is under the general control of amino acid biosynthesis. The 5' noncoding region of the gene, thus far examined up to position -616, contains three copies of sequences homologous to the short repeats of the consensus sequence, 5'-AATGTGACTC-3', suggested for general amino acid control in the HIS1, HIS3, HIS4, and TRP5 at positions -336, -275 and -205. The consensus sequence closest to the open reading frame was shown to be necessary but not sufficient for general amino acid control, by examination of beta-galactosidase appearance in S. cerevisiae cells carrying various mutant HIS5 promoter regions fused to the lac'Z gene and inserted at the leu2 locus of chromosome III.
Collapse
|
42
|
Marahiel MA, Zuber P, Czekay G, Losick R. Identification of the promoter for a peptide antibiotic biosynthesis gene from Bacillus brevis and its regulation in Bacillus subtilis. J Bacteriol 1987; 169:2215-22. [PMID: 3032912 PMCID: PMC212134 DOI: 10.1128/jb.169.5.2215-2222.1987] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tyrocidine is a cyclic decapeptide antibiotic which is produced and secreted by stationary-phase cells of the sporeforming bacterium Bacillus brevis. We identified the promoter for the B. brevis structural gene (tycA) for tyrocidine synthetase I, the enzyme catalyzing the first step in tyrocidine biosynthesis, and studied its regulation in cells of B. brevis and Bacillus subtilis. Transcription from the tycA promoter was induced at the end of the exponential phase of the growth cycle in B. brevis cells growing in sporulation medium. To study the regulation of tycA in B. subtilis, we constructed a derivative of the B. subtilis bacteriophage SP beta containing a transcriptional fusion of the tycA promoter to the lacZ gene of Escherichia coli and introduced the tycA-lacZ operon fusion by means of specialized transduction into sporulation mutants known to be blocked in sporulation-associated antibiotic production. Our principal finding was that tycA-directed lacZ expression was impaired in the stage-0 mutants with mutations spo0A, spo0B, and spo0E but not in spo0C, spo0F, spo0H, or spo+ bacteria. The dependence on the spo0A gene product could be entirely bypassed by an abrB suppressor mutation, which caused tycA-lacZ to be transcribed constitutively at all stages of growth. A simple model is proposed for the mechanism of tycA induction based on the Spo0A-dependent inactivation of Ab-B protein, which is proposed to be a negative regulator of tycA transcription.
Collapse
|
43
|
Zuber P, Losick R. Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis. J Bacteriol 1987; 169:2223-30. [PMID: 2437099 PMCID: PMC212136 DOI: 10.1128/jb.169.5.2223-2230.1987] [Citation(s) in RCA: 240] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription of the Bacillus subtilis gene spoVG is induced at the onset of sporulation and is dependent on the products of the stage-0 regulatory genes spo0A, spo0B, and spo0H. We show here that the dependence of spoVG transcription on Spo0A and Spo0B (but not Spo0H) can be bypassed by a mutation at abrB, a previously identified locus at which mutations that suppress some of the phenotypes of spo0A are often located, or by a cis-acting mutation within the spoVG promoter. To explain the epistatis of abrB to spo0A and spo0B mutations, we propose that AbrB acts, directly or indirectly, to block transcription of spoVG and that Spo0A and Spo0B cause inactivation of the abrB gene product(s). Spo0A-Spo0B-dependent inactivation of AbrB could be a general explanation for the pleiotropic effects of spo0A and spo0B mutations on B. subtilis gene expression.
