1
|
van Schendel R, Romeijn R, Buijs H, Tijsterman M. Preservation of lagging strand integrity at sites of stalled replication by Pol α-primase and 9-1-1 complex. SCIENCE ADVANCES 2021; 7:eabf2278. [PMID: 34138739 PMCID: PMC8133754 DOI: 10.1126/sciadv.abf2278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/31/2021] [Indexed: 05/03/2023]
Abstract
During genome duplication, the replication fork encounters a plethora of obstacles in the form of damaged bases, DNA-cross-linked proteins, and secondary structures. How cells protect DNA integrity at sites of stalled replication is currently unknown. Here, by engineering "primase deserts" into the Caenorhabditis elegans genome close to replication-impeding G-quadruplexes, we show that de novo DNA synthesis downstream of the blocked fork suppresses DNA loss. We next identify the pol α-primase complex to limit deletion mutagenesis, a conclusion substantiated by whole-genome analysis of animals carrying mutated POLA2/DIV-1. We subsequently identify a new role for the 9-1-1 checkpoint clamp in protecting Okazaki fragments from resection by EXO1. Together, our results provide a mechanistic model for controlling the fate of replication intermediates at sites of stalled replication.
Collapse
Affiliation(s)
- Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Ron Romeijn
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Helena Buijs
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands.
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| |
Collapse
|
2
|
|
3
|
Holt IJ. Mitochondrial DNA replication and repair: all a flap. Trends Biochem Sci 2009; 34:358-65. [DOI: 10.1016/j.tibs.2009.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/04/2009] [Accepted: 03/10/2009] [Indexed: 10/20/2022]
|
4
|
Pardue ML, DeBaryshe PG. Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 2004; 37:485-511. [PMID: 14616071 DOI: 10.1146/annurev.genet.38.072902.093115] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Telomere molecular biology is far more complex than originally thought. Understanding biological systems is aided by study of evolutionary variants, and Drosophila telomeres are remarkable variants. Drosophila lack telomerase and the arrays of simple repeats generated by telomerase in almost all other organisms; instead, Drosophila telomeres are long tandem arrays of two non-LTR retrotransposons, HeT-A and TART. These are the first transposable elements found to have a bona fide role in cell structure, revealing an unexpected link between telomeres and what is generally considered to be parasitic DNA. In addition to providing insight into the cellular functions performed by telomeres, analysis of HeT-A and TART is providing insight into the evolution of chromosomes, retrotransposons, and retroviruses. Recent studies show that retrotransposon telomeres constitute a robust system for maintaining chromosome ends. These telomeres are now known to predate the separation of extant Drosophila species, allowing ample time for elements and hosts to coevolve interesting mechanisms.
Collapse
Affiliation(s)
- Mary-Lou Pardue
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
5
|
Zhimulev IF. Polytene chromosomes, heterochromatin, and position effect variegation. ADVANCES IN GENETICS 1997; 37:1-566. [PMID: 9352629 DOI: 10.1016/s0065-2660(08)60341-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Fernandes DJ, Catapano CV. The nuclear matrix as a site of anticancer drug action. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162A:539-76. [PMID: 8575887 DOI: 10.1016/s0074-7696(08)61238-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Many nuclear functions, including the organization of the chromatin within the nucleus, depend upon the presence of a nuclear matrix. Nuclear matrix proteins are involved in the formation of chromatin loops, control of DNA supercoiling, and regulation and coordination of transcriptional and replicational activities within individual loops. Various structural and functional components of the nuclear matrix represent potential targets for anticancer agents. Alkylating agents and ionizing radiation interact preferentially with nuclear matrix proteins and matrix-associated DNA. Other chemotherapeutic agents, such as fludarabine phosphate and topoisomerase II-active drugs, interact specifically with matrix-associated enzymes, such as DNA primase and the DNA topoisomerase II alpha isozyme. The interactions of these agents at the level of the nuclear matrix may compromise multiple nuclear functions and be relevant to their antitumor activities.