Collapse
|
44
|
Zuber P, Healy JM, Losick R. Effects of plasmid propagation of a sporulation promoter on promoter utilization and sporulation in Bacillus subtilis. J Bacteriol 1987; 169:461-9. [PMID: 3027029 PMCID: PMC211799 DOI: 10.1128/jb.169.2.461-469.1987] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Transcription of the sporulation gene spoVG of Bacillus subtilis is induced at the onset of spore formation and depends on the products of the regulatory genes spoOA, spoOB, and spoOH. We describe two effects of propagating the promoter region of spoVG on a multicopy plasmid replicon in B. subtilis cells. One effect is that transcription from the plasmid-borne spoVG promoter is altered with respect to the time of its induction and the dependence on spoO gene products. An example of this effect is that plasmid propagation was observed to relieve substantially the inhibitory effect of a mutation in spoOH, the spoO gene upon which spoVG promoter activity is most strongly dependent. We present results which suggest that propagation on a plasmid replicon causes an alteration in the conformation of spoVG promoter DNA which somehow compensates for the defective spoOH gene product. Plasmid propagation did not, however, entirely eliminate the requirement for the spoOH gene product; little or no spoVG-directed RNA synthesis was observed in cells bearing a putative spoOH deletion mutation, a finding which indicates that SpoOH protein plays an indispensable role in spoVG promoter utilization. Another effect of propagating the promoter region of spoVG on a multicopy plasmid is to inhibit sporulation. S1 nuclease mapping experiments suggest that amplification of spoVG on a multicopy plasmid causes the titration of a transcription factor or minor form of RNA polymerase holoenzyme required for utilization of one of the two overlapping promoters which comprise the spoVG transcription initiation region.
Collapse
|
45
|
New positive and negative regulators for general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 1987. [PMID: 3537709 DOI: 10.1128/mcb.6.5.1820] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of most amino acids in Saccharomyces cerevisiae is coregulated. Starvation for a single amino acid results in the derepression of amino acid biosynthetic enzymes in many unrelated pathways. This phenomenon, known as general control, is mediated by both positive (GCN) and negative (GCD) regulatory genes. In this paper we describe the identification and characterization of several new regulatory genes for this system, GCN6, GCN7, GCN8, GCN9, and GCD5. A mutation in the negative regulator GCD5 was isolated on the basis of its suppression of a gcn2 mutation. The effect of gcd5 is a posttranscriptional increase in histidine biosynthetic enzyme activity. Suppressors of gcd5 which are deficient in derepression were in turn isolated. Eight such mutations, defining four new positive regulatory genes (GCN6 through GCN9), were obtained. These mutations are recessive, confer sensitivity to multiple amino acid analogs, and result in decreased mRNA levels for genes under general control. The GCN6 and GCN7 gene products were shown to be positive regulators for transcription of the GCN4 gene, the most direct-acting positive regulator thus far identified. The interaction of GCN6 and GCN7 with GCN4 is fundamentally different from that of previously isolated GCN genes. It should also be noted that these gcn selections gave a completely different nonoverlapping set of mutations from earlier selections which relied on analog sensitivity. Thus, we may have identified a new class of GCN genes which are functionally distinct from GCN1 through GCN5.
Collapse
|
46
|
Abstract
The structural gene for alpha-aminoadipate reductase (LYS2) was isolated from a Saccharomyces cerevisiae genomic DNA library by complementation of a lys2 mutant. Both genetic and biochemical criteria confirmed that the DNA obtained corresponds to the LYS2 locus on chromosome II. Subcloning and deletion analysis showed that a functional LYS2 gene is contained within a 4.6-kilobase (kb) EcoRI-HindIII fragment of the original insert, and the slightly larger EcoRI-ClaI segment (4.8 kb) was used to construct a series of cloning vehicles, including integrating, episomal, replicative, and centromeric vectors. The cloned DNA was also used to generate a genomic deletion that lacks all LYS2 coding sequences on chromosome II. The level of the LYS2 transcript (4.2 kb) was 10-fold higher in cells grown on minimal medium than in cells grown on complete medium and was not repressed by the presence of lysine alone. Gene disruption, gene replacement, and promoter analysis of the major alpha-factor structural gene (MF alpha 1) were performed to illustrate the utility of the LYS2 gene for the genetic manipulation of yeasts. Because all fungi synthesize lysine via the alpha-aminoadipate pathway, the techniques developed here for using the S. cerevisiae LYS2 gene should be directly applicable to other fungal systems.