Collapse
Affiliation(s)
- D J Fernandes
- Department of Experimental Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston 29425, USA
| | | |
Collapse
|
7
|
Sheaff R, Kuchta R. Misincorporation of nucleotides by calf thymus DNA primase and elongation of primers containing multiple noncognate nucleotides by DNA polymerase alpha. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32156-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine 92717
| | | |
Collapse
|
9
|
Podust VN, Vladimirova OV, Manakova EN, Lavrik OI. Eukaryotic DNA primase. Abortive synthesis of oligoadenylates. FEBS Lett 1991; 280:281-3. [PMID: 2013323 DOI: 10.1016/0014-5793(91)80312-q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calf thymus DNA polymerase alpha-primase, human placenta DNA polymerase alpha-primase and human placenta DNA primase synthesized oligoriboadenylates of a preferred length of 2-10 nucleotides and multimeric oligoribonucleotides of a modal length of about 10 monomers on a poly(dT) template. The dimer and trimer were the prevalent products of the polymerization reaction. However, only the oligonucleotides from heptamers to decamers were elongated efficiently by DNA polymerase alpha.
Collapse
Affiliation(s)
- V N Podust
- Institute of Bioorganic Chemistry, Siberian Division of the USSR Academy of Sciences, Novosibirsk
| | | | | | | |
Collapse
|
10
|
|
11
|
Paff MT, Fernandes DJ. Synthesis and distribution of primer RNA in nuclei of CCRF-CEM leukemia cells. Biochemistry 1990; 29:3442-50. [PMID: 2191715 DOI: 10.1021/bi00466a004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The distribution of primer RNA and RNA-primed nascent DNA in nuclei of CCRF-CEM leukemia cells was examined, and the primer RNA purified from the nuclear matrices of these cells was characterized. RNA-primed nascent DNA was radiolabeled by incubating whole-cell lysates with [alpha-32P]ATP and [3H]dTTP in the presence of approximately physiological concentrations of the remaining ribo- and deoxyribonucleoside triphosphates. The primer RNA was purified by cesium chloride density gradient centrifugation and analyzed by polyacrylamide gel electrophoresis. Nuclear subfractionation studies revealed that at least 94% of the primer RNA and RNA-primed nascent DNA were located within the insoluble matrix fraction of the nucleus. The predominant primer RNA isolated from the nuclear matrix was 8-10 nucleotides in length, and several lines of evidence indicated that this oligoribonucleotide was the functional primer RNA. Essentially all of the matrix primer RNA was covalently linked to the newly replicated DNA as demonstrated by its buoyant density in cesium chloride gradients, phosphate-transfer analysis, and sensitivity to DNase I. Analysis of 32P transfer from [alpha-32P]dTTP revealed a random distribution of ribonucleotides at the 3'-end of the primer RNA. Data obtained from mixing experiments indicated that the association of RNA-primed nascent DNA with the nuclear matrix was not the result of aggregation of these fragments with the nuclear matrix. No significant amount of either primer RNA, RNA-primed nascent DNA, or phosphate transfer was detected in the high-salt-soluble (nonmatrix) fraction of the nucleus, although the nonmatrix fraction contained most of the newly replicated DNA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M T Paff
- Department of Biochemistry, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27103
| | | |
Collapse
|
12
|
Abstract
Destabilization of a P element transposon inserted in the subtelomeric region induced a set of similar chromosomal rearrangements. These rearrangements appear to be terminal deletions with endpoints clustered at the centromere-distal end of the transposon. The terminally deleted chromosome progressively loses sequences from the broken end at a rate of approximately 50-100 bp per fly generation, suggesting that the replication of this end may be incomplete. In most cases, capping of the broken end by readdition of new sequences was not observed. Past failures to recover terminal deletions of Drosophila chromosomes following X-ray mutagenesis may have been due to a cell cycle arrest in response to unrepaired DNA damage rather than to an absolute requirement for the telomere.
Collapse
Affiliation(s)
- R W Levis
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| |
Collapse
|
13
|
Suzuki M, Enomoto T, Masutani C, Hanaoka F, Yamada M, Ui M. DNA primase-DNA polymerase α assembly from mouse FM3A cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81767-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Abstract
Eucaryotic primase, an enzyme that initiates de novo DNA replication, is tightly associated with polymerase alpha or yeast DNA polymerase I. It is probably a heterodimer of 5.6 +/- 0.1 S. The enzyme synthesizes oligoribonucleotides of about eight residues which are always initiated with a purine. In vitro the polymerase-primase complex initiates synthesis and pauses at preferred sites on natural single-stranded templates. The relative concentrations of ATP and GTP present in the reaction medium modulate the frequency of site recognition. Primase is strongly ATP-dependent in the presence of single-stranded DNA and of poly(dT). It also synthesizes oligo(rG) in the presence of poly(dC) very efficiently.
Collapse
|
15
|
Badaracco G, Valsasnini P, Foiani M, Benfante R, Lucchini G, Plevani P. Mechanism of initiation of in vitro DNA synthesis by the immunopurified complex between yeast DNA polymerase I and DNA primase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 161:435-40. [PMID: 3536513 DOI: 10.1111/j.1432-1033.1986.tb10463.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The immunopurified yeast DNA-polymerase-I--DNA-primase complex synthesizes oligo(rA) and oligo(rG) molecules that are used as primer for replication of poly(dT) and poly(dC). Neither initiation nor DNA synthesis is observed with poly(dA) and poly(dI). Nitrocellulose-filter binding shows that the enzyme complex binds to deoxypyrimidine polymers, but not to deoxypurine polymers. Although the yeast complex initiates DNA synthesis on deoxypyrimidine homopolymers, it prefers to elongate pre-existing primer molecules rather than to initiate de novo DNA replication. The size of the oligo(rA) and oligo(rG) primer molecules has been determined by urea/polyacrylamide gel electrophoresis: longer oligoribonucleotides are synthesized when their utilization is prevented by omitting dNTP. An oligodeoxythymidylate template with a chain length as short as five residues can support oligo(rA) synthesis catalyzed by the yeast DNA-polymerase--DNA-primase complex and the size of the oligoribonucleotide products synthesized with oligodeoxythymidylate of differing chain length has also been determined. The mechanistic properties of the DNA-polymerase--DNA-primase complexes, purified from different eukaryotic organisms, appear to be very similar. The possible biological implication of the studies on the mechanism and specificity of initiation of DNA synthesis in a well-defined model template system has been discussed.
Collapse
|
16
|
Philippe M, Rossignol JM, De Recondo AM. DNA polymerase alpha associated primase from rat liver: physiological variations. Biochemistry 1986; 25:1611-5. [PMID: 3707897 DOI: 10.1021/bi00355a024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A primase activity associated to DNA polymerase alpha from rat liver is described. Both activities were absent in normal adult rat liver but were concomitantly induced after partial hepatectomy. As previously shown for polymerase alpha and DNA topoisomerase II, primase activity reached a maximum value 40-43 h after the partial removal of the liver. Primase activity was shown to catalyze dNMP incorporation on unprimed single-stranded DNA template (M13 DNA) in the presence of rNTP. The activity was not detectable on poly(dA) or poly(dG) but was efficient on poly(dT) or poly(dC). However, the reliability of the primase assay in the presence of poly(dC) was dependent upon the degree of purification of the enzyme. The ribo primers were about 10 nucleotides long, and the reaction was completely independent of alpha-amanitin, a strong inhibitor of RNA polymerases II and III. Primase and polymerase were found tightly associated. A cosedimentation on a 5-20% sucrose gradient was always obtained, independent of the ionic strength. There was also a close coincidence between alpha-polymerase and primase activities during phosphocellulose, hydroxylapatite, and single-stranded DNA Ultrogel chromatography. It has been previously demonstrated by us and others that primase and alpha-polymerase are on separated polypeptides. The association of two activities in the replication complex and the conditions allowing their separation are discussed.