Collapse
|
47
|
Negative regulatory gene for general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 1986. [PMID: 3537730 DOI: 10.1128/mcb.6.9.3150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, many amino acid biosynthetic pathways are coregulated by a complex general control system: starvation for a single amino acid results in the derepression of amino acid biosynthetic genes in multiple pathways. Derepression of these genes is mediated by positive (GCN) and negative (GCD) regulatory genes. In this paper we describe the isolation and characterization of a previously unreported negative regulatory gene, GCD3. A gcd3 mutation is recessive to wild type, confers resistance to multiple amino acid analogs, and results in overproduction and partially constitutive elevation of mRNA levels for amino acid biosynthetic genes. Furthermore, a gcd3 mutation can overcome the derepression-deficient phenotype of mutations in the positive regulatory GCN1, GCN2, and GCN3 genes. However, the gcd3 mutation cannot overcome the derepression-deficient phenotype of a gcn4 mutation, suggesting that GCD3 acts as a negative regulator of the important GCN4 gene. Northern blot analysis confirmed this conclusion, in that the steady-state levels of GCN4 mRNA are greatly increased in a gcd3 mutant. Thus, the negative regulatory gene GCD3 plays a central role in derepression of amino acid biosynthetic genes.
Collapse
|
48
|
General amino acid control and specific arginine repression in Saccharomyces cerevisiae: physical study of the bifunctional regulatory region of the ARG3 gene. Mol Cell Biol 1986. [PMID: 3915770 DOI: 10.1128/mcb.5.11.3139] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To characterize further the regulatory mechanism modulating the expression of the Saccharomyces cerevisiae ARG3 gene, i.e., the specific repression by arginine and the general amino acid control, we analyzed by deletion the region upstream of that gene, determined the nucleotide sequence of operator-constitutive-like mutations affecting the specific regulation, and examined the behavior of an ARG3-galK fusion engineered at the initiating codon of ARG3. Similarly to what was observed in previous studies on the HIS3 and HIS4 genes, our data show that the general regulation acts as a positive control and that a sequence containing the nucleotide TGACTC, between positions -364 and -282 upstream of the transcription start, functions as a regulatory target site. This sequence contains the most proximal of the two TGACTC boxes identified in front of ARG3. While the general control appears to modulate transcription efficiency, the specific repression by arginine displays a posttranscriptional component (F. Messenguy and E. Dubois, Mol. Gen. Genet. 189:148-156, 1983). Our deletion and gene fusion analyses confirm that the specific and general controls operate independently of each other and assign the site responsible for arginine-specific repression to between positions -170 and +22. In keeping with this assignment, the two operator-constitutive-like mutations were localized at positions -80 and -46, respectively, and thus in a region which is not transcribed. We discuss a hypothesis accounting for the involvement of untranscribed DNA in a posttranscriptional control.
Collapse
|
49
|
Davis RH. Compartmental and regulatory mechanisms in the arginine pathways of Neurospora crassa and Saccharomyces cerevisiae. Microbiol Rev 1986; 50:280-313. [PMID: 2945985 PMCID: PMC373072 DOI: 10.1128/mr.50.3.280-313.1986] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
50
|
Myers PL, Skvirsky RC, Greenberg ML, Greer H. Negative regulatory gene for general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 1986; 6:3150-5. [PMID: 3537730 PMCID: PMC367050 DOI: 10.1128/mcb.6.9.3150-3155.1986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In Saccharomyces cerevisiae, many amino acid biosynthetic pathways are coregulated by a complex general control system: starvation for a single amino acid results in the derepression of amino acid biosynthetic genes in multiple pathways. Derepression of these genes is mediated by positive (GCN) and negative (GCD) regulatory genes. In this paper we describe the isolation and characterization of a previously unreported negative regulatory gene, GCD3. A gcd3 mutation is recessive to wild type, confers resistance to multiple amino acid analogs, and results in overproduction and partially constitutive elevation of mRNA levels for amino acid biosynthetic genes. Furthermore, a gcd3 mutation can overcome the derepression-deficient phenotype of mutations in the positive regulatory GCN1, GCN2, and GCN3 genes. However, the gcd3 mutation cannot overcome the derepression-deficient phenotype of a gcn4 mutation, suggesting that GCD3 acts as a negative regulator of the important GCN4 gene. Northern blot analysis confirmed this conclusion, in that the steady-state levels of GCN4 mRNA are greatly increased in a gcd3 mutant. Thus, the negative regulatory gene GCD3 plays a central role in derepression of amino acid biosynthetic genes.
Collapse
|