Collapse
|
17
|
Banfalvi G, Sarkar N. Origin and degradation of the RNA primers at the 5' termini of nascent DNA chains in Bacillus subtilis. J Mol Biol 1985; 186:275-82. [PMID: 2418206 DOI: 10.1016/0022-2836(85)90104-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We had earlier characterized the nascent DNA synthesized in permeable cells of Bacillus subtilis in the presence of 5-mercurideoxycytidine triphosphate and 2',3'-dideoxyATP as being substituted at its 5' end with a ribonucleotide moiety of the sequence pApG(pC)1-2 DNA. In this paper, we examine the origin and turnover of the DNA-linked ribonucleotide and its relationship to DNA replication. At least 50% of the RNA-linked nascent DNA chains served as guanylate acceptors when incubated with GTP and the eukaryotic capping enzyme, indicating the presence of 5'-terminal di- or triphosphate groups and suggesting that the RNA moiety is synthesized de novo and is not a degradation product. In nascent DNA produced without limitation of chain growth by dideoxyATP, the degree of terminal ribonucleotide substitution was reduced by 50%, consistent with a linkage between RNA primer removal and DNA chain growth. Such a relationship was demonstrated directly by examining the RNA primer content of nascent DNA synthesized in the absence of dideoxyATP as a function of DNA chain length. As the DNA size increased from 40 to 200 nucleotide residues, the extent of RNA substitution declined from 80% to nearly 0%. Endgroup analysis showed that the loss of RNA was accompanied by a gradual shift from predominantly adenylate residues to 5'-terminal guanylate, consistent with a stepwise removal of ribonucleotides from the 5' end. Evidence that the nascent mercurated DNA synthesized under our experimental conditions was indeed a replicative intermediate came from the study of the time course of DNA chain growth and pulse-chase experiments. In the presence of the DNA ligase inhibitor NMN, mercurated DNA accumulated in two size classes with average length of approximately 750 and 8000 nucleotide residues, presumably representing the mature size of intermediates in discontinuous DNA synthesis. Comparison with the DNA size range at which the loss of the 5'-terminal RNA moiety occurred (40 to 200 residues) indicated that the processing of RNA primers occurred at an early stage during DNA chain elongation, and that moderate size intermediates in discontinuous DNA replication (greater than 200 nucleotides) have already lost their RNA primers.
Collapse
|
18
|
Kitani T, Yoda K, Ogawa T, Okazaki T. Evidence that discontinuous DNA replication in Escherichia coli is primed by approximately 10 to 12 residues of RNA starting with a purine. J Mol Biol 1985; 184:45-52. [PMID: 2411935 DOI: 10.1016/0022-2836(85)90042-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intact primer RNA for discontinuous DNA replication of Escherichia coli has been detected by specific labeling in vitro of its 5'-terminal tri- (or di-) phosphate group with vaccinia guanylyltransferase and [alpha-32P]GTP. A mutant defective either in RNase H or in both RNase H and DNA polymerase I accumulated about 10 or 30 times more intact primer RNA, respectively, than wild-type cells. The primers started with purine in an A to G ratio of 5 and the most abundant 5'-terminal dinucleotide sequence was (p)ppA-Pu. The chain length of the intact primer RNA was approximately 10 to 12 nucleotide residues. The structural properties of the E. coli primer RNa resemble those of the eukaryotic primer RNA.
Collapse
|
19
|
DNA primase-DNA polymerase alpha from simian cells. Modulation of RNA primer synthesis by ribonucleoside triphosphates. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)88965-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|